File size: 7,923 Bytes
6110af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
base_model: moritzbur/lilt-GottBERT-base
tags:
- generated_from_trainer
datasets:
- xfund
model-index:
- name: lilt-GottBERT-base-xfund-de
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-GottBERT-base-xfund-de

This model is a fine-tuned version of [moritzbur/lilt-GottBERT-base](https://huggingface.co/moritzbur/lilt-GottBERT-base) on the xfund dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0170
- Answer: {'precision': 0.8059836808703535, 'recall': 0.8193548387096774, 'f1': 0.8126142595978061, 'number': 1085}
- Header: {'precision': 0.6590909090909091, 'recall': 0.5, 'f1': 0.5686274509803921, 'number': 58}
- Question: {'precision': 0.7037037037037037, 'recall': 0.837465564738292, 'f1': 0.7647798742138364, 'number': 726}
- Overall Precision: 0.7588
- Overall Recall: 0.8165
- Overall F1: 0.7866
- Overall Accuracy: 0.7433

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Answer                                                                                                    | Header                                                                                                    | Question                                                                                                 | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:--------:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.6294        | 10.5263  | 200  | 1.2270          | {'precision': 0.7253032928942807, 'recall': 0.7714285714285715, 'f1': 0.7476552032157213, 'number': 1085} | {'precision': 0.4117647058823529, 'recall': 0.4827586206896552, 'f1': 0.4444444444444445, 'number': 58}   | {'precision': 0.6296728971962616, 'recall': 0.7424242424242424, 'f1': 0.6814159292035398, 'number': 726} | 0.6756            | 0.7512         | 0.7114     | 0.7180           |
| 0.0376        | 21.0526  | 400  | 1.5753          | {'precision': 0.7734447539461468, 'recall': 0.7677419354838709, 'f1': 0.7705827937095282, 'number': 1085} | {'precision': 0.5, 'recall': 0.39655172413793105, 'f1': 0.4423076923076923, 'number': 58}                 | {'precision': 0.6336302895322939, 'recall': 0.7837465564738292, 'f1': 0.7007389162561576, 'number': 726} | 0.7051            | 0.7624         | 0.7326     | 0.7219           |
| 0.0093        | 31.5789  | 600  | 1.7096          | {'precision': 0.8057971014492754, 'recall': 0.7686635944700461, 'f1': 0.7867924528301887, 'number': 1085} | {'precision': 0.4807692307692308, 'recall': 0.43103448275862066, 'f1': 0.45454545454545453, 'number': 58} | {'precision': 0.643702906350915, 'recall': 0.8236914600550964, 'f1': 0.7226586102719034, 'number': 726}  | 0.7227            | 0.7796         | 0.7501     | 0.7347           |
| 0.0063        | 42.1053  | 800  | 2.0163          | {'precision': 0.760705289672544, 'recall': 0.8350230414746543, 'f1': 0.7961335676625658, 'number': 1085}  | {'precision': 0.55, 'recall': 0.3793103448275862, 'f1': 0.4489795918367347, 'number': 58}                 | {'precision': 0.698090692124105, 'recall': 0.8057851239669421, 'f1': 0.748081841432225, 'number': 726}   | 0.7313            | 0.8095         | 0.7684     | 0.7047           |
| 0.0041        | 52.6316  | 1000 | 1.7820          | {'precision': 0.773403324584427, 'recall': 0.8147465437788018, 'f1': 0.793536804308797, 'number': 1085}   | {'precision': 0.627906976744186, 'recall': 0.46551724137931033, 'f1': 0.5346534653465347, 'number': 58}   | {'precision': 0.6758544652701213, 'recall': 0.8443526170798898, 'f1': 0.7507654623392529, 'number': 726} | 0.7281            | 0.8154         | 0.7693     | 0.7344           |
| 0.0023        | 63.1579  | 1200 | 1.9631          | {'precision': 0.8218390804597702, 'recall': 0.7907834101382488, 'f1': 0.8060122123062471, 'number': 1085} | {'precision': 0.6444444444444445, 'recall': 0.5, 'f1': 0.5631067961165049, 'number': 58}                  | {'precision': 0.6841491841491841, 'recall': 0.8085399449035813, 'f1': 0.7411616161616162, 'number': 726} | 0.7571            | 0.7887         | 0.7725     | 0.7379           |
| 0.0016        | 73.6842  | 1400 | 1.8911          | {'precision': 0.7939282428702852, 'recall': 0.7953917050691244, 'f1': 0.794659300184162, 'number': 1085}  | {'precision': 0.5909090909090909, 'recall': 0.4482758620689655, 'f1': 0.5098039215686274, 'number': 58}   | {'precision': 0.6629834254143646, 'recall': 0.8264462809917356, 'f1': 0.7357449417535254, 'number': 726} | 0.7313            | 0.7967         | 0.7626     | 0.7442           |
| 0.0012        | 84.2105  | 1600 | 1.9599          | {'precision': 0.8111954459203036, 'recall': 0.7880184331797235, 'f1': 0.7994389901823281, 'number': 1085} | {'precision': 0.6666666666666666, 'recall': 0.41379310344827586, 'f1': 0.5106382978723404, 'number': 58}  | {'precision': 0.7020785219399538, 'recall': 0.837465564738292, 'f1': 0.7638190954773869, 'number': 726}  | 0.7602            | 0.7956         | 0.7775     | 0.7356           |
| 0.0006        | 94.7368  | 1800 | 2.1117          | {'precision': 0.8485772357723578, 'recall': 0.7695852534562212, 'f1': 0.8071532141130981, 'number': 1085} | {'precision': 0.6444444444444445, 'recall': 0.5, 'f1': 0.5631067961165049, 'number': 58}                  | {'precision': 0.7149817295980512, 'recall': 0.8085399449035813, 'f1': 0.7588881706528765, 'number': 726} | 0.7843            | 0.7764         | 0.7803     | 0.7377           |
| 0.0006        | 105.2632 | 2000 | 2.0033          | {'precision': 0.8036866359447005, 'recall': 0.8036866359447005, 'f1': 0.8036866359447006, 'number': 1085} | {'precision': 0.6410256410256411, 'recall': 0.43103448275862066, 'f1': 0.5154639175257731, 'number': 58}  | {'precision': 0.6780973451327433, 'recall': 0.8443526170798898, 'f1': 0.7521472392638038, 'number': 726} | 0.7446            | 0.8079         | 0.7750     | 0.7409           |
| 0.0003        | 115.7895 | 2200 | 2.0170          | {'precision': 0.8059836808703535, 'recall': 0.8193548387096774, 'f1': 0.8126142595978061, 'number': 1085} | {'precision': 0.6590909090909091, 'recall': 0.5, 'f1': 0.5686274509803921, 'number': 58}                  | {'precision': 0.7037037037037037, 'recall': 0.837465564738292, 'f1': 0.7647798742138364, 'number': 726}  | 0.7588            | 0.8165         | 0.7866     | 0.7433           |
| 0.0003        | 126.3158 | 2400 | 2.0173          | {'precision': 0.8104761904761905, 'recall': 0.784331797235023, 'f1': 0.7971896955503512, 'number': 1085}  | {'precision': 0.6363636363636364, 'recall': 0.4827586206896552, 'f1': 0.5490196078431373, 'number': 58}   | {'precision': 0.7096018735362998, 'recall': 0.8347107438016529, 'f1': 0.7670886075949367, 'number': 726} | 0.7623            | 0.7945         | 0.7781     | 0.7393           |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0