leejunhyeok
commited on
Commit
•
13216ee
1
Parent(s):
2594020
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,45 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
---
|
6 |
+
# **Introduction**
|
7 |
+
MoMo-70B is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model.
|
8 |
+
This is a Direct Preference Optimization([DPO](https://arxiv.org/abs/2305.18290)) version of v1.8.4 , with several optimizations in hyperparameters.
|
9 |
+
Note that we did not exploit any form of weight merge.
|
10 |
+
For leaderboard submission, the trained weight is realigned for compatibility with llama.
|
11 |
+
MoMo-70B is trained using **[Moreh](https://moreh.io/)**'s [MoAI platform](https://moreh.io/product), which simplifies the training of large-scale models, and AMD's MI250 GPU.
|
12 |
+
|
13 |
+
|
14 |
+
## Details
|
15 |
+
### Used Librarys
|
16 |
+
- torch
|
17 |
+
- peft
|
18 |
+
### Used Datasets
|
19 |
+
- [slimorca](Open-Orca/SlimOrca)
|
20 |
+
- [truthy](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1)
|
21 |
+
- [orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
22 |
+
- No other dataset was used
|
23 |
+
- No benchmark test set or the training set are used
|
24 |
+
- [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result
|
25 |
+
|
26 |
+
| Model | ARC | MMLU | TruthfulQA | GSM8K |
|
27 |
+
|------------------------------|-------|-------|-------|-------|
|
28 |
+
| **V1.8.5(result < 0.1, %)**| TBU |TBU | TBU | TBU |
|
29 |
+
### Used Environments
|
30 |
+
- AMD MI250 & MoAI platform
|
31 |
+
- Please visit https://moreh.io/product for more information about MoAI platform
|
32 |
+
- Or, contact us directly [[email protected]](mailto:[email protected])
|
33 |
+
|
34 |
+
## How to use
|
35 |
+
|
36 |
+
```python
|
37 |
+
# pip install transformers==4.35.2
|
38 |
+
import torch
|
39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
+
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-70B-LoRA-V1.8.6")
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
"moreh/MoMo-70B-LoRA-V1.8.6"
|
44 |
+
)
|
45 |
+
```
|