Initial commit to HF
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo_lunar_lander_test1.zip +3 -0
- ppo_lunar_lander_test1/_stable_baselines3_version +1 -0
- ppo_lunar_lander_test1/data +94 -0
- ppo_lunar_lander_test1/policy.optimizer.pth +3 -0
- ppo_lunar_lander_test1/policy.pth +3 -0
- ppo_lunar_lander_test1/pytorch_variables.pth +3 -0
- ppo_lunar_lander_test1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 118.66 +/- 90.54
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5cba90c8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5cba90c950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5cba90c9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5cba90ca70>", "_build": "<function ActorCriticPolicy._build at 0x7f5cba90cb00>", "forward": "<function ActorCriticPolicy.forward at 0x7f5cba90cb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5cba90cc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5cba90ccb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5cba90cd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5cba90cdd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5cba90ce60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5cba8e24e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654779966.1158698, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA9sG3PkVamD5PSEQ7yslsvodNtb3iKso9AAAAAAAAAADNVXm9w90zuvJFdzhcTqS1N8VzO2RvjbcAAIA/AACAP9YzYr6FEdo8C78XPM0fbroLTHC+6niHOwAAgD8AAIA/zXVpPj/MID/73ce+dDGovvttIz5aVqa+AAAAAAAAAAAzs6m6ony0P7JOBr6ayR29w4jFOpph8zwAAAAAAAAAALpUoD5pS0C8jqvhOcGkmLflV4G9NutmNAAAgD8AAIA/9vr3vrFv2T2DeVa92TAIvol6kz0gs1U9AAAAAAAAAAAGk6++PdZEvY4mVjrKDYQ4DmBbPhqOSLgAAIA/AACAP8CSdz54DaE8qsFCur02ubjxWzM+IHt0OQAAgD8AAIA/gDAkvfYYLbpqNoA7VSpztQYe57qjlJW6AACAPwAAgD/NPKS6rrmZusogqbpgnsO1acZdOtmEwDkAAIA/AACAP3b/WL57lOU3Nc15uvKkqTZHAg68WimROQAAgD8AAIA/muSGvFxHJboqQ+S7bVXlNggPJ7u9B1G2AACAPwAAgD8bW4++rvWlvLexgTv6/b85NREdPh+ioboAAIA/AACAPzM98bzDKWC6mtgEvMkAJzZn1sC5pt2TtQAAgD8AAIA/ZmzdPFyXYrrPqwc73kx4NgJnALt3+Rq6AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAABAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIndUCe0yKUsCUhpRSlIwBbJRL14wBdJRHQIO8BzYEnst1fZQoaAZoCWgPQwgMc4I2OV1UwJSGlFKUaBVLymgWR0CDxtzp5eJIdX2UKGgGaAloD0MIRnnm5bCFSECUhpRSlGgVTegDaBZHQIPJAnv2GqR1fZQoaAZoCWgPQwjJHMu76lNOQJSGlFKUaBVN6ANoFkdAg8rNayKNynV9lChoBmgJaA9DCCNL5ljeH0TAlIaUUpRoFUu3aBZHQIPO856t1ZF1fZQoaAZoCWgPQwirsBnggihsQJSGlFKUaBVNHgJoFkdAg9brYXfqHHV9lChoBmgJaA9DCMBeYcH9jFxAlIaUUpRoFU3oA2gWR0CD2taaCtihdX2UKGgGaAloD0MIJLn8h/QkWkCUhpRSlGgVTegDaBZHQIPdwxFiKBN1fZQoaAZoCWgPQwh1d50N+cdcQJSGlFKUaBVN6ANoFkdAg+CfrB0p3HV9lChoBmgJaA9DCH47iQj/l1PAlIaUUpRoFUvQaBZHQIPkkxyn1nN1fZQoaAZoCWgPQwjlnNhD+2ZkwJSGlFKUaBVNEQFoFkdAg+q/8dgfEHV9lChoBmgJaA9DCBrh7UEIXD1AlIaUUpRoFU3oA2gWR0CD7W2AG0NSdX2UKGgGaAloD0MIsvM2NjuQRkCUhpRSlGgVTegDaBZHQIP1DsniNsF1fZQoaAZoCWgPQwgNcayL2ygdwJSGlFKUaBVL2WgWR0CD93tE5QxfdX2UKGgGaAloD0MI6WM+INBPX0CUhpRSlGgVTegDaBZHQIP42dwvQF91fZQoaAZoCWgPQwjpK0gzFttDwJSGlFKUaBVLu2gWR0CEABybx3FDdX2UKGgGaAloD0MIE/HW+TcUZsCUhpRSlGgVTUgBaBZHQIQA/0AcT8J1fZQoaAZoCWgPQwjwplt2iD9gQJSGlFKUaBVN6ANoFkdAhAGJmukk8nV9lChoBmgJaA9DCD55WKg1mlFAlIaUUpRoFU3oA2gWR0CEAxU5MlC1dX2UKGgGaAloD0MI0CfyJOka+r+UhpRSlGgVS8NoFkdAhBelMIu5BnV9lChoBmgJaA9DCCKJXkaxD1XAlIaUUpRoFU1LAWgWR0CEHhCZ4Oc2dX2UKGgGaAloD0MI2o6pu7JBV0CUhpRSlGgVTegDaBZHQIQnMI/qxC91fZQoaAZoCWgPQwio4zEDldRQQJSGlFKUaBVN6ANoFkdAhCtFz2exwHV9lChoBmgJaA9DCBqiCn+GbzLAlIaUUpRoFU3SAWgWR0CEMjPrOZ9edX2UKGgGaAloD0MITBb3H5lyWUCUhpRSlGgVTegDaBZHQIRfQXKr7wd1fZQoaAZoCWgPQwiGkzR/zHFnQJSGlFKUaBVN6ANoFkdAhGlJdjXnQ3V9lChoBmgJaA9DCPVjk/yIH01AlIaUUpRoFU3oA2gWR0CEcnm4iHIqdX2UKGgGaAloD0MImE2AYflJWkCUhpRSlGgVTegDaBZHQIR83wEyLyd1fZQoaAZoCWgPQwgapOAp5NhcQJSGlFKUaBVN6ANoFkdAhIbm5lOGkHV9lChoBmgJaA9DCL4vLlVpj1ZAlIaUUpRoFU3oA2gWR0CEi0rbxmTUdX2UKGgGaAloD0MIfF9cqtKBVECUhpRSlGgVTegDaBZHQISUofSx7iR1fZQoaAZoCWgPQwhblq/L8Hs3wJSGlFKUaBVL4WgWR0CEmbC9AX2vdX2UKGgGaAloD0MIoQ+WsaF7YECUhpRSlGgVTegDaBZHQISc0hA4XGh1fZQoaAZoCWgPQwjH8UOlET9GQJSGlFKUaBVLsGgWR0CEnVSHdoFndX2UKGgGaAloD0MImKPH720JYkCUhpRSlGgVTegDaBZHQISpcgpz90l1fZQoaAZoCWgPQwjw+sxZnzolQJSGlFKUaBVN6ANoFkdAhKsQhfShJ3V9lChoBmgJaA9DCH8yxofZfzxAlIaUUpRoFU3oA2gWR0CErN8WsRxtdX2UKGgGaAloD0MIW7VrQlrnOkCUhpRSlGgVS+toFkdAhLW+i8FpwnV9lChoBmgJaA9DCOoI4Gbxh19AlIaUUpRoFU3oA2gWR0CEwmzAvcrRdX2UKGgGaAloD0MItHOaBdo1UkCUhpRSlGgVTegDaBZHQITInOryUcJ1fZQoaAZoCWgPQwiojlVKzxwrwJSGlFKUaBVL5GgWR0CEyTTwUg0TdX2UKGgGaAloD0MI2c2MfjTPYUCUhpRSlGgVTegDaBZHQITQqiZfD1p1fZQoaAZoCWgPQwgxlX7C2YBhQJSGlFKUaBVN6ANoFkdAhNSbNr0rb3V9lChoBmgJaA9DCKgZUkXxI1tAlIaUUpRoFU3oA2gWR0CE2uFXaJyidX2UKGgGaAloD0MIPPpfrkU1VUCUhpRSlGgVTegDaBZHQIUHkdFOO811fZQoaAZoCWgPQwgr+kMzT95LQJSGlFKUaBVN6ANoFkdAhRD6m4y44XV9lChoBmgJaA9DCGthFto5O1hAlIaUUpRoFU3oA2gWR0CFGHcv/R3NdX2UKGgGaAloD0MIlBXD1QFdXUCUhpRSlGgVTegDaBZHQIUvz+tKZlZ1fZQoaAZoCWgPQwjrO78oQb8pQJSGlFKUaBVL8GgWR0CFOaMKCxu9dX2UKGgGaAloD0MIP6n26XhcXECUhpRSlGgVTegDaBZHQIU661RceKd1fZQoaAZoCWgPQwjPvvIgPfZeQJSGlFKUaBVN6ANoFkdAhUQCWNWEK3V9lChoBmgJaA9DCAfQ7/s3LlxAlIaUUpRoFU3oA2gWR0CFRJHFPznSdX2UKGgGaAloD0MIlpf8T367YkCUhpRSlGgVTegDaBZHQIVRTGR3eN11fZQoaAZoCWgPQwgWhV0UPcdbQJSGlFKUaBVN6ANoFkdAhVL1z6rNn3V9lChoBmgJaA9DCFSthVloVzdAlIaUUpRoFUv3aBZHQIVaNLamGdt1fZQoaAZoCWgPQwjX2ZB/Zig3QJSGlFKUaBVN6ANoFkdAhV7I371qWXV9lChoBmgJaA9DCAL1ZtR8/TrAlIaUUpRoFUu8aBZHQIVo+O801qF1fZQoaAZoCWgPQwgn3gGetExVQJSGlFKUaBVN6ANoFkdAhWsDcM3IdXV9lChoBmgJaA9DCJrudVLfA2NAlIaUUpRoFU3oA2gWR0CFcYkxh2GJdX2UKGgGaAloD0MIzcr2IW97XECUhpRSlGgVTegDaBZHQIVyMEs8PnV1fZQoaAZoCWgPQwjZeLDFbnZjQJSGlFKUaBVN6ANoFkdAhXoBdMTN+3V9lChoBmgJaA9DCLnhd9Mthl1AlIaUUpRoFU3oA2gWR0CFfcwxFiKBdX2UKGgGaAloD0MIJ2w/GWMcYkCUhpRSlGgVTegDaBZHQIWEEhFEy+J1fZQoaAZoCWgPQwj8cma7QkpbQJSGlFKUaBVN6ANoFkdAhYnGsV+I/XV9lChoBmgJaA9DCEvqBDQRuEnAlIaUUpRoFU0PAWgWR0CFtDMJx//edX2UKGgGaAloD0MIlnuBWSE0YECUhpRSlGgVTegDaBZHQIW6O7cwg1Z1fZQoaAZoCWgPQwiAnDBhNGpQwJSGlFKUaBVNpAFoFkdAhcxFU6xPf3V9lChoBmgJaA9DCBPvAE/a9mNAlIaUUpRoFU3oA2gWR0CF2NZeRgZ1dX2UKGgGaAloD0MIfAqA8QzSWUCUhpRSlGgVTegDaBZHQIXiwnfEXLx1fZQoaAZoCWgPQwgyyjMvh7ZhQJSGlFKUaBVN6ANoFkdAhes10tAcDXV9lChoBmgJaA9DCK66DtWUL1lAlIaUUpRoFU3oA2gWR0CF67tAs053dX2UKGgGaAloD0MIf4eiQB+JYUCUhpRSlGgVTegDaBZHQIX5iVMVUMp1fZQoaAZoCWgPQwjTad0GNZdmQJSGlFKUaBVN6ANoFkdAhgEgMMI/q3V9lChoBmgJaA9DCD3UtmEUOkhAlIaUUpRoFU3oA2gWR0CGBYlzltCRdX2UKGgGaAloD0MIdLSqJR35T8CUhpRSlGgVTY8CaBZHQIYH9q33HrB1fZQoaAZoCWgPQwh5kQn4NUNhQJSGlFKUaBVN6ANoFkdAhg86h6By0nV9lChoBmgJaA9DCKg5eZEJqV1AlIaUUpRoFU3oA2gWR0CGGAl54W1udX2UKGgGaAloD0MINqs+V1tyVECUhpRSlGgVTegDaBZHQIYgALPUrkN1fZQoaAZoCWgPQwixNPCjGiJLQJSGlFKUaBVN6ANoFkdAhiP/oaDPGHV9lChoBmgJaA9DCOkPzTy5djTAlIaUUpRoFUv0aBZHQIYk3f4yoGZ1fZQoaAZoCWgPQwgI5BJHHuA9QJSGlFKUaBVN6ANoFkdAhipkUbkwOHV9lChoBmgJaA9DCAYP0765P1dAlIaUUpRoFU3oA2gWR0CGMBTLGJemdX2UKGgGaAloD0MIbXU5JSB+R8CUhpRSlGgVS/FoFkdAhl2OCwr1/XV9lChoBmgJaA9DCEbOwp72rmBAlIaUUpRoFU3oA2gWR0CGYNaMaS9vdX2UKGgGaAloD0MIelBQilau+b+UhpRSlGgVS8toFkdAhmOtbC79RHV9lChoBmgJaA9DCMgnZOdtIllAlIaUUpRoFU3oA2gWR0CGcraEBbOedX2UKGgGaAloD0MI7Z+nAYOjVUCUhpRSlGgVTegDaBZHQIZ/S3VkMCt1fZQoaAZoCWgPQwisAUpDjQZiQJSGlFKUaBVN6ANoFkdAhoo1kUbkwXV9lChoBmgJaA9DCPDd5o0TvGlAlIaUUpRoFU1hA2gWR0CGkPL127nQdX2UKGgGaAloD0MIwac5eRGsY0CUhpRSlGgVTegDaBZHQIaUNtl7MPl1fZQoaAZoCWgPQwieQUP/BC5aQJSGlFKUaBVN6ANoFkdAhpTRDCxeLXV9lChoBmgJaA9DCEm6ZvLNNlXAlIaUUpRoFU3wAWgWR0CGmVd/rjYJdX2UKGgGaAloD0MI3V1nQ/5pZ8CUhpRSlGgVTZcBaBZHQIabXek56t11fZQoaAZoCWgPQwiG6BA4EtNbQJSGlFKUaBVN6ANoFkdAhqptyPuG9HV9lChoBmgJaA9DCMlxp3Sw1l5AlIaUUpRoFU3oA2gWR0CGsdCE6DGtdX2UKGgGaAloD0MIsrlqniN/Y0CUhpRSlGgVTegDaBZHQIa6LZ39rGl1fZQoaAZoCWgPQwiRfCWQEgNVQJSGlFKUaBVN6ANoFkdAhsxxn3+MqHV9lChoBmgJaA9DCCrkSj0LaGFAlIaUUpRoFU3oA2gWR0CG0cgCfYjCdX2UKGgGaAloD0MID7bY7bMNX0CUhpRSlGgVTegDaBZHQIbYHdTHbRF1fZQoaAZoCWgPQwhSEDy+vV9ZQJSGlFKUaBVN6ANoFkdAhuXBKL8763VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_lunar_lander_test1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e7a917a8bfbe6ecff4b04d97854a0d0352b9739d08fc7165569aefbe2c4604e
|
3 |
+
size 144136
|
ppo_lunar_lander_test1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_lunar_lander_test1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5cba90c8c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5cba90c950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5cba90c9e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5cba90ca70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5cba90cb00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5cba90cb90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5cba90cc20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5cba90ccb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5cba90cd40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5cba90cdd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5cba90ce60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5cba8e24e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1654779966.1158698,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA9sG3PkVamD5PSEQ7yslsvodNtb3iKso9AAAAAAAAAADNVXm9w90zuvJFdzhcTqS1N8VzO2RvjbcAAIA/AACAP9YzYr6FEdo8C78XPM0fbroLTHC+6niHOwAAgD8AAIA/zXVpPj/MID/73ce+dDGovvttIz5aVqa+AAAAAAAAAAAzs6m6ony0P7JOBr6ayR29w4jFOpph8zwAAAAAAAAAALpUoD5pS0C8jqvhOcGkmLflV4G9NutmNAAAgD8AAIA/9vr3vrFv2T2DeVa92TAIvol6kz0gs1U9AAAAAAAAAAAGk6++PdZEvY4mVjrKDYQ4DmBbPhqOSLgAAIA/AACAP8CSdz54DaE8qsFCur02ubjxWzM+IHt0OQAAgD8AAIA/gDAkvfYYLbpqNoA7VSpztQYe57qjlJW6AACAPwAAgD/NPKS6rrmZusogqbpgnsO1acZdOtmEwDkAAIA/AACAP3b/WL57lOU3Nc15uvKkqTZHAg68WimROQAAgD8AAIA/muSGvFxHJboqQ+S7bVXlNggPJ7u9B1G2AACAPwAAgD8bW4++rvWlvLexgTv6/b85NREdPh+ioboAAIA/AACAPzM98bzDKWC6mtgEvMkAJzZn1sC5pt2TtQAAgD8AAIA/ZmzdPFyXYrrPqwc73kx4NgJnALt3+Rq6AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAABAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIndUCe0yKUsCUhpRSlIwBbJRL14wBdJRHQIO8BzYEnst1fZQoaAZoCWgPQwgMc4I2OV1UwJSGlFKUaBVLymgWR0CDxtzp5eJIdX2UKGgGaAloD0MIRnnm5bCFSECUhpRSlGgVTegDaBZHQIPJAnv2GqR1fZQoaAZoCWgPQwjJHMu76lNOQJSGlFKUaBVN6ANoFkdAg8rNayKNynV9lChoBmgJaA9DCCNL5ljeH0TAlIaUUpRoFUu3aBZHQIPO856t1ZF1fZQoaAZoCWgPQwirsBnggihsQJSGlFKUaBVNHgJoFkdAg9brYXfqHHV9lChoBmgJaA9DCMBeYcH9jFxAlIaUUpRoFU3oA2gWR0CD2taaCtihdX2UKGgGaAloD0MIJLn8h/QkWkCUhpRSlGgVTegDaBZHQIPdwxFiKBN1fZQoaAZoCWgPQwh1d50N+cdcQJSGlFKUaBVN6ANoFkdAg+CfrB0p3HV9lChoBmgJaA9DCH47iQj/l1PAlIaUUpRoFUvQaBZHQIPkkxyn1nN1fZQoaAZoCWgPQwjlnNhD+2ZkwJSGlFKUaBVNEQFoFkdAg+q/8dgfEHV9lChoBmgJaA9DCBrh7UEIXD1AlIaUUpRoFU3oA2gWR0CD7W2AG0NSdX2UKGgGaAloD0MIsvM2NjuQRkCUhpRSlGgVTegDaBZHQIP1DsniNsF1fZQoaAZoCWgPQwgNcayL2ygdwJSGlFKUaBVL2WgWR0CD93tE5QxfdX2UKGgGaAloD0MI6WM+INBPX0CUhpRSlGgVTegDaBZHQIP42dwvQF91fZQoaAZoCWgPQwjpK0gzFttDwJSGlFKUaBVLu2gWR0CEABybx3FDdX2UKGgGaAloD0MIE/HW+TcUZsCUhpRSlGgVTUgBaBZHQIQA/0AcT8J1fZQoaAZoCWgPQwjwplt2iD9gQJSGlFKUaBVN6ANoFkdAhAGJmukk8nV9lChoBmgJaA9DCD55WKg1mlFAlIaUUpRoFU3oA2gWR0CEAxU5MlC1dX2UKGgGaAloD0MI0CfyJOka+r+UhpRSlGgVS8NoFkdAhBelMIu5BnV9lChoBmgJaA9DCCKJXkaxD1XAlIaUUpRoFU1LAWgWR0CEHhCZ4Oc2dX2UKGgGaAloD0MI2o6pu7JBV0CUhpRSlGgVTegDaBZHQIQnMI/qxC91fZQoaAZoCWgPQwio4zEDldRQQJSGlFKUaBVN6ANoFkdAhCtFz2exwHV9lChoBmgJaA9DCBqiCn+GbzLAlIaUUpRoFU3SAWgWR0CEMjPrOZ9edX2UKGgGaAloD0MITBb3H5lyWUCUhpRSlGgVTegDaBZHQIRfQXKr7wd1fZQoaAZoCWgPQwiGkzR/zHFnQJSGlFKUaBVN6ANoFkdAhGlJdjXnQ3V9lChoBmgJaA9DCPVjk/yIH01AlIaUUpRoFU3oA2gWR0CEcnm4iHIqdX2UKGgGaAloD0MImE2AYflJWkCUhpRSlGgVTegDaBZHQIR83wEyLyd1fZQoaAZoCWgPQwgapOAp5NhcQJSGlFKUaBVN6ANoFkdAhIbm5lOGkHV9lChoBmgJaA9DCL4vLlVpj1ZAlIaUUpRoFU3oA2gWR0CEi0rbxmTUdX2UKGgGaAloD0MIfF9cqtKBVECUhpRSlGgVTegDaBZHQISUofSx7iR1fZQoaAZoCWgPQwhblq/L8Hs3wJSGlFKUaBVL4WgWR0CEmbC9AX2vdX2UKGgGaAloD0MIoQ+WsaF7YECUhpRSlGgVTegDaBZHQISc0hA4XGh1fZQoaAZoCWgPQwjH8UOlET9GQJSGlFKUaBVLsGgWR0CEnVSHdoFndX2UKGgGaAloD0MImKPH720JYkCUhpRSlGgVTegDaBZHQISpcgpz90l1fZQoaAZoCWgPQwjw+sxZnzolQJSGlFKUaBVN6ANoFkdAhKsQhfShJ3V9lChoBmgJaA9DCH8yxofZfzxAlIaUUpRoFU3oA2gWR0CErN8WsRxtdX2UKGgGaAloD0MIW7VrQlrnOkCUhpRSlGgVS+toFkdAhLW+i8FpwnV9lChoBmgJaA9DCOoI4Gbxh19AlIaUUpRoFU3oA2gWR0CEwmzAvcrRdX2UKGgGaAloD0MItHOaBdo1UkCUhpRSlGgVTegDaBZHQITInOryUcJ1fZQoaAZoCWgPQwiojlVKzxwrwJSGlFKUaBVL5GgWR0CEyTTwUg0TdX2UKGgGaAloD0MI2c2MfjTPYUCUhpRSlGgVTegDaBZHQITQqiZfD1p1fZQoaAZoCWgPQwgxlX7C2YBhQJSGlFKUaBVN6ANoFkdAhNSbNr0rb3V9lChoBmgJaA9DCKgZUkXxI1tAlIaUUpRoFU3oA2gWR0CE2uFXaJyidX2UKGgGaAloD0MIPPpfrkU1VUCUhpRSlGgVTegDaBZHQIUHkdFOO811fZQoaAZoCWgPQwgr+kMzT95LQJSGlFKUaBVN6ANoFkdAhRD6m4y44XV9lChoBmgJaA9DCGthFto5O1hAlIaUUpRoFU3oA2gWR0CFGHcv/R3NdX2UKGgGaAloD0MIlBXD1QFdXUCUhpRSlGgVTegDaBZHQIUvz+tKZlZ1fZQoaAZoCWgPQwjrO78oQb8pQJSGlFKUaBVL8GgWR0CFOaMKCxu9dX2UKGgGaAloD0MIP6n26XhcXECUhpRSlGgVTegDaBZHQIU661RceKd1fZQoaAZoCWgPQwjPvvIgPfZeQJSGlFKUaBVN6ANoFkdAhUQCWNWEK3V9lChoBmgJaA9DCAfQ7/s3LlxAlIaUUpRoFU3oA2gWR0CFRJHFPznSdX2UKGgGaAloD0MIlpf8T367YkCUhpRSlGgVTegDaBZHQIVRTGR3eN11fZQoaAZoCWgPQwgWhV0UPcdbQJSGlFKUaBVN6ANoFkdAhVL1z6rNn3V9lChoBmgJaA9DCFSthVloVzdAlIaUUpRoFUv3aBZHQIVaNLamGdt1fZQoaAZoCWgPQwjX2ZB/Zig3QJSGlFKUaBVN6ANoFkdAhV7I371qWXV9lChoBmgJaA9DCAL1ZtR8/TrAlIaUUpRoFUu8aBZHQIVo+O801qF1fZQoaAZoCWgPQwgn3gGetExVQJSGlFKUaBVN6ANoFkdAhWsDcM3IdXV9lChoBmgJaA9DCJrudVLfA2NAlIaUUpRoFU3oA2gWR0CFcYkxh2GJdX2UKGgGaAloD0MIzcr2IW97XECUhpRSlGgVTegDaBZHQIVyMEs8PnV1fZQoaAZoCWgPQwjZeLDFbnZjQJSGlFKUaBVN6ANoFkdAhXoBdMTN+3V9lChoBmgJaA9DCLnhd9Mthl1AlIaUUpRoFU3oA2gWR0CFfcwxFiKBdX2UKGgGaAloD0MIJ2w/GWMcYkCUhpRSlGgVTegDaBZHQIWEEhFEy+J1fZQoaAZoCWgPQwj8cma7QkpbQJSGlFKUaBVN6ANoFkdAhYnGsV+I/XV9lChoBmgJaA9DCEvqBDQRuEnAlIaUUpRoFU0PAWgWR0CFtDMJx//edX2UKGgGaAloD0MIlnuBWSE0YECUhpRSlGgVTegDaBZHQIW6O7cwg1Z1fZQoaAZoCWgPQwiAnDBhNGpQwJSGlFKUaBVNpAFoFkdAhcxFU6xPf3V9lChoBmgJaA9DCBPvAE/a9mNAlIaUUpRoFU3oA2gWR0CF2NZeRgZ1dX2UKGgGaAloD0MIfAqA8QzSWUCUhpRSlGgVTegDaBZHQIXiwnfEXLx1fZQoaAZoCWgPQwgyyjMvh7ZhQJSGlFKUaBVN6ANoFkdAhes10tAcDXV9lChoBmgJaA9DCK66DtWUL1lAlIaUUpRoFU3oA2gWR0CF67tAs053dX2UKGgGaAloD0MIf4eiQB+JYUCUhpRSlGgVTegDaBZHQIX5iVMVUMp1fZQoaAZoCWgPQwjTad0GNZdmQJSGlFKUaBVN6ANoFkdAhgEgMMI/q3V9lChoBmgJaA9DCD3UtmEUOkhAlIaUUpRoFU3oA2gWR0CGBYlzltCRdX2UKGgGaAloD0MIdLSqJR35T8CUhpRSlGgVTY8CaBZHQIYH9q33HrB1fZQoaAZoCWgPQwh5kQn4NUNhQJSGlFKUaBVN6ANoFkdAhg86h6By0nV9lChoBmgJaA9DCKg5eZEJqV1AlIaUUpRoFU3oA2gWR0CGGAl54W1udX2UKGgGaAloD0MINqs+V1tyVECUhpRSlGgVTegDaBZHQIYgALPUrkN1fZQoaAZoCWgPQwixNPCjGiJLQJSGlFKUaBVN6ANoFkdAhiP/oaDPGHV9lChoBmgJaA9DCOkPzTy5djTAlIaUUpRoFUv0aBZHQIYk3f4yoGZ1fZQoaAZoCWgPQwgI5BJHHuA9QJSGlFKUaBVN6ANoFkdAhipkUbkwOHV9lChoBmgJaA9DCAYP0765P1dAlIaUUpRoFU3oA2gWR0CGMBTLGJemdX2UKGgGaAloD0MIbXU5JSB+R8CUhpRSlGgVS/FoFkdAhl2OCwr1/XV9lChoBmgJaA9DCEbOwp72rmBAlIaUUpRoFU3oA2gWR0CGYNaMaS9vdX2UKGgGaAloD0MIelBQilau+b+UhpRSlGgVS8toFkdAhmOtbC79RHV9lChoBmgJaA9DCMgnZOdtIllAlIaUUpRoFU3oA2gWR0CGcraEBbOedX2UKGgGaAloD0MI7Z+nAYOjVUCUhpRSlGgVTegDaBZHQIZ/S3VkMCt1fZQoaAZoCWgPQwisAUpDjQZiQJSGlFKUaBVN6ANoFkdAhoo1kUbkwXV9lChoBmgJaA9DCPDd5o0TvGlAlIaUUpRoFU1hA2gWR0CGkPL127nQdX2UKGgGaAloD0MIwac5eRGsY0CUhpRSlGgVTegDaBZHQIaUNtl7MPl1fZQoaAZoCWgPQwieQUP/BC5aQJSGlFKUaBVN6ANoFkdAhpTRDCxeLXV9lChoBmgJaA9DCEm6ZvLNNlXAlIaUUpRoFU3wAWgWR0CGmVd/rjYJdX2UKGgGaAloD0MI3V1nQ/5pZ8CUhpRSlGgVTZcBaBZHQIabXek56t11fZQoaAZoCWgPQwiG6BA4EtNbQJSGlFKUaBVN6ANoFkdAhqptyPuG9HV9lChoBmgJaA9DCMlxp3Sw1l5AlIaUUpRoFU3oA2gWR0CGsdCE6DGtdX2UKGgGaAloD0MIsrlqniN/Y0CUhpRSlGgVTegDaBZHQIa6LZ39rGl1fZQoaAZoCWgPQwiRfCWQEgNVQJSGlFKUaBVN6ANoFkdAhsxxn3+MqHV9lChoBmgJaA9DCCrkSj0LaGFAlIaUUpRoFU3oA2gWR0CG0cgCfYjCdX2UKGgGaAloD0MID7bY7bMNX0CUhpRSlGgVTegDaBZHQIbYHdTHbRF1fZQoaAZoCWgPQwhSEDy+vV9ZQJSGlFKUaBVN6ANoFkdAhuXBKL8763VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_lunar_lander_test1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbe7ce942bea0474b65281812b06fcfbbfa66dfde86aebfb2c1da255f7580003
|
3 |
+
size 84829
|
ppo_lunar_lander_test1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8a9c974a7450d4a4129415fc237a347de40fd7679c67c8bd945b1d238cd1482
|
3 |
+
size 43201
|
ppo_lunar_lander_test1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_lander_test1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25c0256943b3353a3dde6c828724824f353fa554b1d6edbef6a488d9b066acc6
|
3 |
+
size 247507
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 118.65878752715248, "std_reward": 90.54292581998973, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-09T13:23:41.251977"}
|