montebello-642
commited on
Upload Logistic Regression.ipynb
Browse files- Logistic Regression.ipynb +264 -0
Logistic Regression.ipynb
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"collapsed": true
|
8 |
+
},
|
9 |
+
"outputs": [
|
10 |
+
{
|
11 |
+
"name": "stdout",
|
12 |
+
"output_type": "stream",
|
13 |
+
"text": [
|
14 |
+
"Index(['duration_mo', 'mos_ethnicity', 'complainant_ethnicity', 'is_force',\n",
|
15 |
+
" 'is_abuse_of_authority', 'is_discourtesy', 'is_offensive_language',\n",
|
16 |
+
" 'outcome_description'],\n",
|
17 |
+
" dtype='object')\n",
|
18 |
+
" duration_mo mos_ethnicity complainant_ethnicity is_force \\\n",
|
19 |
+
"0 10 0 2 0 \n",
|
20 |
+
"1 9 1 2 0 \n",
|
21 |
+
"2 9 1 2 1 \n",
|
22 |
+
"3 14 1 2 0 \n",
|
23 |
+
"4 6 0 7 0 \n",
|
24 |
+
"\n",
|
25 |
+
" is_abuse_of_authority is_discourtesy is_offensive_language \\\n",
|
26 |
+
"0 1 0 0 \n",
|
27 |
+
"1 0 1 0 \n",
|
28 |
+
"2 0 0 0 \n",
|
29 |
+
"3 1 0 0 \n",
|
30 |
+
"4 0 0 1 \n",
|
31 |
+
"\n",
|
32 |
+
" outcome_description \n",
|
33 |
+
"0 0 \n",
|
34 |
+
"1 0 \n",
|
35 |
+
"2 0 \n",
|
36 |
+
"3 0 \n",
|
37 |
+
"4 1 \n",
|
38 |
+
" duration_mo mos_ethnicity complainant_ethnicity is_force \\\n",
|
39 |
+
"count 33358.000000 33358.000000 33358.000000 33358.000000 \n",
|
40 |
+
"mean 9.733767 0.946819 2.468283 0.022573 \n",
|
41 |
+
"std 5.017703 0.754311 2.256281 0.148541 \n",
|
42 |
+
"min 0.000000 0.000000 0.000000 0.000000 \n",
|
43 |
+
"25% 6.000000 0.000000 1.000000 0.000000 \n",
|
44 |
+
"50% 10.000000 1.000000 2.000000 0.000000 \n",
|
45 |
+
"75% 13.000000 1.000000 2.000000 0.000000 \n",
|
46 |
+
"max 110.000000 4.000000 7.000000 1.000000 \n",
|
47 |
+
"\n",
|
48 |
+
" is_abuse_of_authority is_discourtesy is_offensive_language \\\n",
|
49 |
+
"count 33358.000000 33358.000000 33358.000000 \n",
|
50 |
+
"mean 0.608310 0.140206 0.228911 \n",
|
51 |
+
"std 0.488135 0.347206 0.420138 \n",
|
52 |
+
"min 0.000000 0.000000 0.000000 \n",
|
53 |
+
"25% 0.000000 0.000000 0.000000 \n",
|
54 |
+
"50% 1.000000 0.000000 0.000000 \n",
|
55 |
+
"75% 1.000000 0.000000 0.000000 \n",
|
56 |
+
"max 1.000000 1.000000 1.000000 \n",
|
57 |
+
"\n",
|
58 |
+
" outcome_description \n",
|
59 |
+
"count 33358.000000 \n",
|
60 |
+
"mean 0.438066 \n",
|
61 |
+
"std 0.496157 \n",
|
62 |
+
"min 0.000000 \n",
|
63 |
+
"25% 0.000000 \n",
|
64 |
+
"50% 0.000000 \n",
|
65 |
+
"75% 1.000000 \n",
|
66 |
+
"max 1.000000 \n",
|
67 |
+
"duration_mo 0\n",
|
68 |
+
"mos_ethnicity 0\n",
|
69 |
+
"complainant_ethnicity 0\n",
|
70 |
+
"is_force 0\n",
|
71 |
+
"is_abuse_of_authority 0\n",
|
72 |
+
"is_discourtesy 0\n",
|
73 |
+
"is_offensive_language 0\n",
|
74 |
+
"outcome_description 0\n",
|
75 |
+
"dtype: int64\n",
|
76 |
+
"Accuracy: 0.65\n",
|
77 |
+
" precision recall f1-score support\n",
|
78 |
+
"\n",
|
79 |
+
" 0 0.65 0.82 0.72 3778\n",
|
80 |
+
" 1 0.64 0.42 0.51 2894\n",
|
81 |
+
"\n",
|
82 |
+
" accuracy 0.65 6672\n",
|
83 |
+
" macro avg 0.64 0.62 0.62 6672\n",
|
84 |
+
"weighted avg 0.64 0.65 0.63 6672\n",
|
85 |
+
"\n",
|
86 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
87 |
+
"Running on public URL: https://d8846d114093b0894a.gradio.live\n",
|
88 |
+
"\n",
|
89 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"data": {
|
94 |
+
"text/plain": "<IPython.core.display.HTML object>",
|
95 |
+
"text/html": "<div><iframe src=\"https://d8846d114093b0894a.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
96 |
+
},
|
97 |
+
"metadata": {},
|
98 |
+
"output_type": "display_data"
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"data": {
|
102 |
+
"text/plain": ""
|
103 |
+
},
|
104 |
+
"execution_count": 1,
|
105 |
+
"metadata": {},
|
106 |
+
"output_type": "execute_result"
|
107 |
+
}
|
108 |
+
],
|
109 |
+
"source": [
|
110 |
+
"import pandas as pd\n",
|
111 |
+
"from sklearn.model_selection import train_test_split, cross_val_score\n",
|
112 |
+
"from sklearn.preprocessing import StandardScaler\n",
|
113 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
114 |
+
"from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n",
|
115 |
+
"import seaborn as sns\n",
|
116 |
+
"import matplotlib.pyplot as plt\n",
|
117 |
+
"import gradio as gr\n",
|
118 |
+
"import numpy as np\n",
|
119 |
+
"\n",
|
120 |
+
"#loading the dataset and select only the columns needed\n",
|
121 |
+
"selected_columns = ['duration_mo', 'mos_ethnicity', 'complainant_ethnicity', 'is_force', 'is_abuse_of_authority', 'is_discourtesy', 'is_offensive_language', 'outcome_description']\n",
|
122 |
+
"df = pd.read_csv('my_dataset_logistic.csv', usecols=selected_columns)\n",
|
123 |
+
"\n",
|
124 |
+
"print(df.columns)\n",
|
125 |
+
"print(df.head())\n",
|
126 |
+
"print(df.describe())\n",
|
127 |
+
"print(df.isnull().sum())\n",
|
128 |
+
"\n",
|
129 |
+
"#set the name of the column to calculate accuracy\n",
|
130 |
+
"X = df.drop('outcome_description', axis=1)\n",
|
131 |
+
"y = df['outcome_description']\n",
|
132 |
+
"X.fillna(0, inplace=True)\n",
|
133 |
+
"\n",
|
134 |
+
"#split into training and test set\n",
|
135 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
136 |
+
"\n",
|
137 |
+
"#standardize the features\n",
|
138 |
+
"scaler = StandardScaler()\n",
|
139 |
+
"X_train_scaled = scaler.fit_transform(X_train)\n",
|
140 |
+
"X_test_scaled = scaler.transform(X_test)\n",
|
141 |
+
"\n",
|
142 |
+
"#train the model\n",
|
143 |
+
"model = LogisticRegression(random_state=42)\n",
|
144 |
+
"model.fit(X_train_scaled, y_train)\n",
|
145 |
+
"\n",
|
146 |
+
"#make predictions and evaluate the model\n",
|
147 |
+
"y_pred = model.predict(X_test_scaled)\n",
|
148 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
149 |
+
"print(f'Accuracy: {accuracy:.2f}')\n",
|
150 |
+
"\n",
|
151 |
+
"#classification report with confusion matrix, correlation graph and standard deviation of all the variables\n",
|
152 |
+
"print(classification_report(y_test, y_pred))\n",
|
153 |
+
"\n",
|
154 |
+
"# Confusion Matrix\n",
|
155 |
+
"conf_matrix = confusion_matrix(y_test, y_pred)\n",
|
156 |
+
"plt.figure(figsize=(8, 6))\n",
|
157 |
+
"sns.heatmap(conf_matrix, annot=True, fmt=\"d\", cmap=\"Blues\", cbar=False,xticklabels=df['outcome_description'].unique(), yticklabels=df['outcome_description'].unique())\n",
|
158 |
+
"plt.title(\"Confusion Matrix\")\n",
|
159 |
+
"plt.xlabel(\"Predicted\")\n",
|
160 |
+
"plt.ylabel(\"Actual\")\n",
|
161 |
+
"plt.show()\n",
|
162 |
+
"\n",
|
163 |
+
"#Correlation Matrix\n",
|
164 |
+
"correlation_matrix = df.corr()\n",
|
165 |
+
"plt.figure(figsize=(10, 8))\n",
|
166 |
+
"sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=.5)\n",
|
167 |
+
"plt.title('Correlation Matrix')\n",
|
168 |
+
"plt.show()\n",
|
169 |
+
"\n",
|
170 |
+
"#plotting a bar chart to visualize better the correlation\n",
|
171 |
+
"target_correlations = correlation_matrix['outcome_description'].sort_values(ascending=False)\n",
|
172 |
+
"plt.figure(figsize=(10, 6))\n",
|
173 |
+
"target_correlations.drop('outcome_description').plot(kind='bar', color='blue')\n",
|
174 |
+
"plt.title('Correlations with Target Variable')\n",
|
175 |
+
"plt.xlabel('Features')\n",
|
176 |
+
"plt.ylabel('Correlation')\n",
|
177 |
+
"plt.show()\n",
|
178 |
+
"\n",
|
179 |
+
"#Standard Deviation\n",
|
180 |
+
"std_dev = df.std()\n",
|
181 |
+
"print('\\nStandard deviation')\n",
|
182 |
+
"print(std_dev)\n",
|
183 |
+
"\n",
|
184 |
+
"#gradio implementation\n",
|
185 |
+
"#create the available options for the ethnicities\n",
|
186 |
+
"mos_ethnicity_options = [\"Hispanic\", \"White\", \"Black\", \"Asian\", \"American Indian\", \"Other Race\", \"Refused\", \"Unknown\"]\n",
|
187 |
+
"complainant_ethnicity_options = [\"Hispanic\", \"White\", \"Black\", \"Asian\", \"American Indian\", \"Other Race\", \"Refused\", \"Unknown\"]\n",
|
188 |
+
"\n",
|
189 |
+
"#defining the function to make predictions using the model\n",
|
190 |
+
"def predict_outcome_duration(mos_ethnicity, complainant_ethnicity, is_force, is_abuse_of_authority, is_discourtesy, is_offensive_language, duration_mo):\n",
|
191 |
+
" try:\n",
|
192 |
+
" #converting values from string to int\n",
|
193 |
+
" mos_ethnicity_encoded = mos_ethnicity_options.index(mos_ethnicity)\n",
|
194 |
+
" complainant_ethnicity_encoded = complainant_ethnicity_options.index(complainant_ethnicity)\n",
|
195 |
+
"\n",
|
196 |
+
" #converting checkbox value to int\n",
|
197 |
+
" is_force = int(is_force)\n",
|
198 |
+
" is_abuse_of_authority = int(is_abuse_of_authority)\n",
|
199 |
+
" is_discourtesy = int(is_discourtesy)\n",
|
200 |
+
" is_offensive_language = int(is_offensive_language)\n",
|
201 |
+
"\n",
|
202 |
+
" input_data = [[duration_mo, mos_ethnicity_encoded, complainant_ethnicity_encoded, is_force, is_abuse_of_authority, is_discourtesy, is_offensive_language]]\n",
|
203 |
+
" input_scaled = scaler.transform(input_data)\n",
|
204 |
+
" prediction = model.predict(input_scaled)[0]\n",
|
205 |
+
"\n",
|
206 |
+
" #outputting the result\n",
|
207 |
+
" return \"Arrest\" if prediction == 1 else \"No Arrest\"\n",
|
208 |
+
"\n",
|
209 |
+
" except Exception as e:\n",
|
210 |
+
" return f\"Error: {str(e)}\"\n",
|
211 |
+
"\n",
|
212 |
+
"#creating the gradio interface, using dropdowns to show the different ethnicities, checkbox to identify which type of allegation it was and a slider with the duration in months\n",
|
213 |
+
"mos_ethnicity_dropdown = gr.Dropdown(choices=mos_ethnicity_options,label=\"Defendant Ethnicity\")\n",
|
214 |
+
"complainant_ethnicity_dropdown = gr.Dropdown(choices=complainant_ethnicity_options, label=\"Complainant Ethnicity\")\n",
|
215 |
+
"is_force_checkbox = gr.Checkbox()\n",
|
216 |
+
"is_abuse_of_authority_checkbox = gr.Checkbox()\n",
|
217 |
+
"is_discourtesy_checkbox = gr.Checkbox()\n",
|
218 |
+
"is_offensive_language_checkbox = gr.Checkbox()\n",
|
219 |
+
"duration_mo_slider = gr.Slider(minimum=0, maximum=20, label=\"Duration in months\")\n",
|
220 |
+
"\n",
|
221 |
+
"iface = gr.Interface(\n",
|
222 |
+
" fn=predict_outcome_duration,\n",
|
223 |
+
" inputs=[complainant_ethnicity_dropdown, mos_ethnicity_dropdown, is_force_checkbox, is_abuse_of_authority_checkbox, is_discourtesy_checkbox, is_offensive_language_checkbox, duration_mo_slider],\n",
|
224 |
+
" outputs=\"text\",\n",
|
225 |
+
" live=True,\n",
|
226 |
+
" title=\"Complaint Outcome Prediction\"\n",
|
227 |
+
")\n",
|
228 |
+
"\n",
|
229 |
+
"# Launch the Gradio Interface\n",
|
230 |
+
"iface.launch(share=True)"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": null,
|
236 |
+
"outputs": [],
|
237 |
+
"source": [],
|
238 |
+
"metadata": {
|
239 |
+
"collapsed": false
|
240 |
+
}
|
241 |
+
}
|
242 |
+
],
|
243 |
+
"metadata": {
|
244 |
+
"kernelspec": {
|
245 |
+
"display_name": "Python 3",
|
246 |
+
"language": "python",
|
247 |
+
"name": "python3"
|
248 |
+
},
|
249 |
+
"language_info": {
|
250 |
+
"codemirror_mode": {
|
251 |
+
"name": "ipython",
|
252 |
+
"version": 2
|
253 |
+
},
|
254 |
+
"file_extension": ".py",
|
255 |
+
"mimetype": "text/x-python",
|
256 |
+
"name": "python",
|
257 |
+
"nbconvert_exporter": "python",
|
258 |
+
"pygments_lexer": "ipython2",
|
259 |
+
"version": "2.7.6"
|
260 |
+
}
|
261 |
+
},
|
262 |
+
"nbformat": 4,
|
263 |
+
"nbformat_minor": 0
|
264 |
+
}
|