monsoon-nlp
commited on
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +130 -0
- config.json +25 -0
- config_sentence_transformers.json +9 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +192 -0
- tokenizer_config.json +58 -0
- vocab.txt +30 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+
# monsoon-nlp/protein-matryoshka-embeddings
|
13 |
+
|
14 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
+
|
16 |
+
<!--- Describe your model here -->
|
17 |
+
|
18 |
+
## Usage (Sentence-Transformers)
|
19 |
+
|
20 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
21 |
+
|
22 |
+
```
|
23 |
+
pip install -U sentence-transformers
|
24 |
+
```
|
25 |
+
|
26 |
+
Then you can use the model like this:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from sentence_transformers import SentenceTransformer
|
30 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
+
|
32 |
+
model = SentenceTransformer('monsoon-nlp/protein-matryoshka-embeddings')
|
33 |
+
embeddings = model.encode(sentences)
|
34 |
+
print(embeddings)
|
35 |
+
```
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## Usage (HuggingFace Transformers)
|
40 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
41 |
+
|
42 |
+
```python
|
43 |
+
from transformers import AutoTokenizer, AutoModel
|
44 |
+
import torch
|
45 |
+
|
46 |
+
|
47 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
48 |
+
def mean_pooling(model_output, attention_mask):
|
49 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
50 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
+
|
53 |
+
|
54 |
+
# Sentences we want sentence embeddings for
|
55 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
+
|
57 |
+
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('monsoon-nlp/protein-matryoshka-embeddings')
|
59 |
+
model = AutoModel.from_pretrained('monsoon-nlp/protein-matryoshka-embeddings')
|
60 |
+
|
61 |
+
# Tokenize sentences
|
62 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
63 |
+
|
64 |
+
# Compute token embeddings
|
65 |
+
with torch.no_grad():
|
66 |
+
model_output = model(**encoded_input)
|
67 |
+
|
68 |
+
# Perform pooling. In this case, mean pooling.
|
69 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
70 |
+
|
71 |
+
print("Sentence embeddings:")
|
72 |
+
print(sentence_embeddings)
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
## Evaluation Results
|
78 |
+
|
79 |
+
<!--- Describe how your model was evaluated -->
|
80 |
+
|
81 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=monsoon-nlp/protein-matryoshka-embeddings)
|
82 |
+
|
83 |
+
|
84 |
+
## Training
|
85 |
+
The model was trained with the parameters:
|
86 |
+
|
87 |
+
**DataLoader**:
|
88 |
+
|
89 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 30000 with parameters:
|
90 |
+
```
|
91 |
+
{'batch_size': 10}
|
92 |
+
```
|
93 |
+
|
94 |
+
**Loss**:
|
95 |
+
|
96 |
+
`sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
|
97 |
+
```
|
98 |
+
{'loss': 'CoSENTLoss', 'matryoshka_dims': [768, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1], 'n_dims_per_step': -1}
|
99 |
+
```
|
100 |
+
|
101 |
+
Parameters of the fit()-Method:
|
102 |
+
```
|
103 |
+
{
|
104 |
+
"epochs": 1,
|
105 |
+
"evaluation_steps": 3000,
|
106 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
107 |
+
"max_grad_norm": 1,
|
108 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
109 |
+
"optimizer_params": {
|
110 |
+
"lr": 2e-05
|
111 |
+
},
|
112 |
+
"scheduler": "WarmupLinear",
|
113 |
+
"steps_per_epoch": null,
|
114 |
+
"warmup_steps": 3000,
|
115 |
+
"weight_decay": 0.01
|
116 |
+
}
|
117 |
+
```
|
118 |
+
|
119 |
+
|
120 |
+
## Full Model Architecture
|
121 |
+
```
|
122 |
+
SentenceTransformer(
|
123 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
124 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
125 |
+
)
|
126 |
+
```
|
127 |
+
|
128 |
+
## Citing & Authors
|
129 |
+
|
130 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Rostlab/prot_bert_bfd",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 40000,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 30,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.38.2",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 30
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.6.0",
|
4 |
+
"transformers": "4.38.2",
|
5 |
+
"pytorch": "2.2.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99cb4614454708365e49b7595159aabf060ce6c0de80bd4011c35e8fc0e4e9b5
|
3 |
+
size 1679780680
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "1.0",
|
3 |
+
"truncation": {
|
4 |
+
"direction": "Right",
|
5 |
+
"max_length": 512,
|
6 |
+
"strategy": "LongestFirst",
|
7 |
+
"stride": 0
|
8 |
+
},
|
9 |
+
"padding": {
|
10 |
+
"strategy": "BatchLongest",
|
11 |
+
"direction": "Right",
|
12 |
+
"pad_to_multiple_of": null,
|
13 |
+
"pad_id": 0,
|
14 |
+
"pad_type_id": 0,
|
15 |
+
"pad_token": "[PAD]"
|
16 |
+
},
|
17 |
+
"added_tokens": [
|
18 |
+
{
|
19 |
+
"id": 0,
|
20 |
+
"content": "[PAD]",
|
21 |
+
"single_word": false,
|
22 |
+
"lstrip": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"id": 1,
|
29 |
+
"content": "[UNK]",
|
30 |
+
"single_word": false,
|
31 |
+
"lstrip": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"id": 2,
|
38 |
+
"content": "[CLS]",
|
39 |
+
"single_word": false,
|
40 |
+
"lstrip": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"normalized": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"id": 3,
|
47 |
+
"content": "[SEP]",
|
48 |
+
"single_word": false,
|
49 |
+
"lstrip": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"normalized": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"id": 4,
|
56 |
+
"content": "[MASK]",
|
57 |
+
"single_word": false,
|
58 |
+
"lstrip": false,
|
59 |
+
"rstrip": false,
|
60 |
+
"normalized": false,
|
61 |
+
"special": true
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"normalizer": {
|
65 |
+
"type": "BertNormalizer",
|
66 |
+
"clean_text": true,
|
67 |
+
"handle_chinese_chars": true,
|
68 |
+
"strip_accents": null,
|
69 |
+
"lowercase": false
|
70 |
+
},
|
71 |
+
"pre_tokenizer": {
|
72 |
+
"type": "BertPreTokenizer"
|
73 |
+
},
|
74 |
+
"post_processor": {
|
75 |
+
"type": "TemplateProcessing",
|
76 |
+
"single": [
|
77 |
+
{
|
78 |
+
"SpecialToken": {
|
79 |
+
"id": "[CLS]",
|
80 |
+
"type_id": 0
|
81 |
+
}
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"Sequence": {
|
85 |
+
"id": "A",
|
86 |
+
"type_id": 0
|
87 |
+
}
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"SpecialToken": {
|
91 |
+
"id": "[SEP]",
|
92 |
+
"type_id": 0
|
93 |
+
}
|
94 |
+
}
|
95 |
+
],
|
96 |
+
"pair": [
|
97 |
+
{
|
98 |
+
"SpecialToken": {
|
99 |
+
"id": "[CLS]",
|
100 |
+
"type_id": 0
|
101 |
+
}
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"Sequence": {
|
105 |
+
"id": "A",
|
106 |
+
"type_id": 0
|
107 |
+
}
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"SpecialToken": {
|
111 |
+
"id": "[SEP]",
|
112 |
+
"type_id": 0
|
113 |
+
}
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"Sequence": {
|
117 |
+
"id": "B",
|
118 |
+
"type_id": 1
|
119 |
+
}
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"SpecialToken": {
|
123 |
+
"id": "[SEP]",
|
124 |
+
"type_id": 1
|
125 |
+
}
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"special_tokens": {
|
129 |
+
"[CLS]": {
|
130 |
+
"id": "[CLS]",
|
131 |
+
"ids": [
|
132 |
+
2
|
133 |
+
],
|
134 |
+
"tokens": [
|
135 |
+
"[CLS]"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
"[SEP]": {
|
139 |
+
"id": "[SEP]",
|
140 |
+
"ids": [
|
141 |
+
3
|
142 |
+
],
|
143 |
+
"tokens": [
|
144 |
+
"[SEP]"
|
145 |
+
]
|
146 |
+
}
|
147 |
+
}
|
148 |
+
},
|
149 |
+
"decoder": {
|
150 |
+
"type": "WordPiece",
|
151 |
+
"prefix": "##",
|
152 |
+
"cleanup": true
|
153 |
+
},
|
154 |
+
"model": {
|
155 |
+
"type": "WordPiece",
|
156 |
+
"unk_token": "[UNK]",
|
157 |
+
"continuing_subword_prefix": "##",
|
158 |
+
"max_input_chars_per_word": 100,
|
159 |
+
"vocab": {
|
160 |
+
"[PAD]": 0,
|
161 |
+
"[UNK]": 1,
|
162 |
+
"[CLS]": 2,
|
163 |
+
"[SEP]": 3,
|
164 |
+
"[MASK]": 4,
|
165 |
+
"L": 5,
|
166 |
+
"A": 6,
|
167 |
+
"G": 7,
|
168 |
+
"V": 8,
|
169 |
+
"E": 9,
|
170 |
+
"S": 10,
|
171 |
+
"I": 11,
|
172 |
+
"K": 12,
|
173 |
+
"R": 13,
|
174 |
+
"D": 14,
|
175 |
+
"T": 15,
|
176 |
+
"P": 16,
|
177 |
+
"N": 17,
|
178 |
+
"Q": 18,
|
179 |
+
"F": 19,
|
180 |
+
"Y": 20,
|
181 |
+
"M": 21,
|
182 |
+
"H": 22,
|
183 |
+
"C": 23,
|
184 |
+
"W": 24,
|
185 |
+
"X": 25,
|
186 |
+
"U": 26,
|
187 |
+
"B": 27,
|
188 |
+
"Z": 28,
|
189 |
+
"O": 29
|
190 |
+
}
|
191 |
+
}
|
192 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"full_tokenizer_file": null,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[PAD]
|
2 |
+
[UNK]
|
3 |
+
[CLS]
|
4 |
+
[SEP]
|
5 |
+
[MASK]
|
6 |
+
L
|
7 |
+
A
|
8 |
+
G
|
9 |
+
V
|
10 |
+
E
|
11 |
+
S
|
12 |
+
I
|
13 |
+
K
|
14 |
+
R
|
15 |
+
D
|
16 |
+
T
|
17 |
+
P
|
18 |
+
N
|
19 |
+
Q
|
20 |
+
F
|
21 |
+
Y
|
22 |
+
M
|
23 |
+
H
|
24 |
+
C
|
25 |
+
W
|
26 |
+
X
|
27 |
+
U
|
28 |
+
B
|
29 |
+
Z
|
30 |
+
O
|