monai
medical
katielink commited on
Commit
c0b6224
·
1 Parent(s): d0252ec

Update README Formatting

Browse files
Files changed (3) hide show
  1. README.md +18 -24
  2. configs/metadata.json +2 -1
  3. docs/README.md +18 -24
README.md CHANGED
@@ -5,14 +5,13 @@ tags:
5
  library_name: monai
6
  license: apache-2.0
7
  ---
8
- # Description
9
- A pre-trained model for classifying nuclei cells as the following types.
10
  - Other
11
  - Inflammatory
12
  - Epithelial
13
  - Spindle-Shaped
14
 
15
- # Model Overview
16
  This model is trained using [DenseNet121](https://docs.monai.io/en/latest/networks.html#densenet121) over [ConSeP](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet) dataset.
17
 
18
  ## Data
@@ -23,17 +22,6 @@ unzip -q consep_dataset.zip
23
  ```
24
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_dataset.jpeg)<br/>
25
 
26
- ## Training configuration
27
- The training was performed with the following:
28
-
29
- - GPU: at least 12GB of GPU memory
30
- - Actual Model Input: 4 x 128 x 128
31
- - AMP: True
32
- - Optimizer: Adam
33
- - Learning Rate: 1e-4
34
- - Loss: torch.nn.CrossEntropyLoss
35
-
36
-
37
  ### Preprocessing
38
  After [downloading this dataset](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/consep_dataset.zip),
39
  python script `data_process.py` from `scripts` folder can be used to preprocess and generate the final dataset for training.
@@ -91,13 +79,23 @@ Example `dataset.json` in output folder:
91
  }
92
  ```
93
 
 
 
94
 
95
- ## Input and output formats
96
- ### Input: 4 channels
 
 
 
 
 
 
 
97
  - 3 RGB channels
98
  - 1 signal channel (label mask)
99
 
100
- ### Output: 4 channels
 
101
  - 0 = Other
102
  - 1 = Inflammatory
103
  - 2 = Epithelial
@@ -132,13 +130,13 @@ Confusion Metrics for <b>Training</b> for individual classes are (at epoch 50):
132
 
133
 
134
 
135
- #### Training Performance
136
  A graph showing the training Loss and F1-score over 50 epochs.
137
 
138
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_train_loss_v2.png) <br>
139
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_train_f1_v2.png) <br>
140
 
141
- #### Validation Performance
142
  A graph showing the validation F1-score over 50 epochs.
143
 
144
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_val_f1_v2.png) <br>
@@ -160,8 +158,7 @@ python -m monai.bundle run --config_file configs/train.json
160
  torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
161
  ```
162
 
163
- Please note that the distributed training related options depend on the actual running environment, thus you may need to remove `--standalone`, modify `--nnodes` or do some other necessary changes according to the machine you used.
164
- Please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) for more details.
165
 
166
  #### Override the `train` config to execute evaluation with the trained model:
167
 
@@ -181,9 +178,6 @@ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config
181
  python -m monai.bundle run --config_file configs/inference.json
182
  ```
183
 
184
- # Disclaimer
185
- This is an example, not to be used for diagnostic purposes.
186
-
187
  # References
188
  [1] S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. "HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images." Medical Image Analysis, Sept. 2019. [[doi](https://doi.org/10.1016/j.media.2019.101563)]
189
 
 
5
  library_name: monai
6
  license: apache-2.0
7
  ---
8
+ # Model Overview
9
+ A pre-trained model for classifying nuclei cells as the following types
10
  - Other
11
  - Inflammatory
12
  - Epithelial
13
  - Spindle-Shaped
14
 
 
15
  This model is trained using [DenseNet121](https://docs.monai.io/en/latest/networks.html#densenet121) over [ConSeP](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet) dataset.
16
 
17
  ## Data
 
22
  ```
23
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_dataset.jpeg)<br/>
24
 
 
 
 
 
 
 
 
 
 
 
 
25
  ### Preprocessing
26
  After [downloading this dataset](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/consep_dataset.zip),
27
  python script `data_process.py` from `scripts` folder can be used to preprocess and generate the final dataset for training.
 
79
  }
80
  ```
81
 
82
+ ## Training configuration
83
+ The training was performed with the following:
84
 
85
+ - GPU: at least 12GB of GPU memory
86
+ - Actual Model Input: 4 x 128 x 128
87
+ - AMP: True
88
+ - Optimizer: Adam
89
+ - Learning Rate: 1e-4
90
+ - Loss: torch.nn.CrossEntropyLoss
91
+
92
+ ## Input
93
+ 4 channels
94
  - 3 RGB channels
95
  - 1 signal channel (label mask)
96
 
97
+ ## Output
98
+ 4 channels
99
  - 0 = Other
100
  - 1 = Inflammatory
101
  - 2 = Epithelial
 
130
 
131
 
132
 
133
+ #### Training Loss and F1
134
  A graph showing the training Loss and F1-score over 50 epochs.
135
 
136
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_train_loss_v2.png) <br>
137
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_train_f1_v2.png) <br>
138
 
139
+ #### Validation F1
140
  A graph showing the validation F1-score over 50 epochs.
141
 
142
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_val_f1_v2.png) <br>
 
158
  torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
159
  ```
160
 
161
+ Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
 
162
 
163
  #### Override the `train` config to execute evaluation with the trained model:
164
 
 
178
  python -m monai.bundle run --config_file configs/inference.json
179
  ```
180
 
 
 
 
181
  # References
182
  [1] S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. "HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images." Medical Image Analysis, Sept. 2019. [[doi](https://doi.org/10.1016/j.media.2019.101563)]
183
 
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.0.8",
4
  "changelog": {
 
5
  "0.0.8": "enable deterministic training",
6
  "0.0.7": "update benchmark on A100",
7
  "0.0.6": "adapt to BundleWorkflow interface",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.0.9",
4
  "changelog": {
5
+ "0.0.9": "Update README Formatting",
6
  "0.0.8": "enable deterministic training",
7
  "0.0.7": "update benchmark on A100",
8
  "0.0.6": "adapt to BundleWorkflow interface",
docs/README.md CHANGED
@@ -1,11 +1,10 @@
1
- # Description
2
- A pre-trained model for classifying nuclei cells as the following types.
3
  - Other
4
  - Inflammatory
5
  - Epithelial
6
  - Spindle-Shaped
7
 
8
- # Model Overview
9
  This model is trained using [DenseNet121](https://docs.monai.io/en/latest/networks.html#densenet121) over [ConSeP](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet) dataset.
10
 
11
  ## Data
@@ -16,17 +15,6 @@ unzip -q consep_dataset.zip
16
  ```
17
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_dataset.jpeg)<br/>
18
 
19
- ## Training configuration
20
- The training was performed with the following:
21
-
22
- - GPU: at least 12GB of GPU memory
23
- - Actual Model Input: 4 x 128 x 128
24
- - AMP: True
25
- - Optimizer: Adam
26
- - Learning Rate: 1e-4
27
- - Loss: torch.nn.CrossEntropyLoss
28
-
29
-
30
  ### Preprocessing
31
  After [downloading this dataset](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/consep_dataset.zip),
32
  python script `data_process.py` from `scripts` folder can be used to preprocess and generate the final dataset for training.
@@ -84,13 +72,23 @@ Example `dataset.json` in output folder:
84
  }
85
  ```
86
 
 
 
87
 
88
- ## Input and output formats
89
- ### Input: 4 channels
 
 
 
 
 
 
 
90
  - 3 RGB channels
91
  - 1 signal channel (label mask)
92
 
93
- ### Output: 4 channels
 
94
  - 0 = Other
95
  - 1 = Inflammatory
96
  - 2 = Epithelial
@@ -125,13 +123,13 @@ Confusion Metrics for <b>Training</b> for individual classes are (at epoch 50):
125
 
126
 
127
 
128
- #### Training Performance
129
  A graph showing the training Loss and F1-score over 50 epochs.
130
 
131
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_train_loss_v2.png) <br>
132
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_train_f1_v2.png) <br>
133
 
134
- #### Validation Performance
135
  A graph showing the validation F1-score over 50 epochs.
136
 
137
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_val_f1_v2.png) <br>
@@ -153,8 +151,7 @@ python -m monai.bundle run --config_file configs/train.json
153
  torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
154
  ```
155
 
156
- Please note that the distributed training related options depend on the actual running environment, thus you may need to remove `--standalone`, modify `--nnodes` or do some other necessary changes according to the machine you used.
157
- Please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) for more details.
158
 
159
  #### Override the `train` config to execute evaluation with the trained model:
160
 
@@ -174,9 +171,6 @@ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config
174
  python -m monai.bundle run --config_file configs/inference.json
175
  ```
176
 
177
- # Disclaimer
178
- This is an example, not to be used for diagnostic purposes.
179
-
180
  # References
181
  [1] S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. "HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images." Medical Image Analysis, Sept. 2019. [[doi](https://doi.org/10.1016/j.media.2019.101563)]
182
 
 
1
+ # Model Overview
2
+ A pre-trained model for classifying nuclei cells as the following types
3
  - Other
4
  - Inflammatory
5
  - Epithelial
6
  - Spindle-Shaped
7
 
 
8
  This model is trained using [DenseNet121](https://docs.monai.io/en/latest/networks.html#densenet121) over [ConSeP](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet) dataset.
9
 
10
  ## Data
 
15
  ```
16
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_dataset.jpeg)<br/>
17
 
 
 
 
 
 
 
 
 
 
 
 
18
  ### Preprocessing
19
  After [downloading this dataset](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/consep_dataset.zip),
20
  python script `data_process.py` from `scripts` folder can be used to preprocess and generate the final dataset for training.
 
72
  }
73
  ```
74
 
75
+ ## Training configuration
76
+ The training was performed with the following:
77
 
78
+ - GPU: at least 12GB of GPU memory
79
+ - Actual Model Input: 4 x 128 x 128
80
+ - AMP: True
81
+ - Optimizer: Adam
82
+ - Learning Rate: 1e-4
83
+ - Loss: torch.nn.CrossEntropyLoss
84
+
85
+ ## Input
86
+ 4 channels
87
  - 3 RGB channels
88
  - 1 signal channel (label mask)
89
 
90
+ ## Output
91
+ 4 channels
92
  - 0 = Other
93
  - 1 = Inflammatory
94
  - 2 = Epithelial
 
123
 
124
 
125
 
126
+ #### Training Loss and F1
127
  A graph showing the training Loss and F1-score over 50 epochs.
128
 
129
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_train_loss_v2.png) <br>
130
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_train_f1_v2.png) <br>
131
 
132
+ #### Validation F1
133
  A graph showing the validation F1-score over 50 epochs.
134
 
135
  ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_classification_val_f1_v2.png) <br>
 
151
  torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
152
  ```
153
 
154
+ Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
 
155
 
156
  #### Override the `train` config to execute evaluation with the trained model:
157
 
 
171
  python -m monai.bundle run --config_file configs/inference.json
172
  ```
173
 
 
 
 
174
  # References
175
  [1] S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. "HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images." Medical Image Analysis, Sept. 2019. [[doi](https://doi.org/10.1016/j.media.2019.101563)]
176