Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- mlp-ppo-gym-LunarLander-v2.zip +2 -2
- mlp-ppo-gym-LunarLander-v2/data +21 -21
- mlp-ppo-gym-LunarLander-v2/policy.optimizer.pth +1 -1
- mlp-ppo-gym-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 268.81 +/- 19.49
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4f09448b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4f0944940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4f09449d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4f0944a60>", "_build": "<function ActorCriticPolicy._build at 0x7fd4f0944af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4f0944b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4f0944c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4f0944ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4f0944d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4f0944dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4f0944e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4f0944ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd4f09481c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682950040734332278, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGAp9D6zK2I/asRGPwCIT7+ezXO+cufnPQAAAAAAAAAAc3fZvQ5yvj9N3UG/aYgDPkqumz2gH4Y9AAAAAAAAAADNzL65sCm0P8AJF701pRq+zKPgOXLZCDwAAAAAAAAAADM9sDwLt6E/EVDBPa3c/b7tFRo9YrYAPgAAAAAAAAAAmnVNvtJ8TD9+m4e+0L90v12JXb5C16C8AAAAAAAAAACAEmU9AIxNP23/eD4MtEC/Y6gwvlrwI74AAAAAAAAAAIBBGD18arg/VmE8P6JIWT53ufq8oA6IvQAAAAAAAAAAgIujvTZanT/whRW/5rsxv2ZZCj0Ep5a9AAAAAAAAAAAal009i8qxPyqnwT7c6G++GjYdvRgAd7wAAAAAAAAAADNr2jyPYig/MqBzvd5Sdb9Ijjs+RBQxvAAAAAAAAAAAUtSdvnzyij8DvfG+m/dUv5Negr62hj2+AAAAAAAAAACaNxg9nuK+P+ilWj75OG09XQmJvUcHybwAAAAAAAAAAOYYCb6ENcY9iNd3PTEhrL/OPie/bbJ5vgAAAAAAAAAAWsKDPlFXgj+qYZs+1xROv6Islj3MxJm9AAAAAAAAAADasii+Afb0Pq0e67z/toa/81Hlvl6Kg74AAAAAAAAAAFrmTD6gNGU/uBHTPjKJa7+21Tu+nVnmPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiQtAo3SUUsCUhpRSlIwBbJRLcIwBdJRHQEF2UxmCiAV1fZQoaAZoCWgPQwhBnfLoRn5MwJSGlFKUaBVLUWgWR0BBd8LKFIuodX2UKGgGaAloD0MIv5tu2SHGW8CUhpRSlGgVS3xoFkdAQXg62fChvnV9lChoBmgJaA9DCGHCaFa20UPAlIaUUpRoFUtOaBZHQEF6vV3EAHV1fZQoaAZoCWgPQwgai6azk9NQwJSGlFKUaBVLa2gWR0BBfU83dbgTdX2UKGgGaAloD0MIX5oiwOm/S8CUhpRSlGgVS1toFkdAQX8sFt8/lnV9lChoBmgJaA9DCNswCoLH9UPAlIaUUpRoFUtVaBZHQEGCoPTXrdF1fZQoaAZoCWgPQwhNaJJYUrtTwJSGlFKUaBVLXGgWR0BBhxrBTGYKdX2UKGgGaAloD0MIDtlAutjNU8CUhpRSlGgVS0hoFkdAQY5FRYRuj3V9lChoBmgJaA9DCF03pbxWLVzAlIaUUpRoFUtyaBZHQEGSvkBCD291fZQoaAZoCWgPQwhWRiOfVwRMwJSGlFKUaBVLiGgWR0BBk4PXkHUudX2UKGgGaAloD0MId/S/XIuJV8CUhpRSlGgVS1ZoFkdAQZPyAhB7eHV9lChoBmgJaA9DCHRgOUIGtVrAlIaUUpRoFUtbaBZHQEGUV1Oj7AN1fZQoaAZoCWgPQwiunL0z2ppFwJSGlFKUaBVLZ2gWR0BBmZh8YyfudX2UKGgGaAloD0MIyQVn8Pf2U8CUhpRSlGgVS0FoFkdAQZplFtsN2HV9lChoBmgJaA9DCNAn8iTpMFLAlIaUUpRoFUtyaBZHQEGaxagVXV91fZQoaAZoCWgPQwggJAuYwJtHwJSGlFKUaBVLTmgWR0BBm1afSQYDdX2UKGgGaAloD0MIkx6GVicoXMCUhpRSlGgVS1VoFkdAQZvFNtZV43V9lChoBmgJaA9DCI+oUN1cm2bAlIaUUpRoFUukaBZHQEGclNUOuq51fZQoaAZoCWgPQwiflEkNbTdbwJSGlFKUaBVLZ2gWR0BBnJv5xiobdX2UKGgGaAloD0MIqG+Z02WLQsCUhpRSlGgVS2poFkdAQZ0078vVVnV9lChoBmgJaA9DCO0PlNv2u03AlIaUUpRoFUtjaBZHQEGd5JK8L8d1fZQoaAZoCWgPQwjE6o8wDNxZwJSGlFKUaBVLeGgWR0BBn2w3YL9ddX2UKGgGaAloD0MI+Ki/XmGNRMCUhpRSlGgVS0JoFkdAQaV58jRlYnV9lChoBmgJaA9DCMAklSnm4k3AlIaUUpRoFUtiaBZHQEGpYRNATqV1fZQoaAZoCWgPQwirXn6nyeZKwJSGlFKUaBVLRGgWR0BBqf/echC/dX2UKGgGaAloD0MI6bXZWInTT8CUhpRSlGgVS0NoFkdAQar7655JLHV9lChoBmgJaA9DCIcYr3lVIzXAlIaUUpRoFUtLaBZHQEGtU3GXHBF1fZQoaAZoCWgPQwisPIGwUzdSwJSGlFKUaBVLWmgWR0BBsgHNX5nEdX2UKGgGaAloD0MIeZCeIocBUcCUhpRSlGgVS15oFkdAQbliUgSvknV9lChoBmgJaA9DCM2Pv7SoAWPAlIaUUpRoFUtYaBZHQEG54i5d4V11fZQoaAZoCWgPQwiFYFW9/IpWwJSGlFKUaBVLW2gWR0BBueCTUy57dX2UKGgGaAloD0MIOBCSBUw0WcCUhpRSlGgVS1loFkdAQbr/hl18s3V9lChoBmgJaA9DCI4HW+z28FPAlIaUUpRoFUtfaBZHQEG8hLXcxj91fZQoaAZoCWgPQwgU0ETY8HRVwJSGlFKUaBVLYmgWR0BBvNxlxwQ2dX2UKGgGaAloD0MIs9MP6iIdSMCUhpRSlGgVS1xoFkdAQbznJT2nKnV9lChoBmgJaA9DCM7HtaFinVvAlIaUUpRoFUtSaBZHQEHB4dp7Czl1fZQoaAZoCWgPQwhe9YB5yA5KwJSGlFKUaBVLaGgWR0BBwpJPIn0DdX2UKGgGaAloD0MICFVq9kBpWcCUhpRSlGgVS3doFkdAQcMebNKRMnV9lChoBmgJaA9DCK4upwTEPEXAlIaUUpRoFUt8aBZHQEHEfnwG4Zx1fZQoaAZoCWgPQwi536Eo0PpUwJSGlFKUaBVLZmgWR0BBzQXqJMxodX2UKGgGaAloD0MIbhPulXmjUcCUhpRSlGgVS3BoFkdAQc/zH0btJHV9lChoBmgJaA9DCEZB8Pj2XmDAlIaUUpRoFUtWaBZHQEHP3WWhRIl1fZQoaAZoCWgPQwgkYHR5c7lVwJSGlFKUaBVLdGgWR0BB0wlSjxkNdX2UKGgGaAloD0MI7IfYYOFTV8CUhpRSlGgVS3JoFkdAQdTmr8zhxnV9lChoBmgJaA9DCDF9ryE4LlbAlIaUUpRoFUtLaBZHQEHWIrvsqrl1fZQoaAZoCWgPQwgtQxzr4g4twJSGlFKUaBVLVGgWR0BB2ZgogFHKdX2UKGgGaAloD0MIaAbxgR01TMCUhpRSlGgVS1loFkdAQdmfbsWweXV9lChoBmgJaA9DCK65o//ltlbAlIaUUpRoFUtXaBZHQEHau6ErXlN1fZQoaAZoCWgPQwj1nV+UoB9NwJSGlFKUaBVLaGgWR0BB3dLg4wRHdX2UKGgGaAloD0MIDFpIwOi4YcCUhpRSlGgVS2loFkdAQd5Nfw7T2HV9lChoBmgJaA9DCLfte9RfOGHAlIaUUpRoFUt0aBZHQEHhd69kBjp1fZQoaAZoCWgPQwhgHjLlQ3phwJSGlFKUaBVLZ2gWR0BB5UIcBEKFdX2UKGgGaAloD0MIuwuUFFjmScCUhpRSlGgVS2hoFkdAQeZOgxrSE3V9lChoBmgJaA9DCMaoa+196k7AlIaUUpRoFUtAaBZHQEHmOlO45Lh1fZQoaAZoCWgPQwgz3lZ6bZNSwJSGlFKUaBVLaWgWR0BB5z1schkidX2UKGgGaAloD0MIFvcfmQ4JUMCUhpRSlGgVS0RoFkdAQe10Rvm5lXV9lChoBmgJaA9DCJdw6C0ezlrAlIaUUpRoFUtKaBZHQEHuZUDMeOp1fZQoaAZoCWgPQwglBRbAlOFSwJSGlFKUaBVLfGgWR0BB7ypJf6XTdX2UKGgGaAloD0MIDoelgR9qVsCUhpRSlGgVS1xoFkdAQfLhUBGQS3V9lChoBmgJaA9DCFNaf0sAlGDAlIaUUpRoFUtuaBZHQEHzVrhzeXR1fZQoaAZoCWgPQwjoTNpU3T1FwJSGlFKUaBVLSGgWR0BB9tD2JzkqdX2UKGgGaAloD0MIMC3qk9z1RcCUhpRSlGgVS3FoFkdAQfczTF2mpHV9lChoBmgJaA9DCKgbKPBO1ETAlIaUUpRoFUttaBZHQEH+4cWCVbB1fZQoaAZoCWgPQwjcvdwnR8VJwJSGlFKUaBVLb2gWR0BB/5k9U0emdX2UKGgGaAloD0MIpS4Zx0gzU8CUhpRSlGgVS21oFkdAQgAIQe3hGnV9lChoBmgJaA9DCKsJou4D+F7AlIaUUpRoFUtoaBZHQEIBYcvM8ox1fZQoaAZoCWgPQwg5DVGFP2BWwJSGlFKUaBVLXmgWR0BCBaNEPUaydX2UKGgGaAloD0MIMQbWcfxMWcCUhpRSlGgVS2FoFkdAQgeUdJaq0nV9lChoBmgJaA9DCBK9jGK5L03AlIaUUpRoFUtMaBZHQEIIsbvPTod1fZQoaAZoCWgPQwiHokCfyJPRv5SGlFKUaBVLdGgWR0BCCXnZCfHxdX2UKGgGaAloD0MIcGByo8grWsCUhpRSlGgVS2hoFkdAQgpHNHH3lHV9lChoBmgJaA9DCIYb8Plh5D7AlIaUUpRoFUtVaBZHQEILD5TIeYF1fZQoaAZoCWgPQwirlnSUgwFTwJSGlFKUaBVLaGgWR0BCCy9mHxjKdX2UKGgGaAloD0MIi+B/K9m9OsCUhpRSlGgVS0ZoFkdAQgufNA1NxnV9lChoBmgJaA9DCBNIiV3bNWPAlIaUUpRoFUtMaBZHQEINGus90Rx1fZQoaAZoCWgPQwh/hGHAkvVYwJSGlFKUaBVLcGgWR0BCFPPTodMkdX2UKGgGaAloD0MIh8Jn6+DwOcCUhpRSlGgVS0VoFkdAQhYbwSamXXV9lChoBmgJaA9DCCUC1T+I4VTAlIaUUpRoFUtnaBZHQEIZfTkQwsZ1fZQoaAZoCWgPQwjw2xDjNSBSwJSGlFKUaBVLbGgWR0BCG4YBNmDldX2UKGgGaAloD0MI7dXHQ9+BU8CUhpRSlGgVS0ZoFkdAQhzpqynk1nV9lChoBmgJaA9DCAfPhCaJYFTAlIaUUpRoFUtuaBZHQEIlQBxPwd91fZQoaAZoCWgPQwiUvhBy3gRSwJSGlFKUaBVLbmgWR0BCJsUIsyzpdX2UKGgGaAloD0MIK8B3mzesV8CUhpRSlGgVS1doFkdAQibPKMefZnV9lChoBmgJaA9DCJvkR/yKr1bAlIaUUpRoFUtUaBZHQEInXkHUtqZ1fZQoaAZoCWgPQwhMGM3K9t5UwJSGlFKUaBVLd2gWR0BCKE74i5d4dX2UKGgGaAloD0MIQpdw6C2kYcCUhpRSlGgVS2RoFkdAQiqoKlYU4HV9lChoBmgJaA9DCIJTH0jeZFHAlIaUUpRoFUtnaBZHQEIqscyWRih1fZQoaAZoCWgPQwj+e/Dapf1YwJSGlFKUaBVLW2gWR0BCLBKL876pdX2UKGgGaAloD0MIejiB6bQHWMCUhpRSlGgVS2hoFkdAQi2S2Yv38HV9lChoBmgJaA9DCPryAuwjoGfAlIaUUpRoFUtlaBZHQEIt1+RYA811fZQoaAZoCWgPQwjcYn5uaGFTwJSGlFKUaBVLa2gWR0BCL0/GEPDpdX2UKGgGaAloD0MIhSNIpdhTXsCUhpRSlGgVS1ZoFkdAQjN7hNucc3V9lChoBmgJaA9DCKHbSxqjIl7AlIaUUpRoFUtdaBZHQEI7RnezlcR1fZQoaAZoCWgPQwg+6USCqQ5GwJSGlFKUaBVLcmgWR0BCO/QKKHfudX2UKGgGaAloD0MIlufB3VnNRsCUhpRSlGgVS11oFkdAQjzfrKNhmXV9lChoBmgJaA9DCPtalxqhNVbAlIaUUpRoFUtCaBZHQEI9NHH3lCF1fZQoaAZoCWgPQwjl795RY4VRwJSGlFKUaBVLPmgWR0BCPT2exwAEdX2UKGgGaAloD0MI/TOD+MDCR8CUhpRSlGgVS05oFkdAQj/nZCfHxXV9lChoBmgJaA9DCH6nyYy3dGLAlIaUUpRoFUt0aBZHQEJBWPLgXM11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.31 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f53638808b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5363880940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f53638809d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5363880a60>", "_build": "<function ActorCriticPolicy._build at 0x7f5363880af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5363880b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5363880c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5363880ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5363880d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5363880dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5363880e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5363880ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5363881940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682950124230539533, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbEN7y489C72rxJvO2YDT2NYSi9fkToPQAAgD8AAIA/ZmTqvbWCkz96vBa+PR3ZvtVWEr7dWEg7AAAAAAAAAABmvVM9I8eaP97p7D19wPK+WVsmPX6IXT0AAAAAAAAAADN/BD6qw5g+MHC5vgOEr77INNa9F3uSPAAAAAAAAAAAALLRvTyN1D4EI609EnGUvgUS/Dx2oC49AAAAAAAAAABNw2q9FCKOuvvq1LYr1tKxhpMcO3W9+TUAAIA/AACAP2YYqbwFVkc/WPcdvFMan76AJyW8z/uJPQAAAAAAAAAAbZpCPtdkHD9Bczy+VJWUvose1j3Ge429AAAAAAAAAAAasuU9Mx+hPtdkmL7SVom+KnljvYGFKD0AAAAAAAAAALMYC717WKu6zP4CvZpvJT2uf5o7zkMMvgAAgD8AAIA/mvNzPMX+oDyWkSW+/kNyvunjgb2F5qi9AAAAAAAAAABmWtq7rhm4uiUXzTZePscxkl+/uI1k6LUAAIA/AACAPzOfxLzDLls/s1VQveo7774XJxu9I9ZUPQAAAAAAAAAAM6a4vHyQnD86WQi+yxvpvpoADL1nARW9AAAAAAAAAAC68Fk+Rp86P+pnRr61N66+Ks7SPQ2eb7wAAAAAAAAAAPO+iD7shgc/kVSwvvQprb478RE+eYyEvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7VMhqNScECUhpRSlIwBbJRNWgGMAXSUR0CDd+9ytFKDdX2UKGgGaAloD0MIyxEykGcPSUCUhpRSlGgVS81oFkdAg3gucMEzPHV9lChoBmgJaA9DCHl1jgEZQHFAlIaUUpRoFU2TAWgWR0CDeSBFNL13dX2UKGgGaAloD0MIfSWQEvslcECUhpRSlGgVS+doFkdAg3pExh2GI3V9lChoBmgJaA9DCCIzF7g8UVFAlIaUUpRoFUu3aBZHQIN6nm3fAKx1fZQoaAZoCWgPQwgRqWkX0+xwQJSGlFKUaBVNDgFoFkdAg3wJLmITG3V9lChoBmgJaA9DCG0gXWzaM3FAlIaUUpRoFUv5aBZHQIN8aGtZFG51fZQoaAZoCWgPQwhlHCPZI65wQJSGlFKUaBVNBgFoFkdAg3yCJoCdSXV9lChoBmgJaA9DCGiULv1LS3BAlIaUUpRoFU08AWgWR0CDfI0a6z3RdX2UKGgGaAloD0MIaksd5DWccECUhpRSlGgVS/5oFkdAg3+Axi5NGnV9lChoBmgJaA9DCEQZqmIqMW1AlIaUUpRoFU2jAWgWR0CDgFVAiV0LdX2UKGgGaAloD0MI4ZaPpOQfcECUhpRSlGgVTXsBaBZHQIOAbvgFX7t1fZQoaAZoCWgPQwiatKm6h3hyQJSGlFKUaBVNBQFoFkdAg4H1V5rxiHV9lChoBmgJaA9DCNc07zgFQXBAlIaUUpRoFU0LAWgWR0CDgzd43WFwdX2UKGgGaAloD0MIkzmWd5WscUCUhpRSlGgVS/5oFkdAg4NmFSKm9HV9lChoBmgJaA9DCOZAD7Vte21AlIaUUpRoFU0/AWgWR0CDg2eA/cFhdX2UKGgGaAloD0MIexAC8uVUckCUhpRSlGgVTQsBaBZHQIOE4ODrZ8N1fZQoaAZoCWgPQwjOjH40HN9xQJSGlFKUaBVNPQFoFkdAg4XO2RaHK3V9lChoBmgJaA9DCHpsy4CzbHFAlIaUUpRoFU0IAWgWR0CDhkvM8ox6dX2UKGgGaAloD0MIlfJaCd3WcUCUhpRSlGgVTaEBaBZHQIOG+AVfu1F1fZQoaAZoCWgPQwh/9bhvtfJyQJSGlFKUaBVNDgFoFkdAg4feqJdjXnV9lChoBmgJaA9DCMCuJk+ZnnBAlIaUUpRoFU0nAWgWR0CDiXKgZjx1dX2UKGgGaAloD0MIpwUv+gpwTUCUhpRSlGgVS9NoFkdAg4m3lKbrknV9lChoBmgJaA9DCJtWCoEc53BAlIaUUpRoFU1EAWgWR0CDipPFefI0dX2UKGgGaAloD0MI+IiYEomLcECUhpRSlGgVTUMBaBZHQIOKoIF/x2B1fZQoaAZoCWgPQwi0rPvHQrxwQJSGlFKUaBVNAwFoFkdAg4uIAfdRBXV9lChoBmgJaA9DCMjuAiWFD25AlIaUUpRoFU2NAWgWR0CDi4m65Gz9dX2UKGgGaAloD0MI+84vSlA4ckCUhpRSlGgVTSsBaBZHQIOMTzwtrbh1fZQoaAZoCWgPQwiMSuoEtIlxQJSGlFKUaBVNDgFoFkdAg40mwiaAnXV9lChoBmgJaA9DCOoFn+bkuG5AlIaUUpRoFUv8aBZHQIONltj0+Tx1fZQoaAZoCWgPQwjyzqEMlYtzQJSGlFKUaBVNFAFoFkdAg45V9F4LTnV9lChoBmgJaA9DCAtBDkpYdXJAlIaUUpRoFU0EAWgWR0CDkLnZkCmudX2UKGgGaAloD0MImzkktVDFcECUhpRSlGgVTWYBaBZHQIOSKQeV9nd1fZQoaAZoCWgPQwhQUmABzE9xQJSGlFKUaBVL6GgWR0CDkuS00FbFdX2UKGgGaAloD0MIIv/MIH5EcUCUhpRSlGgVTT0BaBZHQIOS9JQLux91fZQoaAZoCWgPQwiBzTl4ZkVwQJSGlFKUaBVNOAFoFkdAg5PxqO938nV9lChoBmgJaA9DCJYKKqp+enFAlIaUUpRoFU2CAWgWR0CDlTyhi9ZidX2UKGgGaAloD0MIQUXVrzStcECUhpRSlGgVTQcBaBZHQIOVoSOBDoh1fZQoaAZoCWgPQwgG2h1STOtwQJSGlFKUaBVNRQFoFkdAg5WlN1yNoHV9lChoBmgJaA9DCFq9w+0Q9HFAlIaUUpRoFU0YAWgWR0CDlmsDnvDxdX2UKGgGaAloD0MIwtzu5b4tc0CUhpRSlGgVS+JoFkdAg6x8bR4QjHV9lChoBmgJaA9DCGGkF7X7z29AlIaUUpRoFU0HAWgWR0CDraGWUr08dX2UKGgGaAloD0MIxvgwexm4ckCUhpRSlGgVTT8BaBZHQIOuEhRqGlB1fZQoaAZoCWgPQwh1OSUgJilyQJSGlFKUaBVNQAFoFkdAg64dl/Yra3V9lChoBmgJaA9DCHi4HRrWkXBAlIaUUpRoFU00AWgWR0CDro2fkFOgdX2UKGgGaAloD0MI09wKYfUecUCUhpRSlGgVTZkBaBZHQIOvwSQHRkV1fZQoaAZoCWgPQwhnQ/6ZgVRxQJSGlFKUaBVL9GgWR0CDsF1PFefJdX2UKGgGaAloD0MIPE1mvC2nb0CUhpRSlGgVTT0BaBZHQIOxA+bExZd1fZQoaAZoCWgPQwjmlettMytNQJSGlFKUaBVLymgWR0CDsqBvrGBGdX2UKGgGaAloD0MI2lNyTmyqcUCUhpRSlGgVTRkBaBZHQIOzj2OAAhl1fZQoaAZoCWgPQwg+lGjJY9twQJSGlFKUaBVNKgFoFkdAg7Omf5DZ13V9lChoBmgJaA9DCC7JAbsaoW1AlIaUUpRoFU0cAWgWR0CDs7ztCzC2dX2UKGgGaAloD0MI4ICWrmDfcUCUhpRSlGgVTRoBaBZHQIO0ZzxPO6d1fZQoaAZoCWgPQwjC+j+H+UJyQJSGlFKUaBVL8mgWR0CDtNrTpgTidX2UKGgGaAloD0MIiH/Y0iPCcECUhpRSlGgVTRcBaBZHQIO1O2uxKQJ1fZQoaAZoCWgPQwhQwkzbP45xQJSGlFKUaBVNGAFoFkdAg7WH3Dej23V9lChoBmgJaA9DCA7aq49HRnBAlIaUUpRoFUvxaBZHQIO3h8a4tpV1fZQoaAZoCWgPQwiyvRb0nrVxQJSGlFKUaBVNIAFoFkdAg7eTJIUah3V9lChoBmgJaA9DCO7tluSAhW5AlIaUUpRoFU0AAWgWR0CDt7B/I8yOdX2UKGgGaAloD0MIJbIPsiw4c0CUhpRSlGgVTR4BaBZHQIO4X6hxo7F1fZQoaAZoCWgPQwht4XmpmHtwQJSGlFKUaBVL/GgWR0CDubL9uP3jdX2UKGgGaAloD0MIiNnLthPUcUCUhpRSlGgVTRsBaBZHQIO6SesgdOt1fZQoaAZoCWgPQwi0qiUdJWpxQJSGlFKUaBVNBQFoFkdAg7qzG5tm+XV9lChoBmgJaA9DCHswKT4+tG9AlIaUUpRoFU1eAWgWR0CDuyhOgxrSdX2UKGgGaAloD0MIT1jiAeXUcUCUhpRSlGgVTQQBaBZHQIO8Tq6e5Fx1fZQoaAZoCWgPQwhpc5zbhDdxQJSGlFKUaBVNBAFoFkdAg71QK8cuJ3V9lChoBmgJaA9DCI0lrI0xT3BAlIaUUpRoFU0LAWgWR0CDvbU/fO2RdX2UKGgGaAloD0MIaoe/JuumcECUhpRSlGgVTRABaBZHQIO9wJE6T4d1fZQoaAZoCWgPQwhkzjP2JdxsQJSGlFKUaBVL72gWR0CDvd1dPci4dX2UKGgGaAloD0MIdTv7ysMhcUCUhpRSlGgVS/1oFkdAg78hMi8nNXV9lChoBmgJaA9DCOs2qP2W7XFAlIaUUpRoFU0xAWgWR0CDv+IhQm/ndX2UKGgGaAloD0MIpBr2e6Lbc0CUhpRSlGgVS+toFkdAg8CQgTyrgnV9lChoBmgJaA9DCLzK2qb4925AlIaUUpRoFU06AWgWR0CDwSO7xusLdX2UKGgGaAloD0MI7rCJzJxvckCUhpRSlGgVTQIBaBZHQIPBeCoS+QF1fZQoaAZoCWgPQwjImLuWEN5uQJSGlFKUaBVNCAFoFkdAg8HKe9SMtXV9lChoBmgJaA9DCNV6v9EODm1AlIaUUpRoFU0XAWgWR0CDwxcer+5wdX2UKGgGaAloD0MIuFm8WFjUcECUhpRSlGgVS/poFkdAg8RVghKUV3V9lChoBmgJaA9DCMR4zau6pnBAlIaUUpRoFU0jAWgWR0CDxPNmlImPdX2UKGgGaAloD0MIiV3b260BcUCUhpRSlGgVTRsBaBZHQIPGL/lyR0V1fZQoaAZoCWgPQwh9ryE4rp9xQJSGlFKUaBVNCgFoFkdAg8a8CYCyQnV9lChoBmgJaA9DCFQ6WP9nDnNAlIaUUpRoFUvzaBZHQIPHKOq//Nt1fZQoaAZoCWgPQwhQVgxXRxZxQJSGlFKUaBVNUQFoFkdAg8d7C79Q43V9lChoBmgJaA9DCKuX32nyQXBAlIaUUpRoFU0PAWgWR0CDyFAdGRV7dX2UKGgGaAloD0MI/MOWHs1fcECUhpRSlGgVTQ0BaBZHQIPIXMKTjed1fZQoaAZoCWgPQwg6eCY0yZxtQJSGlFKUaBVNKAFoFkdAg8jeNT987nV9lChoBmgJaA9DCM9Nm3HaeXJAlIaUUpRoFU0HAWgWR0CDyV71qWTpdX2UKGgGaAloD0MIcZNRZVhzcUCUhpRSlGgVTSwBaBZHQIPLlefI0ZZ1fZQoaAZoCWgPQwjfxftxOy1zQJSGlFKUaBVNKQFoFkdAg8w/wZwXInV9lChoBmgJaA9DCOYHrvIEP21AlIaUUpRoFU0ZAWgWR0CDzJvP1L8KdX2UKGgGaAloD0MIuFuSA3aNbkCUhpRSlGgVTRcBaBZHQIPPBh4MWoF1fZQoaAZoCWgPQwjLgok/CrtsQJSGlFKUaBVNUAFoFkdAg884lIEr5XV9lChoBmgJaA9DCNUgzO0e0HFAlIaUUpRoFU1CAWgWR0CDz2VTJhfCdX2UKGgGaAloD0MIq7LviqDOckCUhpRSlGgVS+ZoFkdAg9DLuQZGa3V9lChoBmgJaA9DCPHUIw3umW9AlIaUUpRoFUv+aBZHQIPRTZtelbh1fZQoaAZoCWgPQwiDpE+r6LNvQJSGlFKUaBVL6WgWR0CD0b+Vkc0cdX2UKGgGaAloD0MIfgIoRpYQbUCUhpRSlGgVTSwBaBZHQIPSAptrKvF1fZQoaAZoCWgPQwgKaCJseGJyQJSGlFKUaBVNDAFoFkdAg9LWGh24eHV9lChoBmgJaA9DCMzuycOCeXBAlIaUUpRoFUvoaBZHQIPTKpLmITJ1fZQoaAZoCWgPQwjLv5ZX7glyQJSGlFKUaBVL/WgWR0CD02TJQtSRdX2UKGgGaAloD0MI4uXpXNF5cECUhpRSlGgVTXYBaBZHQIPUTW7OE/V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.31 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
mlp-ppo-gym-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab7a317578ec37f0db29c397487922f6a09772eaa5ad9c02ae88416ed506d860
|
3 |
+
size 147435
|
mlp-ppo-gym-LunarLander-v2/data
CHANGED
@@ -4,29 +4,29 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
@@ -35,27 +35,27 @@
|
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
42 |
-
":serialized:": "
|
43 |
},
|
44 |
"_last_original_obs": null,
|
45 |
"_episode_num": 0,
|
46 |
"use_sde": false,
|
47 |
"sde_sample_freq": -1,
|
48 |
-
"_current_progress_remaining": -0.
|
49 |
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
-
":serialized:": "
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
},
|
58 |
-
"_n_updates":
|
59 |
"observation_space": {
|
60 |
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f53638808b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5363880940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f53638809d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5363880a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5363880af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5363880b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5363880c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5363880ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5363880d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5363880dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5363880e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5363880ee0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5363881940>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1682950124230539533,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
|
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbEN7y489C72rxJvO2YDT2NYSi9fkToPQAAgD8AAIA/ZmTqvbWCkz96vBa+PR3ZvtVWEr7dWEg7AAAAAAAAAABmvVM9I8eaP97p7D19wPK+WVsmPX6IXT0AAAAAAAAAADN/BD6qw5g+MHC5vgOEr77INNa9F3uSPAAAAAAAAAAAALLRvTyN1D4EI609EnGUvgUS/Dx2oC49AAAAAAAAAABNw2q9FCKOuvvq1LYr1tKxhpMcO3W9+TUAAIA/AACAP2YYqbwFVkc/WPcdvFMan76AJyW8z/uJPQAAAAAAAAAAbZpCPtdkHD9Bczy+VJWUvose1j3Ge429AAAAAAAAAAAasuU9Mx+hPtdkmL7SVom+KnljvYGFKD0AAAAAAAAAALMYC717WKu6zP4CvZpvJT2uf5o7zkMMvgAAgD8AAIA/mvNzPMX+oDyWkSW+/kNyvunjgb2F5qi9AAAAAAAAAABmWtq7rhm4uiUXzTZePscxkl+/uI1k6LUAAIA/AACAPzOfxLzDLls/s1VQveo7774XJxu9I9ZUPQAAAAAAAAAAM6a4vHyQnD86WQi+yxvpvpoADL1nARW9AAAAAAAAAAC68Fk+Rp86P+pnRr61N66+Ks7SPQ2eb7wAAAAAAAAAAPO+iD7shgc/kVSwvvQprb478RE+eYyEvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
},
|
44 |
"_last_original_obs": null,
|
45 |
"_episode_num": 0,
|
46 |
"use_sde": false,
|
47 |
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7VMhqNScECUhpRSlIwBbJRNWgGMAXSUR0CDd+9ytFKDdX2UKGgGaAloD0MIyxEykGcPSUCUhpRSlGgVS81oFkdAg3gucMEzPHV9lChoBmgJaA9DCHl1jgEZQHFAlIaUUpRoFU2TAWgWR0CDeSBFNL13dX2UKGgGaAloD0MIfSWQEvslcECUhpRSlGgVS+doFkdAg3pExh2GI3V9lChoBmgJaA9DCCIzF7g8UVFAlIaUUpRoFUu3aBZHQIN6nm3fAKx1fZQoaAZoCWgPQwgRqWkX0+xwQJSGlFKUaBVNDgFoFkdAg3wJLmITG3V9lChoBmgJaA9DCG0gXWzaM3FAlIaUUpRoFUv5aBZHQIN8aGtZFG51fZQoaAZoCWgPQwhlHCPZI65wQJSGlFKUaBVNBgFoFkdAg3yCJoCdSXV9lChoBmgJaA9DCGiULv1LS3BAlIaUUpRoFU08AWgWR0CDfI0a6z3RdX2UKGgGaAloD0MIaksd5DWccECUhpRSlGgVS/5oFkdAg3+Axi5NGnV9lChoBmgJaA9DCEQZqmIqMW1AlIaUUpRoFU2jAWgWR0CDgFVAiV0LdX2UKGgGaAloD0MI4ZaPpOQfcECUhpRSlGgVTXsBaBZHQIOAbvgFX7t1fZQoaAZoCWgPQwiatKm6h3hyQJSGlFKUaBVNBQFoFkdAg4H1V5rxiHV9lChoBmgJaA9DCNc07zgFQXBAlIaUUpRoFU0LAWgWR0CDgzd43WFwdX2UKGgGaAloD0MIkzmWd5WscUCUhpRSlGgVS/5oFkdAg4NmFSKm9HV9lChoBmgJaA9DCOZAD7Vte21AlIaUUpRoFU0/AWgWR0CDg2eA/cFhdX2UKGgGaAloD0MIexAC8uVUckCUhpRSlGgVTQsBaBZHQIOE4ODrZ8N1fZQoaAZoCWgPQwjOjH40HN9xQJSGlFKUaBVNPQFoFkdAg4XO2RaHK3V9lChoBmgJaA9DCHpsy4CzbHFAlIaUUpRoFU0IAWgWR0CDhkvM8ox6dX2UKGgGaAloD0MIlfJaCd3WcUCUhpRSlGgVTaEBaBZHQIOG+AVfu1F1fZQoaAZoCWgPQwh/9bhvtfJyQJSGlFKUaBVNDgFoFkdAg4feqJdjXnV9lChoBmgJaA9DCMCuJk+ZnnBAlIaUUpRoFU0nAWgWR0CDiXKgZjx1dX2UKGgGaAloD0MIpwUv+gpwTUCUhpRSlGgVS9NoFkdAg4m3lKbrknV9lChoBmgJaA9DCJtWCoEc53BAlIaUUpRoFU1EAWgWR0CDipPFefI0dX2UKGgGaAloD0MI+IiYEomLcECUhpRSlGgVTUMBaBZHQIOKoIF/x2B1fZQoaAZoCWgPQwi0rPvHQrxwQJSGlFKUaBVNAwFoFkdAg4uIAfdRBXV9lChoBmgJaA9DCMjuAiWFD25AlIaUUpRoFU2NAWgWR0CDi4m65Gz9dX2UKGgGaAloD0MI+84vSlA4ckCUhpRSlGgVTSsBaBZHQIOMTzwtrbh1fZQoaAZoCWgPQwiMSuoEtIlxQJSGlFKUaBVNDgFoFkdAg40mwiaAnXV9lChoBmgJaA9DCOoFn+bkuG5AlIaUUpRoFUv8aBZHQIONltj0+Tx1fZQoaAZoCWgPQwjyzqEMlYtzQJSGlFKUaBVNFAFoFkdAg45V9F4LTnV9lChoBmgJaA9DCAtBDkpYdXJAlIaUUpRoFU0EAWgWR0CDkLnZkCmudX2UKGgGaAloD0MImzkktVDFcECUhpRSlGgVTWYBaBZHQIOSKQeV9nd1fZQoaAZoCWgPQwhQUmABzE9xQJSGlFKUaBVL6GgWR0CDkuS00FbFdX2UKGgGaAloD0MIIv/MIH5EcUCUhpRSlGgVTT0BaBZHQIOS9JQLux91fZQoaAZoCWgPQwiBzTl4ZkVwQJSGlFKUaBVNOAFoFkdAg5PxqO938nV9lChoBmgJaA9DCJYKKqp+enFAlIaUUpRoFU2CAWgWR0CDlTyhi9ZidX2UKGgGaAloD0MIQUXVrzStcECUhpRSlGgVTQcBaBZHQIOVoSOBDoh1fZQoaAZoCWgPQwgG2h1STOtwQJSGlFKUaBVNRQFoFkdAg5WlN1yNoHV9lChoBmgJaA9DCFq9w+0Q9HFAlIaUUpRoFU0YAWgWR0CDlmsDnvDxdX2UKGgGaAloD0MIwtzu5b4tc0CUhpRSlGgVS+JoFkdAg6x8bR4QjHV9lChoBmgJaA9DCGGkF7X7z29AlIaUUpRoFU0HAWgWR0CDraGWUr08dX2UKGgGaAloD0MIxvgwexm4ckCUhpRSlGgVTT8BaBZHQIOuEhRqGlB1fZQoaAZoCWgPQwh1OSUgJilyQJSGlFKUaBVNQAFoFkdAg64dl/Yra3V9lChoBmgJaA9DCHi4HRrWkXBAlIaUUpRoFU00AWgWR0CDro2fkFOgdX2UKGgGaAloD0MI09wKYfUecUCUhpRSlGgVTZkBaBZHQIOvwSQHRkV1fZQoaAZoCWgPQwhnQ/6ZgVRxQJSGlFKUaBVL9GgWR0CDsF1PFefJdX2UKGgGaAloD0MIPE1mvC2nb0CUhpRSlGgVTT0BaBZHQIOxA+bExZd1fZQoaAZoCWgPQwjmlettMytNQJSGlFKUaBVLymgWR0CDsqBvrGBGdX2UKGgGaAloD0MI2lNyTmyqcUCUhpRSlGgVTRkBaBZHQIOzj2OAAhl1fZQoaAZoCWgPQwg+lGjJY9twQJSGlFKUaBVNKgFoFkdAg7Omf5DZ13V9lChoBmgJaA9DCC7JAbsaoW1AlIaUUpRoFU0cAWgWR0CDs7ztCzC2dX2UKGgGaAloD0MI4ICWrmDfcUCUhpRSlGgVTRoBaBZHQIO0ZzxPO6d1fZQoaAZoCWgPQwjC+j+H+UJyQJSGlFKUaBVL8mgWR0CDtNrTpgTidX2UKGgGaAloD0MIiH/Y0iPCcECUhpRSlGgVTRcBaBZHQIO1O2uxKQJ1fZQoaAZoCWgPQwhQwkzbP45xQJSGlFKUaBVNGAFoFkdAg7WH3Dej23V9lChoBmgJaA9DCA7aq49HRnBAlIaUUpRoFUvxaBZHQIO3h8a4tpV1fZQoaAZoCWgPQwiyvRb0nrVxQJSGlFKUaBVNIAFoFkdAg7eTJIUah3V9lChoBmgJaA9DCO7tluSAhW5AlIaUUpRoFU0AAWgWR0CDt7B/I8yOdX2UKGgGaAloD0MIJbIPsiw4c0CUhpRSlGgVTR4BaBZHQIO4X6hxo7F1fZQoaAZoCWgPQwht4XmpmHtwQJSGlFKUaBVL/GgWR0CDubL9uP3jdX2UKGgGaAloD0MIiNnLthPUcUCUhpRSlGgVTRsBaBZHQIO6SesgdOt1fZQoaAZoCWgPQwi0qiUdJWpxQJSGlFKUaBVNBQFoFkdAg7qzG5tm+XV9lChoBmgJaA9DCHswKT4+tG9AlIaUUpRoFU1eAWgWR0CDuyhOgxrSdX2UKGgGaAloD0MIT1jiAeXUcUCUhpRSlGgVTQQBaBZHQIO8Tq6e5Fx1fZQoaAZoCWgPQwhpc5zbhDdxQJSGlFKUaBVNBAFoFkdAg71QK8cuJ3V9lChoBmgJaA9DCI0lrI0xT3BAlIaUUpRoFU0LAWgWR0CDvbU/fO2RdX2UKGgGaAloD0MIaoe/JuumcECUhpRSlGgVTRABaBZHQIO9wJE6T4d1fZQoaAZoCWgPQwhkzjP2JdxsQJSGlFKUaBVL72gWR0CDvd1dPci4dX2UKGgGaAloD0MIdTv7ysMhcUCUhpRSlGgVS/1oFkdAg78hMi8nNXV9lChoBmgJaA9DCOs2qP2W7XFAlIaUUpRoFU0xAWgWR0CDv+IhQm/ndX2UKGgGaAloD0MIpBr2e6Lbc0CUhpRSlGgVS+toFkdAg8CQgTyrgnV9lChoBmgJaA9DCLzK2qb4925AlIaUUpRoFU06AWgWR0CDwSO7xusLdX2UKGgGaAloD0MI7rCJzJxvckCUhpRSlGgVTQIBaBZHQIPBeCoS+QF1fZQoaAZoCWgPQwjImLuWEN5uQJSGlFKUaBVNCAFoFkdAg8HKe9SMtXV9lChoBmgJaA9DCNV6v9EODm1AlIaUUpRoFU0XAWgWR0CDwxcer+5wdX2UKGgGaAloD0MIuFm8WFjUcECUhpRSlGgVS/poFkdAg8RVghKUV3V9lChoBmgJaA9DCMR4zau6pnBAlIaUUpRoFU0jAWgWR0CDxPNmlImPdX2UKGgGaAloD0MIiV3b260BcUCUhpRSlGgVTRsBaBZHQIPGL/lyR0V1fZQoaAZoCWgPQwh9ryE4rp9xQJSGlFKUaBVNCgFoFkdAg8a8CYCyQnV9lChoBmgJaA9DCFQ6WP9nDnNAlIaUUpRoFUvzaBZHQIPHKOq//Nt1fZQoaAZoCWgPQwhQVgxXRxZxQJSGlFKUaBVNUQFoFkdAg8d7C79Q43V9lChoBmgJaA9DCKuX32nyQXBAlIaUUpRoFU0PAWgWR0CDyFAdGRV7dX2UKGgGaAloD0MI/MOWHs1fcECUhpRSlGgVTQ0BaBZHQIPIXMKTjed1fZQoaAZoCWgPQwg6eCY0yZxtQJSGlFKUaBVNKAFoFkdAg8jeNT987nV9lChoBmgJaA9DCM9Nm3HaeXJAlIaUUpRoFU0HAWgWR0CDyV71qWTpdX2UKGgGaAloD0MIcZNRZVhzcUCUhpRSlGgVTSwBaBZHQIPLlefI0ZZ1fZQoaAZoCWgPQwjfxftxOy1zQJSGlFKUaBVNKQFoFkdAg8w/wZwXInV9lChoBmgJaA9DCOYHrvIEP21AlIaUUpRoFU0ZAWgWR0CDzJvP1L8KdX2UKGgGaAloD0MIuFuSA3aNbkCUhpRSlGgVTRcBaBZHQIPPBh4MWoF1fZQoaAZoCWgPQwjLgok/CrtsQJSGlFKUaBVNUAFoFkdAg884lIEr5XV9lChoBmgJaA9DCNUgzO0e0HFAlIaUUpRoFU1CAWgWR0CDz2VTJhfCdX2UKGgGaAloD0MIq7LviqDOckCUhpRSlGgVS+ZoFkdAg9DLuQZGa3V9lChoBmgJaA9DCPHUIw3umW9AlIaUUpRoFUv+aBZHQIPRTZtelbh1fZQoaAZoCWgPQwiDpE+r6LNvQJSGlFKUaBVL6WgWR0CD0b+Vkc0cdX2UKGgGaAloD0MIfgIoRpYQbUCUhpRSlGgVTSwBaBZHQIPSAptrKvF1fZQoaAZoCWgPQwgKaCJseGJyQJSGlFKUaBVNDAFoFkdAg9LWGh24eHV9lChoBmgJaA9DCMzuycOCeXBAlIaUUpRoFUvoaBZHQIPTKpLmITJ1fZQoaAZoCWgPQwjLv5ZX7glyQJSGlFKUaBVL/WgWR0CD02TJQtSRdX2UKGgGaAloD0MI4uXpXNF5cECUhpRSlGgVTXYBaBZHQIPUTW7OE/V1ZS4="
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
},
|
58 |
+
"_n_updates": 248,
|
59 |
"observation_space": {
|
60 |
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
mlp-ppo-gym-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da580620e67fa8c8ef55a4d0b1643d0d19d8a6d930c2fd705a1319e7494ad2d7
|
3 |
size 87929
|
mlp-ppo-gym-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f41eb6dac1ecfd8276e37abf4a04307e251432eaeccf065bae6e82443060536
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 268.81406305285265, "std_reward": 19.487929160165663, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-01T14:19:24.972732"}
|