mojemai commited on
Commit
b726239
·
1 Parent(s): f5a3778

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -29.37 +/- 143.86
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 268.81 +/- 19.49
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4f09448b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4f0944940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4f09449d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4f0944a60>", "_build": "<function ActorCriticPolicy._build at 0x7fd4f0944af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4f0944b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4f0944c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4f0944ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4f0944d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4f0944dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4f0944e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4f0944ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd4f09481c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682950040734332278, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGAp9D6zK2I/asRGPwCIT7+ezXO+cufnPQAAAAAAAAAAc3fZvQ5yvj9N3UG/aYgDPkqumz2gH4Y9AAAAAAAAAADNzL65sCm0P8AJF701pRq+zKPgOXLZCDwAAAAAAAAAADM9sDwLt6E/EVDBPa3c/b7tFRo9YrYAPgAAAAAAAAAAmnVNvtJ8TD9+m4e+0L90v12JXb5C16C8AAAAAAAAAACAEmU9AIxNP23/eD4MtEC/Y6gwvlrwI74AAAAAAAAAAIBBGD18arg/VmE8P6JIWT53ufq8oA6IvQAAAAAAAAAAgIujvTZanT/whRW/5rsxv2ZZCj0Ep5a9AAAAAAAAAAAal009i8qxPyqnwT7c6G++GjYdvRgAd7wAAAAAAAAAADNr2jyPYig/MqBzvd5Sdb9Ijjs+RBQxvAAAAAAAAAAAUtSdvnzyij8DvfG+m/dUv5Negr62hj2+AAAAAAAAAACaNxg9nuK+P+ilWj75OG09XQmJvUcHybwAAAAAAAAAAOYYCb6ENcY9iNd3PTEhrL/OPie/bbJ5vgAAAAAAAAAAWsKDPlFXgj+qYZs+1xROv6Islj3MxJm9AAAAAAAAAADasii+Afb0Pq0e67z/toa/81Hlvl6Kg74AAAAAAAAAAFrmTD6gNGU/uBHTPjKJa7+21Tu+nVnmPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiQtAo3SUUsCUhpRSlIwBbJRLcIwBdJRHQEF2UxmCiAV1fZQoaAZoCWgPQwhBnfLoRn5MwJSGlFKUaBVLUWgWR0BBd8LKFIuodX2UKGgGaAloD0MIv5tu2SHGW8CUhpRSlGgVS3xoFkdAQXg62fChvnV9lChoBmgJaA9DCGHCaFa20UPAlIaUUpRoFUtOaBZHQEF6vV3EAHV1fZQoaAZoCWgPQwgai6azk9NQwJSGlFKUaBVLa2gWR0BBfU83dbgTdX2UKGgGaAloD0MIX5oiwOm/S8CUhpRSlGgVS1toFkdAQX8sFt8/lnV9lChoBmgJaA9DCNswCoLH9UPAlIaUUpRoFUtVaBZHQEGCoPTXrdF1fZQoaAZoCWgPQwhNaJJYUrtTwJSGlFKUaBVLXGgWR0BBhxrBTGYKdX2UKGgGaAloD0MIDtlAutjNU8CUhpRSlGgVS0hoFkdAQY5FRYRuj3V9lChoBmgJaA9DCF03pbxWLVzAlIaUUpRoFUtyaBZHQEGSvkBCD291fZQoaAZoCWgPQwhWRiOfVwRMwJSGlFKUaBVLiGgWR0BBk4PXkHUudX2UKGgGaAloD0MId/S/XIuJV8CUhpRSlGgVS1ZoFkdAQZPyAhB7eHV9lChoBmgJaA9DCHRgOUIGtVrAlIaUUpRoFUtbaBZHQEGUV1Oj7AN1fZQoaAZoCWgPQwiunL0z2ppFwJSGlFKUaBVLZ2gWR0BBmZh8YyfudX2UKGgGaAloD0MIyQVn8Pf2U8CUhpRSlGgVS0FoFkdAQZplFtsN2HV9lChoBmgJaA9DCNAn8iTpMFLAlIaUUpRoFUtyaBZHQEGaxagVXV91fZQoaAZoCWgPQwggJAuYwJtHwJSGlFKUaBVLTmgWR0BBm1afSQYDdX2UKGgGaAloD0MIkx6GVicoXMCUhpRSlGgVS1VoFkdAQZvFNtZV43V9lChoBmgJaA9DCI+oUN1cm2bAlIaUUpRoFUukaBZHQEGclNUOuq51fZQoaAZoCWgPQwiflEkNbTdbwJSGlFKUaBVLZ2gWR0BBnJv5xiobdX2UKGgGaAloD0MIqG+Z02WLQsCUhpRSlGgVS2poFkdAQZ0078vVVnV9lChoBmgJaA9DCO0PlNv2u03AlIaUUpRoFUtjaBZHQEGd5JK8L8d1fZQoaAZoCWgPQwjE6o8wDNxZwJSGlFKUaBVLeGgWR0BBn2w3YL9ddX2UKGgGaAloD0MI+Ki/XmGNRMCUhpRSlGgVS0JoFkdAQaV58jRlYnV9lChoBmgJaA9DCMAklSnm4k3AlIaUUpRoFUtiaBZHQEGpYRNATqV1fZQoaAZoCWgPQwirXn6nyeZKwJSGlFKUaBVLRGgWR0BBqf/echC/dX2UKGgGaAloD0MI6bXZWInTT8CUhpRSlGgVS0NoFkdAQar7655JLHV9lChoBmgJaA9DCIcYr3lVIzXAlIaUUpRoFUtLaBZHQEGtU3GXHBF1fZQoaAZoCWgPQwisPIGwUzdSwJSGlFKUaBVLWmgWR0BBsgHNX5nEdX2UKGgGaAloD0MIeZCeIocBUcCUhpRSlGgVS15oFkdAQbliUgSvknV9lChoBmgJaA9DCM2Pv7SoAWPAlIaUUpRoFUtYaBZHQEG54i5d4V11fZQoaAZoCWgPQwiFYFW9/IpWwJSGlFKUaBVLW2gWR0BBueCTUy57dX2UKGgGaAloD0MIOBCSBUw0WcCUhpRSlGgVS1loFkdAQbr/hl18s3V9lChoBmgJaA9DCI4HW+z28FPAlIaUUpRoFUtfaBZHQEG8hLXcxj91fZQoaAZoCWgPQwgU0ETY8HRVwJSGlFKUaBVLYmgWR0BBvNxlxwQ2dX2UKGgGaAloD0MIs9MP6iIdSMCUhpRSlGgVS1xoFkdAQbznJT2nKnV9lChoBmgJaA9DCM7HtaFinVvAlIaUUpRoFUtSaBZHQEHB4dp7Czl1fZQoaAZoCWgPQwhe9YB5yA5KwJSGlFKUaBVLaGgWR0BBwpJPIn0DdX2UKGgGaAloD0MICFVq9kBpWcCUhpRSlGgVS3doFkdAQcMebNKRMnV9lChoBmgJaA9DCK4upwTEPEXAlIaUUpRoFUt8aBZHQEHEfnwG4Zx1fZQoaAZoCWgPQwi536Eo0PpUwJSGlFKUaBVLZmgWR0BBzQXqJMxodX2UKGgGaAloD0MIbhPulXmjUcCUhpRSlGgVS3BoFkdAQc/zH0btJHV9lChoBmgJaA9DCEZB8Pj2XmDAlIaUUpRoFUtWaBZHQEHP3WWhRIl1fZQoaAZoCWgPQwgkYHR5c7lVwJSGlFKUaBVLdGgWR0BB0wlSjxkNdX2UKGgGaAloD0MI7IfYYOFTV8CUhpRSlGgVS3JoFkdAQdTmr8zhxnV9lChoBmgJaA9DCDF9ryE4LlbAlIaUUpRoFUtLaBZHQEHWIrvsqrl1fZQoaAZoCWgPQwgtQxzr4g4twJSGlFKUaBVLVGgWR0BB2ZgogFHKdX2UKGgGaAloD0MIaAbxgR01TMCUhpRSlGgVS1loFkdAQdmfbsWweXV9lChoBmgJaA9DCK65o//ltlbAlIaUUpRoFUtXaBZHQEHau6ErXlN1fZQoaAZoCWgPQwj1nV+UoB9NwJSGlFKUaBVLaGgWR0BB3dLg4wRHdX2UKGgGaAloD0MIDFpIwOi4YcCUhpRSlGgVS2loFkdAQd5Nfw7T2HV9lChoBmgJaA9DCLfte9RfOGHAlIaUUpRoFUt0aBZHQEHhd69kBjp1fZQoaAZoCWgPQwhgHjLlQ3phwJSGlFKUaBVLZ2gWR0BB5UIcBEKFdX2UKGgGaAloD0MIuwuUFFjmScCUhpRSlGgVS2hoFkdAQeZOgxrSE3V9lChoBmgJaA9DCMaoa+196k7AlIaUUpRoFUtAaBZHQEHmOlO45Lh1fZQoaAZoCWgPQwgz3lZ6bZNSwJSGlFKUaBVLaWgWR0BB5z1schkidX2UKGgGaAloD0MIFvcfmQ4JUMCUhpRSlGgVS0RoFkdAQe10Rvm5lXV9lChoBmgJaA9DCJdw6C0ezlrAlIaUUpRoFUtKaBZHQEHuZUDMeOp1fZQoaAZoCWgPQwglBRbAlOFSwJSGlFKUaBVLfGgWR0BB7ypJf6XTdX2UKGgGaAloD0MIDoelgR9qVsCUhpRSlGgVS1xoFkdAQfLhUBGQS3V9lChoBmgJaA9DCFNaf0sAlGDAlIaUUpRoFUtuaBZHQEHzVrhzeXR1fZQoaAZoCWgPQwjoTNpU3T1FwJSGlFKUaBVLSGgWR0BB9tD2JzkqdX2UKGgGaAloD0MIMC3qk9z1RcCUhpRSlGgVS3FoFkdAQfczTF2mpHV9lChoBmgJaA9DCKgbKPBO1ETAlIaUUpRoFUttaBZHQEH+4cWCVbB1fZQoaAZoCWgPQwjcvdwnR8VJwJSGlFKUaBVLb2gWR0BB/5k9U0emdX2UKGgGaAloD0MIpS4Zx0gzU8CUhpRSlGgVS21oFkdAQgAIQe3hGnV9lChoBmgJaA9DCKsJou4D+F7AlIaUUpRoFUtoaBZHQEIBYcvM8ox1fZQoaAZoCWgPQwg5DVGFP2BWwJSGlFKUaBVLXmgWR0BCBaNEPUaydX2UKGgGaAloD0MIMQbWcfxMWcCUhpRSlGgVS2FoFkdAQgeUdJaq0nV9lChoBmgJaA9DCBK9jGK5L03AlIaUUpRoFUtMaBZHQEIIsbvPTod1fZQoaAZoCWgPQwiHokCfyJPRv5SGlFKUaBVLdGgWR0BCCXnZCfHxdX2UKGgGaAloD0MIcGByo8grWsCUhpRSlGgVS2hoFkdAQgpHNHH3lHV9lChoBmgJaA9DCIYb8Plh5D7AlIaUUpRoFUtVaBZHQEILD5TIeYF1fZQoaAZoCWgPQwirlnSUgwFTwJSGlFKUaBVLaGgWR0BCCy9mHxjKdX2UKGgGaAloD0MIi+B/K9m9OsCUhpRSlGgVS0ZoFkdAQgufNA1NxnV9lChoBmgJaA9DCBNIiV3bNWPAlIaUUpRoFUtMaBZHQEINGus90Rx1fZQoaAZoCWgPQwh/hGHAkvVYwJSGlFKUaBVLcGgWR0BCFPPTodMkdX2UKGgGaAloD0MIh8Jn6+DwOcCUhpRSlGgVS0VoFkdAQhYbwSamXXV9lChoBmgJaA9DCCUC1T+I4VTAlIaUUpRoFUtnaBZHQEIZfTkQwsZ1fZQoaAZoCWgPQwjw2xDjNSBSwJSGlFKUaBVLbGgWR0BCG4YBNmDldX2UKGgGaAloD0MI7dXHQ9+BU8CUhpRSlGgVS0ZoFkdAQhzpqynk1nV9lChoBmgJaA9DCAfPhCaJYFTAlIaUUpRoFUtuaBZHQEIlQBxPwd91fZQoaAZoCWgPQwiUvhBy3gRSwJSGlFKUaBVLbmgWR0BCJsUIsyzpdX2UKGgGaAloD0MIK8B3mzesV8CUhpRSlGgVS1doFkdAQibPKMefZnV9lChoBmgJaA9DCJvkR/yKr1bAlIaUUpRoFUtUaBZHQEInXkHUtqZ1fZQoaAZoCWgPQwhMGM3K9t5UwJSGlFKUaBVLd2gWR0BCKE74i5d4dX2UKGgGaAloD0MIQpdw6C2kYcCUhpRSlGgVS2RoFkdAQiqoKlYU4HV9lChoBmgJaA9DCIJTH0jeZFHAlIaUUpRoFUtnaBZHQEIqscyWRih1fZQoaAZoCWgPQwj+e/Dapf1YwJSGlFKUaBVLW2gWR0BCLBKL876pdX2UKGgGaAloD0MIejiB6bQHWMCUhpRSlGgVS2hoFkdAQi2S2Yv38HV9lChoBmgJaA9DCPryAuwjoGfAlIaUUpRoFUtlaBZHQEIt1+RYA811fZQoaAZoCWgPQwjcYn5uaGFTwJSGlFKUaBVLa2gWR0BCL0/GEPDpdX2UKGgGaAloD0MIhSNIpdhTXsCUhpRSlGgVS1ZoFkdAQjN7hNucc3V9lChoBmgJaA9DCKHbSxqjIl7AlIaUUpRoFUtdaBZHQEI7RnezlcR1fZQoaAZoCWgPQwg+6USCqQ5GwJSGlFKUaBVLcmgWR0BCO/QKKHfudX2UKGgGaAloD0MIlufB3VnNRsCUhpRSlGgVS11oFkdAQjzfrKNhmXV9lChoBmgJaA9DCPtalxqhNVbAlIaUUpRoFUtCaBZHQEI9NHH3lCF1fZQoaAZoCWgPQwjl795RY4VRwJSGlFKUaBVLPmgWR0BCPT2exwAEdX2UKGgGaAloD0MI/TOD+MDCR8CUhpRSlGgVS05oFkdAQj/nZCfHxXV9lChoBmgJaA9DCH6nyYy3dGLAlIaUUpRoFUt0aBZHQEJBWPLgXM11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.31 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f53638808b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5363880940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f53638809d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5363880a60>", "_build": "<function ActorCriticPolicy._build at 0x7f5363880af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5363880b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5363880c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5363880ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5363880d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5363880dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5363880e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5363880ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5363881940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682950124230539533, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbEN7y489C72rxJvO2YDT2NYSi9fkToPQAAgD8AAIA/ZmTqvbWCkz96vBa+PR3ZvtVWEr7dWEg7AAAAAAAAAABmvVM9I8eaP97p7D19wPK+WVsmPX6IXT0AAAAAAAAAADN/BD6qw5g+MHC5vgOEr77INNa9F3uSPAAAAAAAAAAAALLRvTyN1D4EI609EnGUvgUS/Dx2oC49AAAAAAAAAABNw2q9FCKOuvvq1LYr1tKxhpMcO3W9+TUAAIA/AACAP2YYqbwFVkc/WPcdvFMan76AJyW8z/uJPQAAAAAAAAAAbZpCPtdkHD9Bczy+VJWUvose1j3Ge429AAAAAAAAAAAasuU9Mx+hPtdkmL7SVom+KnljvYGFKD0AAAAAAAAAALMYC717WKu6zP4CvZpvJT2uf5o7zkMMvgAAgD8AAIA/mvNzPMX+oDyWkSW+/kNyvunjgb2F5qi9AAAAAAAAAABmWtq7rhm4uiUXzTZePscxkl+/uI1k6LUAAIA/AACAPzOfxLzDLls/s1VQveo7774XJxu9I9ZUPQAAAAAAAAAAM6a4vHyQnD86WQi+yxvpvpoADL1nARW9AAAAAAAAAAC68Fk+Rp86P+pnRr61N66+Ks7SPQ2eb7wAAAAAAAAAAPO+iD7shgc/kVSwvvQprb478RE+eYyEvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7VMhqNScECUhpRSlIwBbJRNWgGMAXSUR0CDd+9ytFKDdX2UKGgGaAloD0MIyxEykGcPSUCUhpRSlGgVS81oFkdAg3gucMEzPHV9lChoBmgJaA9DCHl1jgEZQHFAlIaUUpRoFU2TAWgWR0CDeSBFNL13dX2UKGgGaAloD0MIfSWQEvslcECUhpRSlGgVS+doFkdAg3pExh2GI3V9lChoBmgJaA9DCCIzF7g8UVFAlIaUUpRoFUu3aBZHQIN6nm3fAKx1fZQoaAZoCWgPQwgRqWkX0+xwQJSGlFKUaBVNDgFoFkdAg3wJLmITG3V9lChoBmgJaA9DCG0gXWzaM3FAlIaUUpRoFUv5aBZHQIN8aGtZFG51fZQoaAZoCWgPQwhlHCPZI65wQJSGlFKUaBVNBgFoFkdAg3yCJoCdSXV9lChoBmgJaA9DCGiULv1LS3BAlIaUUpRoFU08AWgWR0CDfI0a6z3RdX2UKGgGaAloD0MIaksd5DWccECUhpRSlGgVS/5oFkdAg3+Axi5NGnV9lChoBmgJaA9DCEQZqmIqMW1AlIaUUpRoFU2jAWgWR0CDgFVAiV0LdX2UKGgGaAloD0MI4ZaPpOQfcECUhpRSlGgVTXsBaBZHQIOAbvgFX7t1fZQoaAZoCWgPQwiatKm6h3hyQJSGlFKUaBVNBQFoFkdAg4H1V5rxiHV9lChoBmgJaA9DCNc07zgFQXBAlIaUUpRoFU0LAWgWR0CDgzd43WFwdX2UKGgGaAloD0MIkzmWd5WscUCUhpRSlGgVS/5oFkdAg4NmFSKm9HV9lChoBmgJaA9DCOZAD7Vte21AlIaUUpRoFU0/AWgWR0CDg2eA/cFhdX2UKGgGaAloD0MIexAC8uVUckCUhpRSlGgVTQsBaBZHQIOE4ODrZ8N1fZQoaAZoCWgPQwjOjH40HN9xQJSGlFKUaBVNPQFoFkdAg4XO2RaHK3V9lChoBmgJaA9DCHpsy4CzbHFAlIaUUpRoFU0IAWgWR0CDhkvM8ox6dX2UKGgGaAloD0MIlfJaCd3WcUCUhpRSlGgVTaEBaBZHQIOG+AVfu1F1fZQoaAZoCWgPQwh/9bhvtfJyQJSGlFKUaBVNDgFoFkdAg4feqJdjXnV9lChoBmgJaA9DCMCuJk+ZnnBAlIaUUpRoFU0nAWgWR0CDiXKgZjx1dX2UKGgGaAloD0MIpwUv+gpwTUCUhpRSlGgVS9NoFkdAg4m3lKbrknV9lChoBmgJaA9DCJtWCoEc53BAlIaUUpRoFU1EAWgWR0CDipPFefI0dX2UKGgGaAloD0MI+IiYEomLcECUhpRSlGgVTUMBaBZHQIOKoIF/x2B1fZQoaAZoCWgPQwi0rPvHQrxwQJSGlFKUaBVNAwFoFkdAg4uIAfdRBXV9lChoBmgJaA9DCMjuAiWFD25AlIaUUpRoFU2NAWgWR0CDi4m65Gz9dX2UKGgGaAloD0MI+84vSlA4ckCUhpRSlGgVTSsBaBZHQIOMTzwtrbh1fZQoaAZoCWgPQwiMSuoEtIlxQJSGlFKUaBVNDgFoFkdAg40mwiaAnXV9lChoBmgJaA9DCOoFn+bkuG5AlIaUUpRoFUv8aBZHQIONltj0+Tx1fZQoaAZoCWgPQwjyzqEMlYtzQJSGlFKUaBVNFAFoFkdAg45V9F4LTnV9lChoBmgJaA9DCAtBDkpYdXJAlIaUUpRoFU0EAWgWR0CDkLnZkCmudX2UKGgGaAloD0MImzkktVDFcECUhpRSlGgVTWYBaBZHQIOSKQeV9nd1fZQoaAZoCWgPQwhQUmABzE9xQJSGlFKUaBVL6GgWR0CDkuS00FbFdX2UKGgGaAloD0MIIv/MIH5EcUCUhpRSlGgVTT0BaBZHQIOS9JQLux91fZQoaAZoCWgPQwiBzTl4ZkVwQJSGlFKUaBVNOAFoFkdAg5PxqO938nV9lChoBmgJaA9DCJYKKqp+enFAlIaUUpRoFU2CAWgWR0CDlTyhi9ZidX2UKGgGaAloD0MIQUXVrzStcECUhpRSlGgVTQcBaBZHQIOVoSOBDoh1fZQoaAZoCWgPQwgG2h1STOtwQJSGlFKUaBVNRQFoFkdAg5WlN1yNoHV9lChoBmgJaA9DCFq9w+0Q9HFAlIaUUpRoFU0YAWgWR0CDlmsDnvDxdX2UKGgGaAloD0MIwtzu5b4tc0CUhpRSlGgVS+JoFkdAg6x8bR4QjHV9lChoBmgJaA9DCGGkF7X7z29AlIaUUpRoFU0HAWgWR0CDraGWUr08dX2UKGgGaAloD0MIxvgwexm4ckCUhpRSlGgVTT8BaBZHQIOuEhRqGlB1fZQoaAZoCWgPQwh1OSUgJilyQJSGlFKUaBVNQAFoFkdAg64dl/Yra3V9lChoBmgJaA9DCHi4HRrWkXBAlIaUUpRoFU00AWgWR0CDro2fkFOgdX2UKGgGaAloD0MI09wKYfUecUCUhpRSlGgVTZkBaBZHQIOvwSQHRkV1fZQoaAZoCWgPQwhnQ/6ZgVRxQJSGlFKUaBVL9GgWR0CDsF1PFefJdX2UKGgGaAloD0MIPE1mvC2nb0CUhpRSlGgVTT0BaBZHQIOxA+bExZd1fZQoaAZoCWgPQwjmlettMytNQJSGlFKUaBVLymgWR0CDsqBvrGBGdX2UKGgGaAloD0MI2lNyTmyqcUCUhpRSlGgVTRkBaBZHQIOzj2OAAhl1fZQoaAZoCWgPQwg+lGjJY9twQJSGlFKUaBVNKgFoFkdAg7Omf5DZ13V9lChoBmgJaA9DCC7JAbsaoW1AlIaUUpRoFU0cAWgWR0CDs7ztCzC2dX2UKGgGaAloD0MI4ICWrmDfcUCUhpRSlGgVTRoBaBZHQIO0ZzxPO6d1fZQoaAZoCWgPQwjC+j+H+UJyQJSGlFKUaBVL8mgWR0CDtNrTpgTidX2UKGgGaAloD0MIiH/Y0iPCcECUhpRSlGgVTRcBaBZHQIO1O2uxKQJ1fZQoaAZoCWgPQwhQwkzbP45xQJSGlFKUaBVNGAFoFkdAg7WH3Dej23V9lChoBmgJaA9DCA7aq49HRnBAlIaUUpRoFUvxaBZHQIO3h8a4tpV1fZQoaAZoCWgPQwiyvRb0nrVxQJSGlFKUaBVNIAFoFkdAg7eTJIUah3V9lChoBmgJaA9DCO7tluSAhW5AlIaUUpRoFU0AAWgWR0CDt7B/I8yOdX2UKGgGaAloD0MIJbIPsiw4c0CUhpRSlGgVTR4BaBZHQIO4X6hxo7F1fZQoaAZoCWgPQwht4XmpmHtwQJSGlFKUaBVL/GgWR0CDubL9uP3jdX2UKGgGaAloD0MIiNnLthPUcUCUhpRSlGgVTRsBaBZHQIO6SesgdOt1fZQoaAZoCWgPQwi0qiUdJWpxQJSGlFKUaBVNBQFoFkdAg7qzG5tm+XV9lChoBmgJaA9DCHswKT4+tG9AlIaUUpRoFU1eAWgWR0CDuyhOgxrSdX2UKGgGaAloD0MIT1jiAeXUcUCUhpRSlGgVTQQBaBZHQIO8Tq6e5Fx1fZQoaAZoCWgPQwhpc5zbhDdxQJSGlFKUaBVNBAFoFkdAg71QK8cuJ3V9lChoBmgJaA9DCI0lrI0xT3BAlIaUUpRoFU0LAWgWR0CDvbU/fO2RdX2UKGgGaAloD0MIaoe/JuumcECUhpRSlGgVTRABaBZHQIO9wJE6T4d1fZQoaAZoCWgPQwhkzjP2JdxsQJSGlFKUaBVL72gWR0CDvd1dPci4dX2UKGgGaAloD0MIdTv7ysMhcUCUhpRSlGgVS/1oFkdAg78hMi8nNXV9lChoBmgJaA9DCOs2qP2W7XFAlIaUUpRoFU0xAWgWR0CDv+IhQm/ndX2UKGgGaAloD0MIpBr2e6Lbc0CUhpRSlGgVS+toFkdAg8CQgTyrgnV9lChoBmgJaA9DCLzK2qb4925AlIaUUpRoFU06AWgWR0CDwSO7xusLdX2UKGgGaAloD0MI7rCJzJxvckCUhpRSlGgVTQIBaBZHQIPBeCoS+QF1fZQoaAZoCWgPQwjImLuWEN5uQJSGlFKUaBVNCAFoFkdAg8HKe9SMtXV9lChoBmgJaA9DCNV6v9EODm1AlIaUUpRoFU0XAWgWR0CDwxcer+5wdX2UKGgGaAloD0MIuFm8WFjUcECUhpRSlGgVS/poFkdAg8RVghKUV3V9lChoBmgJaA9DCMR4zau6pnBAlIaUUpRoFU0jAWgWR0CDxPNmlImPdX2UKGgGaAloD0MIiV3b260BcUCUhpRSlGgVTRsBaBZHQIPGL/lyR0V1fZQoaAZoCWgPQwh9ryE4rp9xQJSGlFKUaBVNCgFoFkdAg8a8CYCyQnV9lChoBmgJaA9DCFQ6WP9nDnNAlIaUUpRoFUvzaBZHQIPHKOq//Nt1fZQoaAZoCWgPQwhQVgxXRxZxQJSGlFKUaBVNUQFoFkdAg8d7C79Q43V9lChoBmgJaA9DCKuX32nyQXBAlIaUUpRoFU0PAWgWR0CDyFAdGRV7dX2UKGgGaAloD0MI/MOWHs1fcECUhpRSlGgVTQ0BaBZHQIPIXMKTjed1fZQoaAZoCWgPQwg6eCY0yZxtQJSGlFKUaBVNKAFoFkdAg8jeNT987nV9lChoBmgJaA9DCM9Nm3HaeXJAlIaUUpRoFU0HAWgWR0CDyV71qWTpdX2UKGgGaAloD0MIcZNRZVhzcUCUhpRSlGgVTSwBaBZHQIPLlefI0ZZ1fZQoaAZoCWgPQwjfxftxOy1zQJSGlFKUaBVNKQFoFkdAg8w/wZwXInV9lChoBmgJaA9DCOYHrvIEP21AlIaUUpRoFU0ZAWgWR0CDzJvP1L8KdX2UKGgGaAloD0MIuFuSA3aNbkCUhpRSlGgVTRcBaBZHQIPPBh4MWoF1fZQoaAZoCWgPQwjLgok/CrtsQJSGlFKUaBVNUAFoFkdAg884lIEr5XV9lChoBmgJaA9DCNUgzO0e0HFAlIaUUpRoFU1CAWgWR0CDz2VTJhfCdX2UKGgGaAloD0MIq7LviqDOckCUhpRSlGgVS+ZoFkdAg9DLuQZGa3V9lChoBmgJaA9DCPHUIw3umW9AlIaUUpRoFUv+aBZHQIPRTZtelbh1fZQoaAZoCWgPQwiDpE+r6LNvQJSGlFKUaBVL6WgWR0CD0b+Vkc0cdX2UKGgGaAloD0MIfgIoRpYQbUCUhpRSlGgVTSwBaBZHQIPSAptrKvF1fZQoaAZoCWgPQwgKaCJseGJyQJSGlFKUaBVNDAFoFkdAg9LWGh24eHV9lChoBmgJaA9DCMzuycOCeXBAlIaUUpRoFUvoaBZHQIPTKpLmITJ1fZQoaAZoCWgPQwjLv5ZX7glyQJSGlFKUaBVL/WgWR0CD02TJQtSRdX2UKGgGaAloD0MI4uXpXNF5cECUhpRSlGgVTXYBaBZHQIPUTW7OE/V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.31 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
mlp-ppo-gym-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:10fd1370443df388bf72c6e50565f730a117fadc5bf4c2b1bd6ea7490dc9dc0e
3
- size 147330
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab7a317578ec37f0db29c397487922f6a09772eaa5ad9c02ae88416ed506d860
3
+ size 147435
mlp-ppo-gym-LunarLander-v2/data CHANGED
@@ -4,29 +4,29 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4f09448b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4f0944940>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4f09449d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4f0944a60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fd4f0944af0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fd4f0944b80>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4f0944c10>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4f0944ca0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fd4f0944d30>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4f0944dc0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4f0944e50>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4f0944ee0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fd4f09481c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 114688,
25
- "_total_timesteps": 100000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1682950040734332278,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "lr_schedule": {
@@ -35,27 +35,27 @@
35
  },
36
  "_last_obs": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGAp9D6zK2I/asRGPwCIT7+ezXO+cufnPQAAAAAAAAAAc3fZvQ5yvj9N3UG/aYgDPkqumz2gH4Y9AAAAAAAAAADNzL65sCm0P8AJF701pRq+zKPgOXLZCDwAAAAAAAAAADM9sDwLt6E/EVDBPa3c/b7tFRo9YrYAPgAAAAAAAAAAmnVNvtJ8TD9+m4e+0L90v12JXb5C16C8AAAAAAAAAACAEmU9AIxNP23/eD4MtEC/Y6gwvlrwI74AAAAAAAAAAIBBGD18arg/VmE8P6JIWT53ufq8oA6IvQAAAAAAAAAAgIujvTZanT/whRW/5rsxv2ZZCj0Ep5a9AAAAAAAAAAAal009i8qxPyqnwT7c6G++GjYdvRgAd7wAAAAAAAAAADNr2jyPYig/MqBzvd5Sdb9Ijjs+RBQxvAAAAAAAAAAAUtSdvnzyij8DvfG+m/dUv5Negr62hj2+AAAAAAAAAACaNxg9nuK+P+ilWj75OG09XQmJvUcHybwAAAAAAAAAAOYYCb6ENcY9iNd3PTEhrL/OPie/bbJ5vgAAAAAAAAAAWsKDPlFXgj+qYZs+1xROv6Islj3MxJm9AAAAAAAAAADasii+Afb0Pq0e67z/toa/81Hlvl6Kg74AAAAAAAAAAFrmTD6gNGU/uBHTPjKJa7+21Tu+nVnmPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
  },
40
  "_last_episode_starts": {
41
  ":type:": "<class 'numpy.ndarray'>",
42
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
  },
44
  "_last_original_obs": null,
45
  "_episode_num": 0,
46
  "use_sde": false,
47
  "sde_sample_freq": -1,
48
- "_current_progress_remaining": -0.1468799999999999,
49
  "_stats_window_size": 100,
50
  "ep_info_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiQtAo3SUUsCUhpRSlIwBbJRLcIwBdJRHQEF2UxmCiAV1fZQoaAZoCWgPQwhBnfLoRn5MwJSGlFKUaBVLUWgWR0BBd8LKFIuodX2UKGgGaAloD0MIv5tu2SHGW8CUhpRSlGgVS3xoFkdAQXg62fChvnV9lChoBmgJaA9DCGHCaFa20UPAlIaUUpRoFUtOaBZHQEF6vV3EAHV1fZQoaAZoCWgPQwgai6azk9NQwJSGlFKUaBVLa2gWR0BBfU83dbgTdX2UKGgGaAloD0MIX5oiwOm/S8CUhpRSlGgVS1toFkdAQX8sFt8/lnV9lChoBmgJaA9DCNswCoLH9UPAlIaUUpRoFUtVaBZHQEGCoPTXrdF1fZQoaAZoCWgPQwhNaJJYUrtTwJSGlFKUaBVLXGgWR0BBhxrBTGYKdX2UKGgGaAloD0MIDtlAutjNU8CUhpRSlGgVS0hoFkdAQY5FRYRuj3V9lChoBmgJaA9DCF03pbxWLVzAlIaUUpRoFUtyaBZHQEGSvkBCD291fZQoaAZoCWgPQwhWRiOfVwRMwJSGlFKUaBVLiGgWR0BBk4PXkHUudX2UKGgGaAloD0MId/S/XIuJV8CUhpRSlGgVS1ZoFkdAQZPyAhB7eHV9lChoBmgJaA9DCHRgOUIGtVrAlIaUUpRoFUtbaBZHQEGUV1Oj7AN1fZQoaAZoCWgPQwiunL0z2ppFwJSGlFKUaBVLZ2gWR0BBmZh8YyfudX2UKGgGaAloD0MIyQVn8Pf2U8CUhpRSlGgVS0FoFkdAQZplFtsN2HV9lChoBmgJaA9DCNAn8iTpMFLAlIaUUpRoFUtyaBZHQEGaxagVXV91fZQoaAZoCWgPQwggJAuYwJtHwJSGlFKUaBVLTmgWR0BBm1afSQYDdX2UKGgGaAloD0MIkx6GVicoXMCUhpRSlGgVS1VoFkdAQZvFNtZV43V9lChoBmgJaA9DCI+oUN1cm2bAlIaUUpRoFUukaBZHQEGclNUOuq51fZQoaAZoCWgPQwiflEkNbTdbwJSGlFKUaBVLZ2gWR0BBnJv5xiobdX2UKGgGaAloD0MIqG+Z02WLQsCUhpRSlGgVS2poFkdAQZ0078vVVnV9lChoBmgJaA9DCO0PlNv2u03AlIaUUpRoFUtjaBZHQEGd5JK8L8d1fZQoaAZoCWgPQwjE6o8wDNxZwJSGlFKUaBVLeGgWR0BBn2w3YL9ddX2UKGgGaAloD0MI+Ki/XmGNRMCUhpRSlGgVS0JoFkdAQaV58jRlYnV9lChoBmgJaA9DCMAklSnm4k3AlIaUUpRoFUtiaBZHQEGpYRNATqV1fZQoaAZoCWgPQwirXn6nyeZKwJSGlFKUaBVLRGgWR0BBqf/echC/dX2UKGgGaAloD0MI6bXZWInTT8CUhpRSlGgVS0NoFkdAQar7655JLHV9lChoBmgJaA9DCIcYr3lVIzXAlIaUUpRoFUtLaBZHQEGtU3GXHBF1fZQoaAZoCWgPQwisPIGwUzdSwJSGlFKUaBVLWmgWR0BBsgHNX5nEdX2UKGgGaAloD0MIeZCeIocBUcCUhpRSlGgVS15oFkdAQbliUgSvknV9lChoBmgJaA9DCM2Pv7SoAWPAlIaUUpRoFUtYaBZHQEG54i5d4V11fZQoaAZoCWgPQwiFYFW9/IpWwJSGlFKUaBVLW2gWR0BBueCTUy57dX2UKGgGaAloD0MIOBCSBUw0WcCUhpRSlGgVS1loFkdAQbr/hl18s3V9lChoBmgJaA9DCI4HW+z28FPAlIaUUpRoFUtfaBZHQEG8hLXcxj91fZQoaAZoCWgPQwgU0ETY8HRVwJSGlFKUaBVLYmgWR0BBvNxlxwQ2dX2UKGgGaAloD0MIs9MP6iIdSMCUhpRSlGgVS1xoFkdAQbznJT2nKnV9lChoBmgJaA9DCM7HtaFinVvAlIaUUpRoFUtSaBZHQEHB4dp7Czl1fZQoaAZoCWgPQwhe9YB5yA5KwJSGlFKUaBVLaGgWR0BBwpJPIn0DdX2UKGgGaAloD0MICFVq9kBpWcCUhpRSlGgVS3doFkdAQcMebNKRMnV9lChoBmgJaA9DCK4upwTEPEXAlIaUUpRoFUt8aBZHQEHEfnwG4Zx1fZQoaAZoCWgPQwi536Eo0PpUwJSGlFKUaBVLZmgWR0BBzQXqJMxodX2UKGgGaAloD0MIbhPulXmjUcCUhpRSlGgVS3BoFkdAQc/zH0btJHV9lChoBmgJaA9DCEZB8Pj2XmDAlIaUUpRoFUtWaBZHQEHP3WWhRIl1fZQoaAZoCWgPQwgkYHR5c7lVwJSGlFKUaBVLdGgWR0BB0wlSjxkNdX2UKGgGaAloD0MI7IfYYOFTV8CUhpRSlGgVS3JoFkdAQdTmr8zhxnV9lChoBmgJaA9DCDF9ryE4LlbAlIaUUpRoFUtLaBZHQEHWIrvsqrl1fZQoaAZoCWgPQwgtQxzr4g4twJSGlFKUaBVLVGgWR0BB2ZgogFHKdX2UKGgGaAloD0MIaAbxgR01TMCUhpRSlGgVS1loFkdAQdmfbsWweXV9lChoBmgJaA9DCK65o//ltlbAlIaUUpRoFUtXaBZHQEHau6ErXlN1fZQoaAZoCWgPQwj1nV+UoB9NwJSGlFKUaBVLaGgWR0BB3dLg4wRHdX2UKGgGaAloD0MIDFpIwOi4YcCUhpRSlGgVS2loFkdAQd5Nfw7T2HV9lChoBmgJaA9DCLfte9RfOGHAlIaUUpRoFUt0aBZHQEHhd69kBjp1fZQoaAZoCWgPQwhgHjLlQ3phwJSGlFKUaBVLZ2gWR0BB5UIcBEKFdX2UKGgGaAloD0MIuwuUFFjmScCUhpRSlGgVS2hoFkdAQeZOgxrSE3V9lChoBmgJaA9DCMaoa+196k7AlIaUUpRoFUtAaBZHQEHmOlO45Lh1fZQoaAZoCWgPQwgz3lZ6bZNSwJSGlFKUaBVLaWgWR0BB5z1schkidX2UKGgGaAloD0MIFvcfmQ4JUMCUhpRSlGgVS0RoFkdAQe10Rvm5lXV9lChoBmgJaA9DCJdw6C0ezlrAlIaUUpRoFUtKaBZHQEHuZUDMeOp1fZQoaAZoCWgPQwglBRbAlOFSwJSGlFKUaBVLfGgWR0BB7ypJf6XTdX2UKGgGaAloD0MIDoelgR9qVsCUhpRSlGgVS1xoFkdAQfLhUBGQS3V9lChoBmgJaA9DCFNaf0sAlGDAlIaUUpRoFUtuaBZHQEHzVrhzeXR1fZQoaAZoCWgPQwjoTNpU3T1FwJSGlFKUaBVLSGgWR0BB9tD2JzkqdX2UKGgGaAloD0MIMC3qk9z1RcCUhpRSlGgVS3FoFkdAQfczTF2mpHV9lChoBmgJaA9DCKgbKPBO1ETAlIaUUpRoFUttaBZHQEH+4cWCVbB1fZQoaAZoCWgPQwjcvdwnR8VJwJSGlFKUaBVLb2gWR0BB/5k9U0emdX2UKGgGaAloD0MIpS4Zx0gzU8CUhpRSlGgVS21oFkdAQgAIQe3hGnV9lChoBmgJaA9DCKsJou4D+F7AlIaUUpRoFUtoaBZHQEIBYcvM8ox1fZQoaAZoCWgPQwg5DVGFP2BWwJSGlFKUaBVLXmgWR0BCBaNEPUaydX2UKGgGaAloD0MIMQbWcfxMWcCUhpRSlGgVS2FoFkdAQgeUdJaq0nV9lChoBmgJaA9DCBK9jGK5L03AlIaUUpRoFUtMaBZHQEIIsbvPTod1fZQoaAZoCWgPQwiHokCfyJPRv5SGlFKUaBVLdGgWR0BCCXnZCfHxdX2UKGgGaAloD0MIcGByo8grWsCUhpRSlGgVS2hoFkdAQgpHNHH3lHV9lChoBmgJaA9DCIYb8Plh5D7AlIaUUpRoFUtVaBZHQEILD5TIeYF1fZQoaAZoCWgPQwirlnSUgwFTwJSGlFKUaBVLaGgWR0BCCy9mHxjKdX2UKGgGaAloD0MIi+B/K9m9OsCUhpRSlGgVS0ZoFkdAQgufNA1NxnV9lChoBmgJaA9DCBNIiV3bNWPAlIaUUpRoFUtMaBZHQEINGus90Rx1fZQoaAZoCWgPQwh/hGHAkvVYwJSGlFKUaBVLcGgWR0BCFPPTodMkdX2UKGgGaAloD0MIh8Jn6+DwOcCUhpRSlGgVS0VoFkdAQhYbwSamXXV9lChoBmgJaA9DCCUC1T+I4VTAlIaUUpRoFUtnaBZHQEIZfTkQwsZ1fZQoaAZoCWgPQwjw2xDjNSBSwJSGlFKUaBVLbGgWR0BCG4YBNmDldX2UKGgGaAloD0MI7dXHQ9+BU8CUhpRSlGgVS0ZoFkdAQhzpqynk1nV9lChoBmgJaA9DCAfPhCaJYFTAlIaUUpRoFUtuaBZHQEIlQBxPwd91fZQoaAZoCWgPQwiUvhBy3gRSwJSGlFKUaBVLbmgWR0BCJsUIsyzpdX2UKGgGaAloD0MIK8B3mzesV8CUhpRSlGgVS1doFkdAQibPKMefZnV9lChoBmgJaA9DCJvkR/yKr1bAlIaUUpRoFUtUaBZHQEInXkHUtqZ1fZQoaAZoCWgPQwhMGM3K9t5UwJSGlFKUaBVLd2gWR0BCKE74i5d4dX2UKGgGaAloD0MIQpdw6C2kYcCUhpRSlGgVS2RoFkdAQiqoKlYU4HV9lChoBmgJaA9DCIJTH0jeZFHAlIaUUpRoFUtnaBZHQEIqscyWRih1fZQoaAZoCWgPQwj+e/Dapf1YwJSGlFKUaBVLW2gWR0BCLBKL876pdX2UKGgGaAloD0MIejiB6bQHWMCUhpRSlGgVS2hoFkdAQi2S2Yv38HV9lChoBmgJaA9DCPryAuwjoGfAlIaUUpRoFUtlaBZHQEIt1+RYA811fZQoaAZoCWgPQwjcYn5uaGFTwJSGlFKUaBVLa2gWR0BCL0/GEPDpdX2UKGgGaAloD0MIhSNIpdhTXsCUhpRSlGgVS1ZoFkdAQjN7hNucc3V9lChoBmgJaA9DCKHbSxqjIl7AlIaUUpRoFUtdaBZHQEI7RnezlcR1fZQoaAZoCWgPQwg+6USCqQ5GwJSGlFKUaBVLcmgWR0BCO/QKKHfudX2UKGgGaAloD0MIlufB3VnNRsCUhpRSlGgVS11oFkdAQjzfrKNhmXV9lChoBmgJaA9DCPtalxqhNVbAlIaUUpRoFUtCaBZHQEI9NHH3lCF1fZQoaAZoCWgPQwjl795RY4VRwJSGlFKUaBVLPmgWR0BCPT2exwAEdX2UKGgGaAloD0MI/TOD+MDCR8CUhpRSlGgVS05oFkdAQj/nZCfHxXV9lChoBmgJaA9DCH6nyYy3dGLAlIaUUpRoFUt0aBZHQEJBWPLgXM11ZS4="
53
  },
54
  "ep_success_buffer": {
55
  ":type:": "<class 'collections.deque'>",
56
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
  },
58
- "_n_updates": 28,
59
  "observation_space": {
60
  ":type:": "<class 'gym.spaces.box.Box'>",
61
  ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f53638808b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5363880940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f53638809d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5363880a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5363880af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5363880b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5363880c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5363880ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5363880d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5363880dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5363880e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5363880ee0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5363881940>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1682950124230539533,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "lr_schedule": {
 
35
  },
36
  "_last_obs": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbEN7y489C72rxJvO2YDT2NYSi9fkToPQAAgD8AAIA/ZmTqvbWCkz96vBa+PR3ZvtVWEr7dWEg7AAAAAAAAAABmvVM9I8eaP97p7D19wPK+WVsmPX6IXT0AAAAAAAAAADN/BD6qw5g+MHC5vgOEr77INNa9F3uSPAAAAAAAAAAAALLRvTyN1D4EI609EnGUvgUS/Dx2oC49AAAAAAAAAABNw2q9FCKOuvvq1LYr1tKxhpMcO3W9+TUAAIA/AACAP2YYqbwFVkc/WPcdvFMan76AJyW8z/uJPQAAAAAAAAAAbZpCPtdkHD9Bczy+VJWUvose1j3Ge429AAAAAAAAAAAasuU9Mx+hPtdkmL7SVom+KnljvYGFKD0AAAAAAAAAALMYC717WKu6zP4CvZpvJT2uf5o7zkMMvgAAgD8AAIA/mvNzPMX+oDyWkSW+/kNyvunjgb2F5qi9AAAAAAAAAABmWtq7rhm4uiUXzTZePscxkl+/uI1k6LUAAIA/AACAPzOfxLzDLls/s1VQveo7774XJxu9I9ZUPQAAAAAAAAAAM6a4vHyQnD86WQi+yxvpvpoADL1nARW9AAAAAAAAAAC68Fk+Rp86P+pnRr61N66+Ks7SPQ2eb7wAAAAAAAAAAPO+iD7shgc/kVSwvvQprb478RE+eYyEvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
  },
40
  "_last_episode_starts": {
41
  ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
  },
44
  "_last_original_obs": null,
45
  "_episode_num": 0,
46
  "use_sde": false,
47
  "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
  "_stats_window_size": 100,
50
  "ep_info_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7VMhqNScECUhpRSlIwBbJRNWgGMAXSUR0CDd+9ytFKDdX2UKGgGaAloD0MIyxEykGcPSUCUhpRSlGgVS81oFkdAg3gucMEzPHV9lChoBmgJaA9DCHl1jgEZQHFAlIaUUpRoFU2TAWgWR0CDeSBFNL13dX2UKGgGaAloD0MIfSWQEvslcECUhpRSlGgVS+doFkdAg3pExh2GI3V9lChoBmgJaA9DCCIzF7g8UVFAlIaUUpRoFUu3aBZHQIN6nm3fAKx1fZQoaAZoCWgPQwgRqWkX0+xwQJSGlFKUaBVNDgFoFkdAg3wJLmITG3V9lChoBmgJaA9DCG0gXWzaM3FAlIaUUpRoFUv5aBZHQIN8aGtZFG51fZQoaAZoCWgPQwhlHCPZI65wQJSGlFKUaBVNBgFoFkdAg3yCJoCdSXV9lChoBmgJaA9DCGiULv1LS3BAlIaUUpRoFU08AWgWR0CDfI0a6z3RdX2UKGgGaAloD0MIaksd5DWccECUhpRSlGgVS/5oFkdAg3+Axi5NGnV9lChoBmgJaA9DCEQZqmIqMW1AlIaUUpRoFU2jAWgWR0CDgFVAiV0LdX2UKGgGaAloD0MI4ZaPpOQfcECUhpRSlGgVTXsBaBZHQIOAbvgFX7t1fZQoaAZoCWgPQwiatKm6h3hyQJSGlFKUaBVNBQFoFkdAg4H1V5rxiHV9lChoBmgJaA9DCNc07zgFQXBAlIaUUpRoFU0LAWgWR0CDgzd43WFwdX2UKGgGaAloD0MIkzmWd5WscUCUhpRSlGgVS/5oFkdAg4NmFSKm9HV9lChoBmgJaA9DCOZAD7Vte21AlIaUUpRoFU0/AWgWR0CDg2eA/cFhdX2UKGgGaAloD0MIexAC8uVUckCUhpRSlGgVTQsBaBZHQIOE4ODrZ8N1fZQoaAZoCWgPQwjOjH40HN9xQJSGlFKUaBVNPQFoFkdAg4XO2RaHK3V9lChoBmgJaA9DCHpsy4CzbHFAlIaUUpRoFU0IAWgWR0CDhkvM8ox6dX2UKGgGaAloD0MIlfJaCd3WcUCUhpRSlGgVTaEBaBZHQIOG+AVfu1F1fZQoaAZoCWgPQwh/9bhvtfJyQJSGlFKUaBVNDgFoFkdAg4feqJdjXnV9lChoBmgJaA9DCMCuJk+ZnnBAlIaUUpRoFU0nAWgWR0CDiXKgZjx1dX2UKGgGaAloD0MIpwUv+gpwTUCUhpRSlGgVS9NoFkdAg4m3lKbrknV9lChoBmgJaA9DCJtWCoEc53BAlIaUUpRoFU1EAWgWR0CDipPFefI0dX2UKGgGaAloD0MI+IiYEomLcECUhpRSlGgVTUMBaBZHQIOKoIF/x2B1fZQoaAZoCWgPQwi0rPvHQrxwQJSGlFKUaBVNAwFoFkdAg4uIAfdRBXV9lChoBmgJaA9DCMjuAiWFD25AlIaUUpRoFU2NAWgWR0CDi4m65Gz9dX2UKGgGaAloD0MI+84vSlA4ckCUhpRSlGgVTSsBaBZHQIOMTzwtrbh1fZQoaAZoCWgPQwiMSuoEtIlxQJSGlFKUaBVNDgFoFkdAg40mwiaAnXV9lChoBmgJaA9DCOoFn+bkuG5AlIaUUpRoFUv8aBZHQIONltj0+Tx1fZQoaAZoCWgPQwjyzqEMlYtzQJSGlFKUaBVNFAFoFkdAg45V9F4LTnV9lChoBmgJaA9DCAtBDkpYdXJAlIaUUpRoFU0EAWgWR0CDkLnZkCmudX2UKGgGaAloD0MImzkktVDFcECUhpRSlGgVTWYBaBZHQIOSKQeV9nd1fZQoaAZoCWgPQwhQUmABzE9xQJSGlFKUaBVL6GgWR0CDkuS00FbFdX2UKGgGaAloD0MIIv/MIH5EcUCUhpRSlGgVTT0BaBZHQIOS9JQLux91fZQoaAZoCWgPQwiBzTl4ZkVwQJSGlFKUaBVNOAFoFkdAg5PxqO938nV9lChoBmgJaA9DCJYKKqp+enFAlIaUUpRoFU2CAWgWR0CDlTyhi9ZidX2UKGgGaAloD0MIQUXVrzStcECUhpRSlGgVTQcBaBZHQIOVoSOBDoh1fZQoaAZoCWgPQwgG2h1STOtwQJSGlFKUaBVNRQFoFkdAg5WlN1yNoHV9lChoBmgJaA9DCFq9w+0Q9HFAlIaUUpRoFU0YAWgWR0CDlmsDnvDxdX2UKGgGaAloD0MIwtzu5b4tc0CUhpRSlGgVS+JoFkdAg6x8bR4QjHV9lChoBmgJaA9DCGGkF7X7z29AlIaUUpRoFU0HAWgWR0CDraGWUr08dX2UKGgGaAloD0MIxvgwexm4ckCUhpRSlGgVTT8BaBZHQIOuEhRqGlB1fZQoaAZoCWgPQwh1OSUgJilyQJSGlFKUaBVNQAFoFkdAg64dl/Yra3V9lChoBmgJaA9DCHi4HRrWkXBAlIaUUpRoFU00AWgWR0CDro2fkFOgdX2UKGgGaAloD0MI09wKYfUecUCUhpRSlGgVTZkBaBZHQIOvwSQHRkV1fZQoaAZoCWgPQwhnQ/6ZgVRxQJSGlFKUaBVL9GgWR0CDsF1PFefJdX2UKGgGaAloD0MIPE1mvC2nb0CUhpRSlGgVTT0BaBZHQIOxA+bExZd1fZQoaAZoCWgPQwjmlettMytNQJSGlFKUaBVLymgWR0CDsqBvrGBGdX2UKGgGaAloD0MI2lNyTmyqcUCUhpRSlGgVTRkBaBZHQIOzj2OAAhl1fZQoaAZoCWgPQwg+lGjJY9twQJSGlFKUaBVNKgFoFkdAg7Omf5DZ13V9lChoBmgJaA9DCC7JAbsaoW1AlIaUUpRoFU0cAWgWR0CDs7ztCzC2dX2UKGgGaAloD0MI4ICWrmDfcUCUhpRSlGgVTRoBaBZHQIO0ZzxPO6d1fZQoaAZoCWgPQwjC+j+H+UJyQJSGlFKUaBVL8mgWR0CDtNrTpgTidX2UKGgGaAloD0MIiH/Y0iPCcECUhpRSlGgVTRcBaBZHQIO1O2uxKQJ1fZQoaAZoCWgPQwhQwkzbP45xQJSGlFKUaBVNGAFoFkdAg7WH3Dej23V9lChoBmgJaA9DCA7aq49HRnBAlIaUUpRoFUvxaBZHQIO3h8a4tpV1fZQoaAZoCWgPQwiyvRb0nrVxQJSGlFKUaBVNIAFoFkdAg7eTJIUah3V9lChoBmgJaA9DCO7tluSAhW5AlIaUUpRoFU0AAWgWR0CDt7B/I8yOdX2UKGgGaAloD0MIJbIPsiw4c0CUhpRSlGgVTR4BaBZHQIO4X6hxo7F1fZQoaAZoCWgPQwht4XmpmHtwQJSGlFKUaBVL/GgWR0CDubL9uP3jdX2UKGgGaAloD0MIiNnLthPUcUCUhpRSlGgVTRsBaBZHQIO6SesgdOt1fZQoaAZoCWgPQwi0qiUdJWpxQJSGlFKUaBVNBQFoFkdAg7qzG5tm+XV9lChoBmgJaA9DCHswKT4+tG9AlIaUUpRoFU1eAWgWR0CDuyhOgxrSdX2UKGgGaAloD0MIT1jiAeXUcUCUhpRSlGgVTQQBaBZHQIO8Tq6e5Fx1fZQoaAZoCWgPQwhpc5zbhDdxQJSGlFKUaBVNBAFoFkdAg71QK8cuJ3V9lChoBmgJaA9DCI0lrI0xT3BAlIaUUpRoFU0LAWgWR0CDvbU/fO2RdX2UKGgGaAloD0MIaoe/JuumcECUhpRSlGgVTRABaBZHQIO9wJE6T4d1fZQoaAZoCWgPQwhkzjP2JdxsQJSGlFKUaBVL72gWR0CDvd1dPci4dX2UKGgGaAloD0MIdTv7ysMhcUCUhpRSlGgVS/1oFkdAg78hMi8nNXV9lChoBmgJaA9DCOs2qP2W7XFAlIaUUpRoFU0xAWgWR0CDv+IhQm/ndX2UKGgGaAloD0MIpBr2e6Lbc0CUhpRSlGgVS+toFkdAg8CQgTyrgnV9lChoBmgJaA9DCLzK2qb4925AlIaUUpRoFU06AWgWR0CDwSO7xusLdX2UKGgGaAloD0MI7rCJzJxvckCUhpRSlGgVTQIBaBZHQIPBeCoS+QF1fZQoaAZoCWgPQwjImLuWEN5uQJSGlFKUaBVNCAFoFkdAg8HKe9SMtXV9lChoBmgJaA9DCNV6v9EODm1AlIaUUpRoFU0XAWgWR0CDwxcer+5wdX2UKGgGaAloD0MIuFm8WFjUcECUhpRSlGgVS/poFkdAg8RVghKUV3V9lChoBmgJaA9DCMR4zau6pnBAlIaUUpRoFU0jAWgWR0CDxPNmlImPdX2UKGgGaAloD0MIiV3b260BcUCUhpRSlGgVTRsBaBZHQIPGL/lyR0V1fZQoaAZoCWgPQwh9ryE4rp9xQJSGlFKUaBVNCgFoFkdAg8a8CYCyQnV9lChoBmgJaA9DCFQ6WP9nDnNAlIaUUpRoFUvzaBZHQIPHKOq//Nt1fZQoaAZoCWgPQwhQVgxXRxZxQJSGlFKUaBVNUQFoFkdAg8d7C79Q43V9lChoBmgJaA9DCKuX32nyQXBAlIaUUpRoFU0PAWgWR0CDyFAdGRV7dX2UKGgGaAloD0MI/MOWHs1fcECUhpRSlGgVTQ0BaBZHQIPIXMKTjed1fZQoaAZoCWgPQwg6eCY0yZxtQJSGlFKUaBVNKAFoFkdAg8jeNT987nV9lChoBmgJaA9DCM9Nm3HaeXJAlIaUUpRoFU0HAWgWR0CDyV71qWTpdX2UKGgGaAloD0MIcZNRZVhzcUCUhpRSlGgVTSwBaBZHQIPLlefI0ZZ1fZQoaAZoCWgPQwjfxftxOy1zQJSGlFKUaBVNKQFoFkdAg8w/wZwXInV9lChoBmgJaA9DCOYHrvIEP21AlIaUUpRoFU0ZAWgWR0CDzJvP1L8KdX2UKGgGaAloD0MIuFuSA3aNbkCUhpRSlGgVTRcBaBZHQIPPBh4MWoF1fZQoaAZoCWgPQwjLgok/CrtsQJSGlFKUaBVNUAFoFkdAg884lIEr5XV9lChoBmgJaA9DCNUgzO0e0HFAlIaUUpRoFU1CAWgWR0CDz2VTJhfCdX2UKGgGaAloD0MIq7LviqDOckCUhpRSlGgVS+ZoFkdAg9DLuQZGa3V9lChoBmgJaA9DCPHUIw3umW9AlIaUUpRoFUv+aBZHQIPRTZtelbh1fZQoaAZoCWgPQwiDpE+r6LNvQJSGlFKUaBVL6WgWR0CD0b+Vkc0cdX2UKGgGaAloD0MIfgIoRpYQbUCUhpRSlGgVTSwBaBZHQIPSAptrKvF1fZQoaAZoCWgPQwgKaCJseGJyQJSGlFKUaBVNDAFoFkdAg9LWGh24eHV9lChoBmgJaA9DCMzuycOCeXBAlIaUUpRoFUvoaBZHQIPTKpLmITJ1fZQoaAZoCWgPQwjLv5ZX7glyQJSGlFKUaBVL/WgWR0CD02TJQtSRdX2UKGgGaAloD0MI4uXpXNF5cECUhpRSlGgVTXYBaBZHQIPUTW7OE/V1ZS4="
53
  },
54
  "ep_success_buffer": {
55
  ":type:": "<class 'collections.deque'>",
56
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
  },
58
+ "_n_updates": 248,
59
  "observation_space": {
60
  ":type:": "<class 'gym.spaces.box.Box'>",
61
  ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
mlp-ppo-gym-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b402ba80847dbd85d2c6bc76452675c1251cf552634bc4a0dcd4a902152cffe8
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da580620e67fa8c8ef55a4d0b1643d0d19d8a6d930c2fd705a1319e7494ad2d7
3
  size 87929
mlp-ppo-gym-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:74a796d4d4f887533e815f604439c8dbd5b9ff0a2ba0a2f4838e7018fc21161f
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f41eb6dac1ecfd8276e37abf4a04307e251432eaeccf065bae6e82443060536
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -29.370321131055242, "std_reward": 143.86170936580515, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-01T14:08:06.611423"}
 
1
+ {"mean_reward": 268.81406305285265, "std_reward": 19.487929160165663, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-01T14:19:24.972732"}