First commit
Browse files- .gitattributes +1 -0
- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +94 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfd737d07883ad47794eba89498f757371d6897cd040a4d71bdf010e89ee19bd
|
3 |
+
size 144025
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f17ff8c6710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17ff8c67a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17ff8c6830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17ff8c68c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f17ff8c6950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f17ff8c69e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17ff8c6a70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f17ff8c6b00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17ff8c6b90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17ff8c6c20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17ff8c6cb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f17ff90cdb0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652110003.5188959,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoTRD6PmUg/G64gPs1U9L4aR+o99undOQAAAAAAAAAAc3hTPpKZwjxFJFW+y/lOvjP6ij7cfUU+AAAAAAAAgD9GelU+G/n6vA6GmTsUJDW6YHlbvpLPCrsAAIA/AACAP+Z2dD2rWN89UG1nvhDyPb4ipI+9c+sdOwAAAAAAAAAAwJE+vuXnmj5IVRg+lwLKvvDSI718vqk8AAAAAAAAAABj8pi+9wGBP7I2Mb57QyK/lZtnvsaYnbsAAAAAAAAAAOB7Xj4qMhy98AEAuQVodjc6YIi+98E1OAAAgD8AAIA/+gBEvnYlYbzCpJK6Ufe4uADd1z3ftJU5AACAPwAAgD+acwO9GKy0PSpRCrs64X2+56MbPCOpXbsAAAAAAAAAABMPPD62IW280iuUO3aL1Lms0c69ovGrugAAgD8AAIA/81e1PeM0dD9Gtv49QjAWv4hvej2lYhs9AAAAAAAAAACTwUW+G5uJvFMCPDuWMHc511r8PVM8b7oAAIA/AACAP3rkIb7XNGK7X8yaPfC9GD136AE9zuj8vQAAgD8AAIA/s5wJPhfBoD/S+Bk/QMUGv7YWBz6/nkg+AAAAAAAAAABG2zE+hCqMPbxNvr2eNim+nRRiPGLLy7sAAAAAAAAAACDtTz4hg+i89h02Oy6Kx7lA402+UIZ2ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8l1KXfKccUCUhpRSlIwBbJRL3YwBdJRHQJUhIxTKkmB1fZQoaAZoCWgPQwgcJET5wkVwQJSGlFKUaBVL/2gWR0CVIawSamXPdX2UKGgGaAloD0MIHY6u0l1kY0CUhpRSlGgVTegDaBZHQJUjg+hXbM51fZQoaAZoCWgPQwi0PXrDPXdyQJSGlFKUaBVNEgFoFkdAlSOEgB91EHV9lChoBmgJaA9DCOAO1CmPi3BAlIaUUpRoFUv9aBZHQJUkXqSowVV1fZQoaAZoCWgPQwjohxHCY3FxQJSGlFKUaBVNNgFoFkdAlSRvvBrN4nV9lChoBmgJaA9DCN2XM9sV6jpAlIaUUpRoFUvhaBZHQJUlQh+vyLB1fZQoaAZoCWgPQwhfQgWHl7ZvQJSGlFKUaBVL0WgWR0CVJXblA/s3dX2UKGgGaAloD0MIT+rL0k5rb0CUhpRSlGgVS8poFkdAlSWi48U21nV9lChoBmgJaA9DCI5cN6V8cHBAlIaUUpRoFU0CAWgWR0CVgbugHu7ZdX2UKGgGaAloD0MI5A8GnntWYECUhpRSlGgVTegDaBZHQJWCHTTfBN51fZQoaAZoCWgPQwiRKLSs+2lyQJSGlFKUaBVNNQFoFkdAlYPLCN0eVHV9lChoBmgJaA9DCGDHf4GgnG9AlIaUUpRoFU0DAWgWR0CVhFakyk9EdX2UKGgGaAloD0MIQ48YPbcLcECUhpRSlGgVS9toFkdAlYUJdnkDIXV9lChoBmgJaA9DCOI8nMD0529AlIaUUpRoFUvjaBZHQJWFRnPE87p1fZQoaAZoCWgPQwhywoTRrM5CQJSGlFKUaBVLtmgWR0CVhgg/C66KdX2UKGgGaAloD0MIol7waU52c0CUhpRSlGgVTVEBaBZHQJWGJh3JPqN1fZQoaAZoCWgPQwhUck7sofdwQJSGlFKUaBVL5mgWR0CVhjxcE/0NdX2UKGgGaAloD0MID/EPW7qLcUCUhpRSlGgVS9FoFkdAlYZp5zHS4XV9lChoBmgJaA9DCEBpqFFIKWFAlIaUUpRoFU3oA2gWR0CVhvznied1dX2UKGgGaAloD0MIAfkSKjiWcECUhpRSlGgVTQsBaBZHQJWHI7uDzy11fZQoaAZoCWgPQwiG6BA4ErFvQJSGlFKUaBVL0GgWR0CVh7V1Oj7AdX2UKGgGaAloD0MIyJi7llCjcUCUhpRSlGgVS91oFkdAlYnJhKDkEXV9lChoBmgJaA9DCCbHndJBKnJAlIaUUpRoFUvnaBZHQJWKm56MR6F1fZQoaAZoCWgPQwjLR1LSQ0lvQJSGlFKUaBVL12gWR0CVitHDrJKbdX2UKGgGaAloD0MIZD4g0NnmcECUhpRSlGgVS+ZoFkdAlYuAPAfuC3V9lChoBmgJaA9DCIKOVrUkc3BAlIaUUpRoFUvAaBZHQJWLiMOwxFl1fZQoaAZoCWgPQwgPuK6Y0dBzQJSGlFKUaBVL1mgWR0CVi8EXcgyNdX2UKGgGaAloD0MIb4Jvmr7DcECUhpRSlGgVS+5oFkdAlYyLoOhCdHV9lChoBmgJaA9DCK33G+34J3JAlIaUUpRoFUv+aBZHQJWNHoW56MR1fZQoaAZoCWgPQwgyrrg4qpBsQJSGlFKUaBVL42gWR0CVjVjL0SRKdX2UKGgGaAloD0MIFF0XfnAOYkCUhpRSlGgVTegDaBZHQJWNg8La24N1fZQoaAZoCWgPQwhS8X9H1NNwQJSGlFKUaBVNIAFoFkdAlY7gmReTmnV9lChoBmgJaA9DCLh3DfrSj25AlIaUUpRoFU0FAWgWR0CVjvxFy7wsdX2UKGgGaAloD0MIKxTpfs4RckCUhpRSlGgVS+ZoFkdAlZBi+Yc/+3V9lChoBmgJaA9DCBTpfk5ByG5AlIaUUpRoFUvVaBZHQJWQ4jX4CZF1fZQoaAZoCWgPQwjTiJl9nvpvQJSGlFKUaBVL1WgWR0CVkZKL876pdX2UKGgGaAloD0MIAvVm1PygbUCUhpRSlGgVS9ZoFkdAlZGiYw7DEXV9lChoBmgJaA9DCBQhdTv7X3BAlIaUUpRoFUveaBZHQJWSIHD76551fZQoaAZoCWgPQwhkkLsIU/1wQJSGlFKUaBVL8GgWR0CVk4rWRRuTdX2UKGgGaAloD0MIJ07ud+gVckCUhpRSlGgVTQQBaBZHQJWU19fCyhV1fZQoaAZoCWgPQwgabyu9tiNyQJSGlFKUaBVL/GgWR0CVlNhiLEUCdX2UKGgGaAloD0MIHlGhuvlrckCUhpRSlGgVS/xoFkdAlZUMYuTRpnV9lChoBmgJaA9DCIiBrn2Bz25AlIaUUpRoFUvpaBZHQJWWBcry1/l1fZQoaAZoCWgPQwjAzeLFQrVuQJSGlFKUaBVLvWgWR0CVllz5XU6QdX2UKGgGaAloD0MI9vBloogSYkCUhpRSlGgVTegDaBZHQJWWiE6DGtJ1fZQoaAZoCWgPQwggCmZMwdRiQJSGlFKUaBVN6ANoFkdAlZaYYBNmDnV9lChoBmgJaA9DCMi1oWJcbnJAlIaUUpRoFUv7aBZHQJWWu/oJRfp1fZQoaAZoCWgPQwgMIlLTrsNtQJSGlFKUaBVLxWgWR0CVl7hpg1FZdX2UKGgGaAloD0MIOWBXkyeYcUCUhpRSlGgVS/RoFkdAlZk8MqjJuHV9lChoBmgJaA9DCP6bFyd+THBAlIaUUpRoFUvzaBZHQJWbbD1oQFt1fZQoaAZoCWgPQwhLd9fZEEpxQJSGlFKUaBVL8GgWR0CVnNMB6rvLdX2UKGgGaAloD0MI2xZlNshWcUCUhpRSlGgVS9poFkdAlZ3HRCx/u3V9lChoBmgJaA9DCIcVbvkItnBAlIaUUpRoFU1eAWgWR0CVndKohpxndX2UKGgGaAloD0MImfG20isLckCUhpRSlGgVS9xoFkdAlZ5dZq20A3V9lChoBmgJaA9DCGfzOAxmB2BAlIaUUpRoFU3oA2gWR0CVntUmD15CdX2UKGgGaAloD0MI96xrtNzWcECUhpRSlGgVTS0BaBZHQJWfNGb1AZ91fZQoaAZoCWgPQwg0FHe8iYBzQJSGlFKUaBVL/WgWR0CVn18gZCOWdX2UKGgGaAloD0MIVcITen0ecECUhpRSlGgVS9xoFkdAlZ+hJ2+wknV9lChoBmgJaA9DCMMMjSeC0mJAlIaUUpRoFU3oA2gWR0CVoMxH5JsgdX2UKGgGaAloD0MIfo/665XPbkCUhpRSlGgVS+NoFkdAlaFuMAFPi3V9lChoBmgJaA9DCNWXpZ0aOGxAlIaUUpRoFUvaaBZHQJWjIl8gIQh1fZQoaAZoCWgPQwjedTbkn6BxQJSGlFKUaBVLt2gWR0CVo/i9Zid8dX2UKGgGaAloD0MIUvF/R1RqckCUhpRSlGgVS+FoFkdAlaV2HYYixHV9lChoBmgJaA9DCCidSDAVOHJAlIaUUpRoFU0IAWgWR0CVpfZAprk9dX2UKGgGaAloD0MIdAzIXm+hb0CUhpRSlGgVS+doFkdAlaYjS1E3KnV9lChoBmgJaA9DCGGL3T4rrW1AlIaUUpRoFUvcaBZHQJWmNKyv9tN1fZQoaAZoCWgPQwjsZ7EUCUtyQJSGlFKUaBVL8WgWR0CVp3v9tMwldX2UKGgGaAloD0MIcalKW1wCcUCUhpRSlGgVS/1oFkdAlagwhwEQoXV9lChoBmgJaA9DCCo6ksv/mG5AlIaUUpRoFUvWaBZHQJWoy5AhStN1fZQoaAZoCWgPQwhGRZxO8n9yQJSGlFKUaBVL9GgWR0CVqSaMJhOQdX2UKGgGaAloD0MIgxYSMLprXUCUhpRSlGgVTegDaBZHQJWrVndweeZ1fZQoaAZoCWgPQwjaVN0jG1NxQJSGlFKUaBVL8mgWR0CVq7A31jAjdX2UKGgGaAloD0MIuqKUECz/b0CUhpRSlGgVS+BoFkdAlavr9If8uXV9lChoBmgJaA9DCA4w8x28GXFAlIaUUpRoFUvGaBZHQJWtK44Ia991fZQoaAZoCWgPQwg9f9qoTvhvQJSGlFKUaBVL52gWR0CVrZGn4wh4dX2UKGgGaAloD0MIQ/8EF+uXcUCUhpRSlGgVS71oFkdAla+0mQbMo3V9lChoBmgJaA9DCLmNBvCWMnFAlIaUUpRoFUvKaBZHQJWvzr5ZbIN1fZQoaAZoCWgPQwj0+SgjLsRyQJSGlFKUaBVNFwFoFkdAla/g4wRGt3V9lChoBmgJaA9DCOIBZVMuaHJAlIaUUpRoFUv6aBZHQJWwLRoh6jZ1fZQoaAZoCWgPQwgCLsiW5dFXQJSGlFKUaBVN6ANoFkdAlbLscyWRinV9lChoBmgJaA9DCDVj0XR2qm9AlIaUUpRoFU0CAWgWR0CVtPOtGNJfdX2UKGgGaAloD0MIhXzQsxmMcUCUhpRSlGgVTTQBaBZHQJW2OWom5Ud1fZQoaAZoCWgPQwghyazeIW9xQJSGlFKUaBVL8mgWR0CVtkPkaMrFdX2UKGgGaAloD0MI8YEd/wVmckCUhpRSlGgVS8NoFkdAlbbtDMNc4nV9lChoBmgJaA9DCB+fkJ23HF9AlIaUUpRoFU3oA2gWR0CVt9bor4FidX2UKGgGaAloD0MIzT/6Jk2KX0CUhpRSlGgVTegDaBZHQJW46JHiFTN1fZQoaAZoCWgPQwjq6SPwh1peQJSGlFKUaBVN6ANoFkdAlblkd7v5QHV9lChoBmgJaA9DCOs4fqj0JXBAlIaUUpRoFU0QAWgWR0CVuYODJ2dNdX2UKGgGaAloD0MIBCDu6pXCckCUhpRSlGgVS/hoFkdAlbuWVqveQHV9lChoBmgJaA9DCPtd2JotBXJAlIaUUpRoFUvRaBZHQJW9Pj+717J1fZQoaAZoCWgPQwiWJqWgW/5wQJSGlFKUaBVL+2gWR0CVvZH6/IsAdX2UKGgGaAloD0MISgosgCkdcECUhpRSlGgVS+JoFkdAlb3ed9Ujs3V9lChoBmgJaA9DCPdY+tBFGnNAlIaUUpRoFUv0aBZHQJW/G0Xxe9l1fZQoaAZoCWgPQwhe9utOt19xQJSGlFKUaBVL3mgWR0CVvzR0U47zdX2UKGgGaAloD0MIAma+g59ZcECUhpRSlGgVS89oFkdAlcAj0163RXV9lChoBmgJaA9DCN7M6EfDCGJAlIaUUpRoFU3oA2gWR0CVwYrtE5QxdX2UKGgGaAloD0MITTCca9gac0CUhpRSlGgVTQ8BaBZHQJXBvDye7MB1fZQoaAZoCWgPQwh1riglRCFxQJSGlFKUaBVNEAFoFkdAlcJcyN4qw3V9lChoBmgJaA9DCMgjuJEyT29AlIaUUpRoFUvraBZHQJXDT1bqyGB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b2d49e028e2e87b57f897c4dce6c6ec916ffed2e246dc22c592dfa7f2919afc
|
3 |
+
size 84893
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94b1c34bc93a0ec282b423ef1a6b04d968c600ceb3cdfdaf9997445964de7a8c
|
3 |
+
size 43201
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 261.82 +/- 18.09
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17ff8c6710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17ff8c67a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17ff8c6830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17ff8c68c0>", "_build": "<function ActorCriticPolicy._build at 0x7f17ff8c6950>", "forward": "<function ActorCriticPolicy.forward at 0x7f17ff8c69e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17ff8c6a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f17ff8c6b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17ff8c6b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17ff8c6c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17ff8c6cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17ff90cdb0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652110003.5188959, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoTRD6PmUg/G64gPs1U9L4aR+o99undOQAAAAAAAAAAc3hTPpKZwjxFJFW+y/lOvjP6ij7cfUU+AAAAAAAAgD9GelU+G/n6vA6GmTsUJDW6YHlbvpLPCrsAAIA/AACAP+Z2dD2rWN89UG1nvhDyPb4ipI+9c+sdOwAAAAAAAAAAwJE+vuXnmj5IVRg+lwLKvvDSI718vqk8AAAAAAAAAABj8pi+9wGBP7I2Mb57QyK/lZtnvsaYnbsAAAAAAAAAAOB7Xj4qMhy98AEAuQVodjc6YIi+98E1OAAAgD8AAIA/+gBEvnYlYbzCpJK6Ufe4uADd1z3ftJU5AACAPwAAgD+acwO9GKy0PSpRCrs64X2+56MbPCOpXbsAAAAAAAAAABMPPD62IW280iuUO3aL1Lms0c69ovGrugAAgD8AAIA/81e1PeM0dD9Gtv49QjAWv4hvej2lYhs9AAAAAAAAAACTwUW+G5uJvFMCPDuWMHc511r8PVM8b7oAAIA/AACAP3rkIb7XNGK7X8yaPfC9GD136AE9zuj8vQAAgD8AAIA/s5wJPhfBoD/S+Bk/QMUGv7YWBz6/nkg+AAAAAAAAAABG2zE+hCqMPbxNvr2eNim+nRRiPGLLy7sAAAAAAAAAACDtTz4hg+i89h02Oy6Kx7lA402+UIZ2ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8l1KXfKccUCUhpRSlIwBbJRL3YwBdJRHQJUhIxTKkmB1fZQoaAZoCWgPQwgcJET5wkVwQJSGlFKUaBVL/2gWR0CVIawSamXPdX2UKGgGaAloD0MIHY6u0l1kY0CUhpRSlGgVTegDaBZHQJUjg+hXbM51fZQoaAZoCWgPQwi0PXrDPXdyQJSGlFKUaBVNEgFoFkdAlSOEgB91EHV9lChoBmgJaA9DCOAO1CmPi3BAlIaUUpRoFUv9aBZHQJUkXqSowVV1fZQoaAZoCWgPQwjohxHCY3FxQJSGlFKUaBVNNgFoFkdAlSRvvBrN4nV9lChoBmgJaA9DCN2XM9sV6jpAlIaUUpRoFUvhaBZHQJUlQh+vyLB1fZQoaAZoCWgPQwhfQgWHl7ZvQJSGlFKUaBVL0WgWR0CVJXblA/s3dX2UKGgGaAloD0MIT+rL0k5rb0CUhpRSlGgVS8poFkdAlSWi48U21nV9lChoBmgJaA9DCI5cN6V8cHBAlIaUUpRoFU0CAWgWR0CVgbugHu7ZdX2UKGgGaAloD0MI5A8GnntWYECUhpRSlGgVTegDaBZHQJWCHTTfBN51fZQoaAZoCWgPQwiRKLSs+2lyQJSGlFKUaBVNNQFoFkdAlYPLCN0eVHV9lChoBmgJaA9DCGDHf4GgnG9AlIaUUpRoFU0DAWgWR0CVhFakyk9EdX2UKGgGaAloD0MIQ48YPbcLcECUhpRSlGgVS9toFkdAlYUJdnkDIXV9lChoBmgJaA9DCOI8nMD0529AlIaUUpRoFUvjaBZHQJWFRnPE87p1fZQoaAZoCWgPQwhywoTRrM5CQJSGlFKUaBVLtmgWR0CVhgg/C66KdX2UKGgGaAloD0MIol7waU52c0CUhpRSlGgVTVEBaBZHQJWGJh3JPqN1fZQoaAZoCWgPQwhUck7sofdwQJSGlFKUaBVL5mgWR0CVhjxcE/0NdX2UKGgGaAloD0MID/EPW7qLcUCUhpRSlGgVS9FoFkdAlYZp5zHS4XV9lChoBmgJaA9DCEBpqFFIKWFAlIaUUpRoFU3oA2gWR0CVhvznied1dX2UKGgGaAloD0MIAfkSKjiWcECUhpRSlGgVTQsBaBZHQJWHI7uDzy11fZQoaAZoCWgPQwiG6BA4ErFvQJSGlFKUaBVL0GgWR0CVh7V1Oj7AdX2UKGgGaAloD0MIyJi7llCjcUCUhpRSlGgVS91oFkdAlYnJhKDkEXV9lChoBmgJaA9DCCbHndJBKnJAlIaUUpRoFUvnaBZHQJWKm56MR6F1fZQoaAZoCWgPQwjLR1LSQ0lvQJSGlFKUaBVL12gWR0CVitHDrJKbdX2UKGgGaAloD0MIZD4g0NnmcECUhpRSlGgVS+ZoFkdAlYuAPAfuC3V9lChoBmgJaA9DCIKOVrUkc3BAlIaUUpRoFUvAaBZHQJWLiMOwxFl1fZQoaAZoCWgPQwgPuK6Y0dBzQJSGlFKUaBVL1mgWR0CVi8EXcgyNdX2UKGgGaAloD0MIb4Jvmr7DcECUhpRSlGgVS+5oFkdAlYyLoOhCdHV9lChoBmgJaA9DCK33G+34J3JAlIaUUpRoFUv+aBZHQJWNHoW56MR1fZQoaAZoCWgPQwgyrrg4qpBsQJSGlFKUaBVL42gWR0CVjVjL0SRKdX2UKGgGaAloD0MIFF0XfnAOYkCUhpRSlGgVTegDaBZHQJWNg8La24N1fZQoaAZoCWgPQwhS8X9H1NNwQJSGlFKUaBVNIAFoFkdAlY7gmReTmnV9lChoBmgJaA9DCLh3DfrSj25AlIaUUpRoFU0FAWgWR0CVjvxFy7wsdX2UKGgGaAloD0MIKxTpfs4RckCUhpRSlGgVS+ZoFkdAlZBi+Yc/+3V9lChoBmgJaA9DCBTpfk5ByG5AlIaUUpRoFUvVaBZHQJWQ4jX4CZF1fZQoaAZoCWgPQwjTiJl9nvpvQJSGlFKUaBVL1WgWR0CVkZKL876pdX2UKGgGaAloD0MIAvVm1PygbUCUhpRSlGgVS9ZoFkdAlZGiYw7DEXV9lChoBmgJaA9DCBQhdTv7X3BAlIaUUpRoFUveaBZHQJWSIHD76551fZQoaAZoCWgPQwhkkLsIU/1wQJSGlFKUaBVL8GgWR0CVk4rWRRuTdX2UKGgGaAloD0MIJ07ud+gVckCUhpRSlGgVTQQBaBZHQJWU19fCyhV1fZQoaAZoCWgPQwgabyu9tiNyQJSGlFKUaBVL/GgWR0CVlNhiLEUCdX2UKGgGaAloD0MIHlGhuvlrckCUhpRSlGgVS/xoFkdAlZUMYuTRpnV9lChoBmgJaA9DCIiBrn2Bz25AlIaUUpRoFUvpaBZHQJWWBcry1/l1fZQoaAZoCWgPQwjAzeLFQrVuQJSGlFKUaBVLvWgWR0CVllz5XU6QdX2UKGgGaAloD0MI9vBloogSYkCUhpRSlGgVTegDaBZHQJWWiE6DGtJ1fZQoaAZoCWgPQwggCmZMwdRiQJSGlFKUaBVN6ANoFkdAlZaYYBNmDnV9lChoBmgJaA9DCMi1oWJcbnJAlIaUUpRoFUv7aBZHQJWWu/oJRfp1fZQoaAZoCWgPQwgMIlLTrsNtQJSGlFKUaBVLxWgWR0CVl7hpg1FZdX2UKGgGaAloD0MIOWBXkyeYcUCUhpRSlGgVS/RoFkdAlZk8MqjJuHV9lChoBmgJaA9DCP6bFyd+THBAlIaUUpRoFUvzaBZHQJWbbD1oQFt1fZQoaAZoCWgPQwhLd9fZEEpxQJSGlFKUaBVL8GgWR0CVnNMB6rvLdX2UKGgGaAloD0MI2xZlNshWcUCUhpRSlGgVS9poFkdAlZ3HRCx/u3V9lChoBmgJaA9DCIcVbvkItnBAlIaUUpRoFU1eAWgWR0CVndKohpxndX2UKGgGaAloD0MImfG20isLckCUhpRSlGgVS9xoFkdAlZ5dZq20A3V9lChoBmgJaA9DCGfzOAxmB2BAlIaUUpRoFU3oA2gWR0CVntUmD15CdX2UKGgGaAloD0MI96xrtNzWcECUhpRSlGgVTS0BaBZHQJWfNGb1AZ91fZQoaAZoCWgPQwg0FHe8iYBzQJSGlFKUaBVL/WgWR0CVn18gZCOWdX2UKGgGaAloD0MIVcITen0ecECUhpRSlGgVS9xoFkdAlZ+hJ2+wknV9lChoBmgJaA9DCMMMjSeC0mJAlIaUUpRoFU3oA2gWR0CVoMxH5JsgdX2UKGgGaAloD0MIfo/665XPbkCUhpRSlGgVS+NoFkdAlaFuMAFPi3V9lChoBmgJaA9DCNWXpZ0aOGxAlIaUUpRoFUvaaBZHQJWjIl8gIQh1fZQoaAZoCWgPQwjedTbkn6BxQJSGlFKUaBVLt2gWR0CVo/i9Zid8dX2UKGgGaAloD0MIUvF/R1RqckCUhpRSlGgVS+FoFkdAlaV2HYYixHV9lChoBmgJaA9DCCidSDAVOHJAlIaUUpRoFU0IAWgWR0CVpfZAprk9dX2UKGgGaAloD0MIdAzIXm+hb0CUhpRSlGgVS+doFkdAlaYjS1E3KnV9lChoBmgJaA9DCGGL3T4rrW1AlIaUUpRoFUvcaBZHQJWmNKyv9tN1fZQoaAZoCWgPQwjsZ7EUCUtyQJSGlFKUaBVL8WgWR0CVp3v9tMwldX2UKGgGaAloD0MIcalKW1wCcUCUhpRSlGgVS/1oFkdAlagwhwEQoXV9lChoBmgJaA9DCCo6ksv/mG5AlIaUUpRoFUvWaBZHQJWoy5AhStN1fZQoaAZoCWgPQwhGRZxO8n9yQJSGlFKUaBVL9GgWR0CVqSaMJhOQdX2UKGgGaAloD0MIgxYSMLprXUCUhpRSlGgVTegDaBZHQJWrVndweeZ1fZQoaAZoCWgPQwjaVN0jG1NxQJSGlFKUaBVL8mgWR0CVq7A31jAjdX2UKGgGaAloD0MIuqKUECz/b0CUhpRSlGgVS+BoFkdAlavr9If8uXV9lChoBmgJaA9DCA4w8x28GXFAlIaUUpRoFUvGaBZHQJWtK44Ia991fZQoaAZoCWgPQwg9f9qoTvhvQJSGlFKUaBVL52gWR0CVrZGn4wh4dX2UKGgGaAloD0MIQ/8EF+uXcUCUhpRSlGgVS71oFkdAla+0mQbMo3V9lChoBmgJaA9DCLmNBvCWMnFAlIaUUpRoFUvKaBZHQJWvzr5ZbIN1fZQoaAZoCWgPQwj0+SgjLsRyQJSGlFKUaBVNFwFoFkdAla/g4wRGt3V9lChoBmgJaA9DCOIBZVMuaHJAlIaUUpRoFUv6aBZHQJWwLRoh6jZ1fZQoaAZoCWgPQwgCLsiW5dFXQJSGlFKUaBVN6ANoFkdAlbLscyWRinV9lChoBmgJaA9DCDVj0XR2qm9AlIaUUpRoFU0CAWgWR0CVtPOtGNJfdX2UKGgGaAloD0MIhXzQsxmMcUCUhpRSlGgVTTQBaBZHQJW2OWom5Ud1fZQoaAZoCWgPQwghyazeIW9xQJSGlFKUaBVL8mgWR0CVtkPkaMrFdX2UKGgGaAloD0MI8YEd/wVmckCUhpRSlGgVS8NoFkdAlbbtDMNc4nV9lChoBmgJaA9DCB+fkJ23HF9AlIaUUpRoFU3oA2gWR0CVt9bor4FidX2UKGgGaAloD0MIzT/6Jk2KX0CUhpRSlGgVTegDaBZHQJW46JHiFTN1fZQoaAZoCWgPQwjq6SPwh1peQJSGlFKUaBVN6ANoFkdAlblkd7v5QHV9lChoBmgJaA9DCOs4fqj0JXBAlIaUUpRoFU0QAWgWR0CVuYODJ2dNdX2UKGgGaAloD0MIBCDu6pXCckCUhpRSlGgVS/hoFkdAlbuWVqveQHV9lChoBmgJaA9DCPtd2JotBXJAlIaUUpRoFUvRaBZHQJW9Pj+717J1fZQoaAZoCWgPQwiWJqWgW/5wQJSGlFKUaBVL+2gWR0CVvZH6/IsAdX2UKGgGaAloD0MISgosgCkdcECUhpRSlGgVS+JoFkdAlb3ed9Ujs3V9lChoBmgJaA9DCPdY+tBFGnNAlIaUUpRoFUv0aBZHQJW/G0Xxe9l1fZQoaAZoCWgPQwhe9utOt19xQJSGlFKUaBVL3mgWR0CVvzR0U47zdX2UKGgGaAloD0MIAma+g59ZcECUhpRSlGgVS89oFkdAlcAj0163RXV9lChoBmgJaA9DCN7M6EfDCGJAlIaUUpRoFU3oA2gWR0CVwYrtE5QxdX2UKGgGaAloD0MITTCca9gac0CUhpRSlGgVTQ8BaBZHQJXBvDye7MB1fZQoaAZoCWgPQwh1riglRCFxQJSGlFKUaBVNEAFoFkdAlcJcyN4qw3V9lChoBmgJaA9DCMgjuJEyT29AlIaUUpRoFUvraBZHQJXDT1bqyGB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cbffebd41651b62f02fe45ec4eb1b14d0930994b2514945bfd77aab9d2bfe3b
|
3 |
+
size 200922
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 261.81934618679406, "std_reward": 18.085554513628004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T15:59:49.919323"}
|