mmazuecos commited on
Commit
2968999
1 Parent(s): d834834

First commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfd737d07883ad47794eba89498f757371d6897cd040a4d71bdf010e89ee19bd
3
+ size 144025
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17ff8c6710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17ff8c67a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17ff8c6830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17ff8c68c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f17ff8c6950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f17ff8c69e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17ff8c6a70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f17ff8c6b00>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17ff8c6b90>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17ff8c6c20>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17ff8c6cb0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f17ff90cdb0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652110003.5188959,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoTRD6PmUg/G64gPs1U9L4aR+o99undOQAAAAAAAAAAc3hTPpKZwjxFJFW+y/lOvjP6ij7cfUU+AAAAAAAAgD9GelU+G/n6vA6GmTsUJDW6YHlbvpLPCrsAAIA/AACAP+Z2dD2rWN89UG1nvhDyPb4ipI+9c+sdOwAAAAAAAAAAwJE+vuXnmj5IVRg+lwLKvvDSI718vqk8AAAAAAAAAABj8pi+9wGBP7I2Mb57QyK/lZtnvsaYnbsAAAAAAAAAAOB7Xj4qMhy98AEAuQVodjc6YIi+98E1OAAAgD8AAIA/+gBEvnYlYbzCpJK6Ufe4uADd1z3ftJU5AACAPwAAgD+acwO9GKy0PSpRCrs64X2+56MbPCOpXbsAAAAAAAAAABMPPD62IW280iuUO3aL1Lms0c69ovGrugAAgD8AAIA/81e1PeM0dD9Gtv49QjAWv4hvej2lYhs9AAAAAAAAAACTwUW+G5uJvFMCPDuWMHc511r8PVM8b7oAAIA/AACAP3rkIb7XNGK7X8yaPfC9GD136AE9zuj8vQAAgD8AAIA/s5wJPhfBoD/S+Bk/QMUGv7YWBz6/nkg+AAAAAAAAAABG2zE+hCqMPbxNvr2eNim+nRRiPGLLy7sAAAAAAAAAACDtTz4hg+i89h02Oy6Kx7lA402+UIZ2ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8l1KXfKccUCUhpRSlIwBbJRL3YwBdJRHQJUhIxTKkmB1fZQoaAZoCWgPQwgcJET5wkVwQJSGlFKUaBVL/2gWR0CVIawSamXPdX2UKGgGaAloD0MIHY6u0l1kY0CUhpRSlGgVTegDaBZHQJUjg+hXbM51fZQoaAZoCWgPQwi0PXrDPXdyQJSGlFKUaBVNEgFoFkdAlSOEgB91EHV9lChoBmgJaA9DCOAO1CmPi3BAlIaUUpRoFUv9aBZHQJUkXqSowVV1fZQoaAZoCWgPQwjohxHCY3FxQJSGlFKUaBVNNgFoFkdAlSRvvBrN4nV9lChoBmgJaA9DCN2XM9sV6jpAlIaUUpRoFUvhaBZHQJUlQh+vyLB1fZQoaAZoCWgPQwhfQgWHl7ZvQJSGlFKUaBVL0WgWR0CVJXblA/s3dX2UKGgGaAloD0MIT+rL0k5rb0CUhpRSlGgVS8poFkdAlSWi48U21nV9lChoBmgJaA9DCI5cN6V8cHBAlIaUUpRoFU0CAWgWR0CVgbugHu7ZdX2UKGgGaAloD0MI5A8GnntWYECUhpRSlGgVTegDaBZHQJWCHTTfBN51fZQoaAZoCWgPQwiRKLSs+2lyQJSGlFKUaBVNNQFoFkdAlYPLCN0eVHV9lChoBmgJaA9DCGDHf4GgnG9AlIaUUpRoFU0DAWgWR0CVhFakyk9EdX2UKGgGaAloD0MIQ48YPbcLcECUhpRSlGgVS9toFkdAlYUJdnkDIXV9lChoBmgJaA9DCOI8nMD0529AlIaUUpRoFUvjaBZHQJWFRnPE87p1fZQoaAZoCWgPQwhywoTRrM5CQJSGlFKUaBVLtmgWR0CVhgg/C66KdX2UKGgGaAloD0MIol7waU52c0CUhpRSlGgVTVEBaBZHQJWGJh3JPqN1fZQoaAZoCWgPQwhUck7sofdwQJSGlFKUaBVL5mgWR0CVhjxcE/0NdX2UKGgGaAloD0MID/EPW7qLcUCUhpRSlGgVS9FoFkdAlYZp5zHS4XV9lChoBmgJaA9DCEBpqFFIKWFAlIaUUpRoFU3oA2gWR0CVhvznied1dX2UKGgGaAloD0MIAfkSKjiWcECUhpRSlGgVTQsBaBZHQJWHI7uDzy11fZQoaAZoCWgPQwiG6BA4ErFvQJSGlFKUaBVL0GgWR0CVh7V1Oj7AdX2UKGgGaAloD0MIyJi7llCjcUCUhpRSlGgVS91oFkdAlYnJhKDkEXV9lChoBmgJaA9DCCbHndJBKnJAlIaUUpRoFUvnaBZHQJWKm56MR6F1fZQoaAZoCWgPQwjLR1LSQ0lvQJSGlFKUaBVL12gWR0CVitHDrJKbdX2UKGgGaAloD0MIZD4g0NnmcECUhpRSlGgVS+ZoFkdAlYuAPAfuC3V9lChoBmgJaA9DCIKOVrUkc3BAlIaUUpRoFUvAaBZHQJWLiMOwxFl1fZQoaAZoCWgPQwgPuK6Y0dBzQJSGlFKUaBVL1mgWR0CVi8EXcgyNdX2UKGgGaAloD0MIb4Jvmr7DcECUhpRSlGgVS+5oFkdAlYyLoOhCdHV9lChoBmgJaA9DCK33G+34J3JAlIaUUpRoFUv+aBZHQJWNHoW56MR1fZQoaAZoCWgPQwgyrrg4qpBsQJSGlFKUaBVL42gWR0CVjVjL0SRKdX2UKGgGaAloD0MIFF0XfnAOYkCUhpRSlGgVTegDaBZHQJWNg8La24N1fZQoaAZoCWgPQwhS8X9H1NNwQJSGlFKUaBVNIAFoFkdAlY7gmReTmnV9lChoBmgJaA9DCLh3DfrSj25AlIaUUpRoFU0FAWgWR0CVjvxFy7wsdX2UKGgGaAloD0MIKxTpfs4RckCUhpRSlGgVS+ZoFkdAlZBi+Yc/+3V9lChoBmgJaA9DCBTpfk5ByG5AlIaUUpRoFUvVaBZHQJWQ4jX4CZF1fZQoaAZoCWgPQwjTiJl9nvpvQJSGlFKUaBVL1WgWR0CVkZKL876pdX2UKGgGaAloD0MIAvVm1PygbUCUhpRSlGgVS9ZoFkdAlZGiYw7DEXV9lChoBmgJaA9DCBQhdTv7X3BAlIaUUpRoFUveaBZHQJWSIHD76551fZQoaAZoCWgPQwhkkLsIU/1wQJSGlFKUaBVL8GgWR0CVk4rWRRuTdX2UKGgGaAloD0MIJ07ud+gVckCUhpRSlGgVTQQBaBZHQJWU19fCyhV1fZQoaAZoCWgPQwgabyu9tiNyQJSGlFKUaBVL/GgWR0CVlNhiLEUCdX2UKGgGaAloD0MIHlGhuvlrckCUhpRSlGgVS/xoFkdAlZUMYuTRpnV9lChoBmgJaA9DCIiBrn2Bz25AlIaUUpRoFUvpaBZHQJWWBcry1/l1fZQoaAZoCWgPQwjAzeLFQrVuQJSGlFKUaBVLvWgWR0CVllz5XU6QdX2UKGgGaAloD0MI9vBloogSYkCUhpRSlGgVTegDaBZHQJWWiE6DGtJ1fZQoaAZoCWgPQwggCmZMwdRiQJSGlFKUaBVN6ANoFkdAlZaYYBNmDnV9lChoBmgJaA9DCMi1oWJcbnJAlIaUUpRoFUv7aBZHQJWWu/oJRfp1fZQoaAZoCWgPQwgMIlLTrsNtQJSGlFKUaBVLxWgWR0CVl7hpg1FZdX2UKGgGaAloD0MIOWBXkyeYcUCUhpRSlGgVS/RoFkdAlZk8MqjJuHV9lChoBmgJaA9DCP6bFyd+THBAlIaUUpRoFUvzaBZHQJWbbD1oQFt1fZQoaAZoCWgPQwhLd9fZEEpxQJSGlFKUaBVL8GgWR0CVnNMB6rvLdX2UKGgGaAloD0MI2xZlNshWcUCUhpRSlGgVS9poFkdAlZ3HRCx/u3V9lChoBmgJaA9DCIcVbvkItnBAlIaUUpRoFU1eAWgWR0CVndKohpxndX2UKGgGaAloD0MImfG20isLckCUhpRSlGgVS9xoFkdAlZ5dZq20A3V9lChoBmgJaA9DCGfzOAxmB2BAlIaUUpRoFU3oA2gWR0CVntUmD15CdX2UKGgGaAloD0MI96xrtNzWcECUhpRSlGgVTS0BaBZHQJWfNGb1AZ91fZQoaAZoCWgPQwg0FHe8iYBzQJSGlFKUaBVL/WgWR0CVn18gZCOWdX2UKGgGaAloD0MIVcITen0ecECUhpRSlGgVS9xoFkdAlZ+hJ2+wknV9lChoBmgJaA9DCMMMjSeC0mJAlIaUUpRoFU3oA2gWR0CVoMxH5JsgdX2UKGgGaAloD0MIfo/665XPbkCUhpRSlGgVS+NoFkdAlaFuMAFPi3V9lChoBmgJaA9DCNWXpZ0aOGxAlIaUUpRoFUvaaBZHQJWjIl8gIQh1fZQoaAZoCWgPQwjedTbkn6BxQJSGlFKUaBVLt2gWR0CVo/i9Zid8dX2UKGgGaAloD0MIUvF/R1RqckCUhpRSlGgVS+FoFkdAlaV2HYYixHV9lChoBmgJaA9DCCidSDAVOHJAlIaUUpRoFU0IAWgWR0CVpfZAprk9dX2UKGgGaAloD0MIdAzIXm+hb0CUhpRSlGgVS+doFkdAlaYjS1E3KnV9lChoBmgJaA9DCGGL3T4rrW1AlIaUUpRoFUvcaBZHQJWmNKyv9tN1fZQoaAZoCWgPQwjsZ7EUCUtyQJSGlFKUaBVL8WgWR0CVp3v9tMwldX2UKGgGaAloD0MIcalKW1wCcUCUhpRSlGgVS/1oFkdAlagwhwEQoXV9lChoBmgJaA9DCCo6ksv/mG5AlIaUUpRoFUvWaBZHQJWoy5AhStN1fZQoaAZoCWgPQwhGRZxO8n9yQJSGlFKUaBVL9GgWR0CVqSaMJhOQdX2UKGgGaAloD0MIgxYSMLprXUCUhpRSlGgVTegDaBZHQJWrVndweeZ1fZQoaAZoCWgPQwjaVN0jG1NxQJSGlFKUaBVL8mgWR0CVq7A31jAjdX2UKGgGaAloD0MIuqKUECz/b0CUhpRSlGgVS+BoFkdAlavr9If8uXV9lChoBmgJaA9DCA4w8x28GXFAlIaUUpRoFUvGaBZHQJWtK44Ia991fZQoaAZoCWgPQwg9f9qoTvhvQJSGlFKUaBVL52gWR0CVrZGn4wh4dX2UKGgGaAloD0MIQ/8EF+uXcUCUhpRSlGgVS71oFkdAla+0mQbMo3V9lChoBmgJaA9DCLmNBvCWMnFAlIaUUpRoFUvKaBZHQJWvzr5ZbIN1fZQoaAZoCWgPQwj0+SgjLsRyQJSGlFKUaBVNFwFoFkdAla/g4wRGt3V9lChoBmgJaA9DCOIBZVMuaHJAlIaUUpRoFUv6aBZHQJWwLRoh6jZ1fZQoaAZoCWgPQwgCLsiW5dFXQJSGlFKUaBVN6ANoFkdAlbLscyWRinV9lChoBmgJaA9DCDVj0XR2qm9AlIaUUpRoFU0CAWgWR0CVtPOtGNJfdX2UKGgGaAloD0MIhXzQsxmMcUCUhpRSlGgVTTQBaBZHQJW2OWom5Ud1fZQoaAZoCWgPQwghyazeIW9xQJSGlFKUaBVL8mgWR0CVtkPkaMrFdX2UKGgGaAloD0MI8YEd/wVmckCUhpRSlGgVS8NoFkdAlbbtDMNc4nV9lChoBmgJaA9DCB+fkJ23HF9AlIaUUpRoFU3oA2gWR0CVt9bor4FidX2UKGgGaAloD0MIzT/6Jk2KX0CUhpRSlGgVTegDaBZHQJW46JHiFTN1fZQoaAZoCWgPQwjq6SPwh1peQJSGlFKUaBVN6ANoFkdAlblkd7v5QHV9lChoBmgJaA9DCOs4fqj0JXBAlIaUUpRoFU0QAWgWR0CVuYODJ2dNdX2UKGgGaAloD0MIBCDu6pXCckCUhpRSlGgVS/hoFkdAlbuWVqveQHV9lChoBmgJaA9DCPtd2JotBXJAlIaUUpRoFUvRaBZHQJW9Pj+717J1fZQoaAZoCWgPQwiWJqWgW/5wQJSGlFKUaBVL+2gWR0CVvZH6/IsAdX2UKGgGaAloD0MISgosgCkdcECUhpRSlGgVS+JoFkdAlb3ed9Ujs3V9lChoBmgJaA9DCPdY+tBFGnNAlIaUUpRoFUv0aBZHQJW/G0Xxe9l1fZQoaAZoCWgPQwhe9utOt19xQJSGlFKUaBVL3mgWR0CVvzR0U47zdX2UKGgGaAloD0MIAma+g59ZcECUhpRSlGgVS89oFkdAlcAj0163RXV9lChoBmgJaA9DCN7M6EfDCGJAlIaUUpRoFU3oA2gWR0CVwYrtE5QxdX2UKGgGaAloD0MITTCca9gac0CUhpRSlGgVTQ8BaBZHQJXBvDye7MB1fZQoaAZoCWgPQwh1riglRCFxQJSGlFKUaBVNEAFoFkdAlcJcyN4qw3V9lChoBmgJaA9DCMgjuJEyT29AlIaUUpRoFUvraBZHQJXDT1bqyGB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b2d49e028e2e87b57f897c4dce6c6ec916ffed2e246dc22c592dfa7f2919afc
3
+ size 84893
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94b1c34bc93a0ec282b423ef1a6b04d968c600ceb3cdfdaf9997445964de7a8c
3
+ size 43201
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 261.82 +/- 18.09
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17ff8c6710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17ff8c67a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17ff8c6830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17ff8c68c0>", "_build": "<function ActorCriticPolicy._build at 0x7f17ff8c6950>", "forward": "<function ActorCriticPolicy.forward at 0x7f17ff8c69e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17ff8c6a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f17ff8c6b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17ff8c6b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17ff8c6c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17ff8c6cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17ff90cdb0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652110003.5188959, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoTRD6PmUg/G64gPs1U9L4aR+o99undOQAAAAAAAAAAc3hTPpKZwjxFJFW+y/lOvjP6ij7cfUU+AAAAAAAAgD9GelU+G/n6vA6GmTsUJDW6YHlbvpLPCrsAAIA/AACAP+Z2dD2rWN89UG1nvhDyPb4ipI+9c+sdOwAAAAAAAAAAwJE+vuXnmj5IVRg+lwLKvvDSI718vqk8AAAAAAAAAABj8pi+9wGBP7I2Mb57QyK/lZtnvsaYnbsAAAAAAAAAAOB7Xj4qMhy98AEAuQVodjc6YIi+98E1OAAAgD8AAIA/+gBEvnYlYbzCpJK6Ufe4uADd1z3ftJU5AACAPwAAgD+acwO9GKy0PSpRCrs64X2+56MbPCOpXbsAAAAAAAAAABMPPD62IW280iuUO3aL1Lms0c69ovGrugAAgD8AAIA/81e1PeM0dD9Gtv49QjAWv4hvej2lYhs9AAAAAAAAAACTwUW+G5uJvFMCPDuWMHc511r8PVM8b7oAAIA/AACAP3rkIb7XNGK7X8yaPfC9GD136AE9zuj8vQAAgD8AAIA/s5wJPhfBoD/S+Bk/QMUGv7YWBz6/nkg+AAAAAAAAAABG2zE+hCqMPbxNvr2eNim+nRRiPGLLy7sAAAAAAAAAACDtTz4hg+i89h02Oy6Kx7lA402+UIZ2ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8l1KXfKccUCUhpRSlIwBbJRL3YwBdJRHQJUhIxTKkmB1fZQoaAZoCWgPQwgcJET5wkVwQJSGlFKUaBVL/2gWR0CVIawSamXPdX2UKGgGaAloD0MIHY6u0l1kY0CUhpRSlGgVTegDaBZHQJUjg+hXbM51fZQoaAZoCWgPQwi0PXrDPXdyQJSGlFKUaBVNEgFoFkdAlSOEgB91EHV9lChoBmgJaA9DCOAO1CmPi3BAlIaUUpRoFUv9aBZHQJUkXqSowVV1fZQoaAZoCWgPQwjohxHCY3FxQJSGlFKUaBVNNgFoFkdAlSRvvBrN4nV9lChoBmgJaA9DCN2XM9sV6jpAlIaUUpRoFUvhaBZHQJUlQh+vyLB1fZQoaAZoCWgPQwhfQgWHl7ZvQJSGlFKUaBVL0WgWR0CVJXblA/s3dX2UKGgGaAloD0MIT+rL0k5rb0CUhpRSlGgVS8poFkdAlSWi48U21nV9lChoBmgJaA9DCI5cN6V8cHBAlIaUUpRoFU0CAWgWR0CVgbugHu7ZdX2UKGgGaAloD0MI5A8GnntWYECUhpRSlGgVTegDaBZHQJWCHTTfBN51fZQoaAZoCWgPQwiRKLSs+2lyQJSGlFKUaBVNNQFoFkdAlYPLCN0eVHV9lChoBmgJaA9DCGDHf4GgnG9AlIaUUpRoFU0DAWgWR0CVhFakyk9EdX2UKGgGaAloD0MIQ48YPbcLcECUhpRSlGgVS9toFkdAlYUJdnkDIXV9lChoBmgJaA9DCOI8nMD0529AlIaUUpRoFUvjaBZHQJWFRnPE87p1fZQoaAZoCWgPQwhywoTRrM5CQJSGlFKUaBVLtmgWR0CVhgg/C66KdX2UKGgGaAloD0MIol7waU52c0CUhpRSlGgVTVEBaBZHQJWGJh3JPqN1fZQoaAZoCWgPQwhUck7sofdwQJSGlFKUaBVL5mgWR0CVhjxcE/0NdX2UKGgGaAloD0MID/EPW7qLcUCUhpRSlGgVS9FoFkdAlYZp5zHS4XV9lChoBmgJaA9DCEBpqFFIKWFAlIaUUpRoFU3oA2gWR0CVhvznied1dX2UKGgGaAloD0MIAfkSKjiWcECUhpRSlGgVTQsBaBZHQJWHI7uDzy11fZQoaAZoCWgPQwiG6BA4ErFvQJSGlFKUaBVL0GgWR0CVh7V1Oj7AdX2UKGgGaAloD0MIyJi7llCjcUCUhpRSlGgVS91oFkdAlYnJhKDkEXV9lChoBmgJaA9DCCbHndJBKnJAlIaUUpRoFUvnaBZHQJWKm56MR6F1fZQoaAZoCWgPQwjLR1LSQ0lvQJSGlFKUaBVL12gWR0CVitHDrJKbdX2UKGgGaAloD0MIZD4g0NnmcECUhpRSlGgVS+ZoFkdAlYuAPAfuC3V9lChoBmgJaA9DCIKOVrUkc3BAlIaUUpRoFUvAaBZHQJWLiMOwxFl1fZQoaAZoCWgPQwgPuK6Y0dBzQJSGlFKUaBVL1mgWR0CVi8EXcgyNdX2UKGgGaAloD0MIb4Jvmr7DcECUhpRSlGgVS+5oFkdAlYyLoOhCdHV9lChoBmgJaA9DCK33G+34J3JAlIaUUpRoFUv+aBZHQJWNHoW56MR1fZQoaAZoCWgPQwgyrrg4qpBsQJSGlFKUaBVL42gWR0CVjVjL0SRKdX2UKGgGaAloD0MIFF0XfnAOYkCUhpRSlGgVTegDaBZHQJWNg8La24N1fZQoaAZoCWgPQwhS8X9H1NNwQJSGlFKUaBVNIAFoFkdAlY7gmReTmnV9lChoBmgJaA9DCLh3DfrSj25AlIaUUpRoFU0FAWgWR0CVjvxFy7wsdX2UKGgGaAloD0MIKxTpfs4RckCUhpRSlGgVS+ZoFkdAlZBi+Yc/+3V9lChoBmgJaA9DCBTpfk5ByG5AlIaUUpRoFUvVaBZHQJWQ4jX4CZF1fZQoaAZoCWgPQwjTiJl9nvpvQJSGlFKUaBVL1WgWR0CVkZKL876pdX2UKGgGaAloD0MIAvVm1PygbUCUhpRSlGgVS9ZoFkdAlZGiYw7DEXV9lChoBmgJaA9DCBQhdTv7X3BAlIaUUpRoFUveaBZHQJWSIHD76551fZQoaAZoCWgPQwhkkLsIU/1wQJSGlFKUaBVL8GgWR0CVk4rWRRuTdX2UKGgGaAloD0MIJ07ud+gVckCUhpRSlGgVTQQBaBZHQJWU19fCyhV1fZQoaAZoCWgPQwgabyu9tiNyQJSGlFKUaBVL/GgWR0CVlNhiLEUCdX2UKGgGaAloD0MIHlGhuvlrckCUhpRSlGgVS/xoFkdAlZUMYuTRpnV9lChoBmgJaA9DCIiBrn2Bz25AlIaUUpRoFUvpaBZHQJWWBcry1/l1fZQoaAZoCWgPQwjAzeLFQrVuQJSGlFKUaBVLvWgWR0CVllz5XU6QdX2UKGgGaAloD0MI9vBloogSYkCUhpRSlGgVTegDaBZHQJWWiE6DGtJ1fZQoaAZoCWgPQwggCmZMwdRiQJSGlFKUaBVN6ANoFkdAlZaYYBNmDnV9lChoBmgJaA9DCMi1oWJcbnJAlIaUUpRoFUv7aBZHQJWWu/oJRfp1fZQoaAZoCWgPQwgMIlLTrsNtQJSGlFKUaBVLxWgWR0CVl7hpg1FZdX2UKGgGaAloD0MIOWBXkyeYcUCUhpRSlGgVS/RoFkdAlZk8MqjJuHV9lChoBmgJaA9DCP6bFyd+THBAlIaUUpRoFUvzaBZHQJWbbD1oQFt1fZQoaAZoCWgPQwhLd9fZEEpxQJSGlFKUaBVL8GgWR0CVnNMB6rvLdX2UKGgGaAloD0MI2xZlNshWcUCUhpRSlGgVS9poFkdAlZ3HRCx/u3V9lChoBmgJaA9DCIcVbvkItnBAlIaUUpRoFU1eAWgWR0CVndKohpxndX2UKGgGaAloD0MImfG20isLckCUhpRSlGgVS9xoFkdAlZ5dZq20A3V9lChoBmgJaA9DCGfzOAxmB2BAlIaUUpRoFU3oA2gWR0CVntUmD15CdX2UKGgGaAloD0MI96xrtNzWcECUhpRSlGgVTS0BaBZHQJWfNGb1AZ91fZQoaAZoCWgPQwg0FHe8iYBzQJSGlFKUaBVL/WgWR0CVn18gZCOWdX2UKGgGaAloD0MIVcITen0ecECUhpRSlGgVS9xoFkdAlZ+hJ2+wknV9lChoBmgJaA9DCMMMjSeC0mJAlIaUUpRoFU3oA2gWR0CVoMxH5JsgdX2UKGgGaAloD0MIfo/665XPbkCUhpRSlGgVS+NoFkdAlaFuMAFPi3V9lChoBmgJaA9DCNWXpZ0aOGxAlIaUUpRoFUvaaBZHQJWjIl8gIQh1fZQoaAZoCWgPQwjedTbkn6BxQJSGlFKUaBVLt2gWR0CVo/i9Zid8dX2UKGgGaAloD0MIUvF/R1RqckCUhpRSlGgVS+FoFkdAlaV2HYYixHV9lChoBmgJaA9DCCidSDAVOHJAlIaUUpRoFU0IAWgWR0CVpfZAprk9dX2UKGgGaAloD0MIdAzIXm+hb0CUhpRSlGgVS+doFkdAlaYjS1E3KnV9lChoBmgJaA9DCGGL3T4rrW1AlIaUUpRoFUvcaBZHQJWmNKyv9tN1fZQoaAZoCWgPQwjsZ7EUCUtyQJSGlFKUaBVL8WgWR0CVp3v9tMwldX2UKGgGaAloD0MIcalKW1wCcUCUhpRSlGgVS/1oFkdAlagwhwEQoXV9lChoBmgJaA9DCCo6ksv/mG5AlIaUUpRoFUvWaBZHQJWoy5AhStN1fZQoaAZoCWgPQwhGRZxO8n9yQJSGlFKUaBVL9GgWR0CVqSaMJhOQdX2UKGgGaAloD0MIgxYSMLprXUCUhpRSlGgVTegDaBZHQJWrVndweeZ1fZQoaAZoCWgPQwjaVN0jG1NxQJSGlFKUaBVL8mgWR0CVq7A31jAjdX2UKGgGaAloD0MIuqKUECz/b0CUhpRSlGgVS+BoFkdAlavr9If8uXV9lChoBmgJaA9DCA4w8x28GXFAlIaUUpRoFUvGaBZHQJWtK44Ia991fZQoaAZoCWgPQwg9f9qoTvhvQJSGlFKUaBVL52gWR0CVrZGn4wh4dX2UKGgGaAloD0MIQ/8EF+uXcUCUhpRSlGgVS71oFkdAla+0mQbMo3V9lChoBmgJaA9DCLmNBvCWMnFAlIaUUpRoFUvKaBZHQJWvzr5ZbIN1fZQoaAZoCWgPQwj0+SgjLsRyQJSGlFKUaBVNFwFoFkdAla/g4wRGt3V9lChoBmgJaA9DCOIBZVMuaHJAlIaUUpRoFUv6aBZHQJWwLRoh6jZ1fZQoaAZoCWgPQwgCLsiW5dFXQJSGlFKUaBVN6ANoFkdAlbLscyWRinV9lChoBmgJaA9DCDVj0XR2qm9AlIaUUpRoFU0CAWgWR0CVtPOtGNJfdX2UKGgGaAloD0MIhXzQsxmMcUCUhpRSlGgVTTQBaBZHQJW2OWom5Ud1fZQoaAZoCWgPQwghyazeIW9xQJSGlFKUaBVL8mgWR0CVtkPkaMrFdX2UKGgGaAloD0MI8YEd/wVmckCUhpRSlGgVS8NoFkdAlbbtDMNc4nV9lChoBmgJaA9DCB+fkJ23HF9AlIaUUpRoFU3oA2gWR0CVt9bor4FidX2UKGgGaAloD0MIzT/6Jk2KX0CUhpRSlGgVTegDaBZHQJW46JHiFTN1fZQoaAZoCWgPQwjq6SPwh1peQJSGlFKUaBVN6ANoFkdAlblkd7v5QHV9lChoBmgJaA9DCOs4fqj0JXBAlIaUUpRoFU0QAWgWR0CVuYODJ2dNdX2UKGgGaAloD0MIBCDu6pXCckCUhpRSlGgVS/hoFkdAlbuWVqveQHV9lChoBmgJaA9DCPtd2JotBXJAlIaUUpRoFUvRaBZHQJW9Pj+717J1fZQoaAZoCWgPQwiWJqWgW/5wQJSGlFKUaBVL+2gWR0CVvZH6/IsAdX2UKGgGaAloD0MISgosgCkdcECUhpRSlGgVS+JoFkdAlb3ed9Ujs3V9lChoBmgJaA9DCPdY+tBFGnNAlIaUUpRoFUv0aBZHQJW/G0Xxe9l1fZQoaAZoCWgPQwhe9utOt19xQJSGlFKUaBVL3mgWR0CVvzR0U47zdX2UKGgGaAloD0MIAma+g59ZcECUhpRSlGgVS89oFkdAlcAj0163RXV9lChoBmgJaA9DCN7M6EfDCGJAlIaUUpRoFU3oA2gWR0CVwYrtE5QxdX2UKGgGaAloD0MITTCca9gac0CUhpRSlGgVTQ8BaBZHQJXBvDye7MB1fZQoaAZoCWgPQwh1riglRCFxQJSGlFKUaBVNEAFoFkdAlcJcyN4qw3V9lChoBmgJaA9DCMgjuJEyT29AlIaUUpRoFUvraBZHQJXDT1bqyGB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cbffebd41651b62f02fe45ec4eb1b14d0930994b2514945bfd77aab9d2bfe3b
3
+ size 200922
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.81934618679406, "std_reward": 18.085554513628004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T15:59:49.919323"}