update model card README.md
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ model-index:
|
|
20 |
- name: Accuracy
|
21 |
type: accuracy
|
22 |
value:
|
23 |
-
accuracy:
|
24 |
- name: F1
|
25 |
type: f1
|
26 |
value:
|
27 |
-
f1:
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -34,9 +34,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
34 |
|
35 |
This model is a fine-tuned version of [](https://huggingface.co/) on the preprocessed1024_config dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
-
- Loss: 0.
|
38 |
-
- Accuracy: {'accuracy':
|
39 |
-
- F1: {'f1':
|
40 |
|
41 |
## Model description
|
42 |
|
@@ -65,18 +65,18 @@ The following hyperparameters were used during training:
|
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy
|
69 |
-
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
|
81 |
|
82 |
### Framework versions
|
|
|
20 |
- name: Accuracy
|
21 |
type: accuracy
|
22 |
value:
|
23 |
+
accuracy: 0.12185929648241206
|
24 |
- name: F1
|
25 |
type: f1
|
26 |
value:
|
27 |
+
f1: 0.05431131019036954
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
34 |
|
35 |
This model is a fine-tuned version of [](https://huggingface.co/) on the preprocessed1024_config dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.0275
|
38 |
+
- Accuracy: {'accuracy': 0.12185929648241206}
|
39 |
+
- F1: {'f1': 0.05431131019036954}
|
40 |
|
41 |
## Model description
|
42 |
|
|
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------:|:----------------------------:|
|
70 |
+
| 0.0233 | 1.0 | 796 | 0.0269 | {'accuracy': 0.042085427135678394} | {'f1': 0.02019288728149488} |
|
71 |
+
| 0.0202 | 2.0 | 1592 | 0.0250 | {'accuracy': 0.09610552763819095} | {'f1': 0.043839541547277934} |
|
72 |
+
| 0.0183 | 3.0 | 2388 | 0.0248 | {'accuracy': 0.07977386934673367} | {'f1': 0.036940081442699245} |
|
73 |
+
| 0.0163 | 4.0 | 3184 | 0.0259 | {'accuracy': 0.17022613065326633} | {'f1': 0.07273215244229736} |
|
74 |
+
| 0.0144 | 5.0 | 3980 | 0.0258 | {'accuracy': 0.146356783919598} | {'f1': 0.06383561643835617} |
|
75 |
+
| 0.0117 | 6.0 | 4776 | 0.0249 | {'accuracy': 0.0992462311557789} | {'f1': 0.045142857142857144} |
|
76 |
+
| 0.0105 | 7.0 | 5572 | 0.0256 | {'accuracy': 0.10238693467336683} | {'f1': 0.04643874643874644} |
|
77 |
+
| 0.0084 | 8.0 | 6368 | 0.0261 | {'accuracy': 0.12185929648241206} | {'f1': 0.05431131019036954} |
|
78 |
+
| 0.0071 | 9.0 | 7164 | 0.0270 | {'accuracy': 0.10238693467336683} | {'f1': 0.04643874643874644} |
|
79 |
+
| 0.0065 | 10.0 | 7960 | 0.0275 | {'accuracy': 0.12185929648241206} | {'f1': 0.05431131019036954} |
|
80 |
|
81 |
|
82 |
### Framework versions
|