|
""" |
|
Computational functions for interval arithmetic. |
|
|
|
""" |
|
|
|
from .backend import xrange |
|
|
|
from .libmpf import ( |
|
ComplexResult, |
|
round_down, round_up, round_floor, round_ceiling, round_nearest, |
|
prec_to_dps, repr_dps, dps_to_prec, |
|
bitcount, |
|
from_float, |
|
fnan, finf, fninf, fzero, fhalf, fone, fnone, |
|
mpf_sign, mpf_lt, mpf_le, mpf_gt, mpf_ge, mpf_eq, mpf_cmp, |
|
mpf_min_max, |
|
mpf_floor, from_int, to_int, to_str, from_str, |
|
mpf_abs, mpf_neg, mpf_pos, mpf_add, mpf_sub, mpf_mul, mpf_mul_int, |
|
mpf_div, mpf_shift, mpf_pow_int, |
|
from_man_exp, MPZ_ONE) |
|
|
|
from .libelefun import ( |
|
mpf_log, mpf_exp, mpf_sqrt, mpf_atan, mpf_atan2, |
|
mpf_pi, mod_pi2, mpf_cos_sin |
|
) |
|
|
|
from .gammazeta import mpf_gamma, mpf_rgamma, mpf_loggamma, mpc_loggamma |
|
|
|
def mpi_str(s, prec): |
|
sa, sb = s |
|
dps = prec_to_dps(prec) + 5 |
|
return "[%s, %s]" % (to_str(sa, dps), to_str(sb, dps)) |
|
|
|
|
|
|
|
|
|
|
|
mpi_zero = (fzero, fzero) |
|
mpi_one = (fone, fone) |
|
|
|
def mpi_eq(s, t): |
|
return s == t |
|
|
|
def mpi_ne(s, t): |
|
return s != t |
|
|
|
def mpi_lt(s, t): |
|
sa, sb = s |
|
ta, tb = t |
|
if mpf_lt(sb, ta): return True |
|
if mpf_ge(sa, tb): return False |
|
return None |
|
|
|
def mpi_le(s, t): |
|
sa, sb = s |
|
ta, tb = t |
|
if mpf_le(sb, ta): return True |
|
if mpf_gt(sa, tb): return False |
|
return None |
|
|
|
def mpi_gt(s, t): return mpi_lt(t, s) |
|
def mpi_ge(s, t): return mpi_le(t, s) |
|
|
|
def mpi_add(s, t, prec=0): |
|
sa, sb = s |
|
ta, tb = t |
|
a = mpf_add(sa, ta, prec, round_floor) |
|
b = mpf_add(sb, tb, prec, round_ceiling) |
|
if a == fnan: a = fninf |
|
if b == fnan: b = finf |
|
return a, b |
|
|
|
def mpi_sub(s, t, prec=0): |
|
sa, sb = s |
|
ta, tb = t |
|
a = mpf_sub(sa, tb, prec, round_floor) |
|
b = mpf_sub(sb, ta, prec, round_ceiling) |
|
if a == fnan: a = fninf |
|
if b == fnan: b = finf |
|
return a, b |
|
|
|
def mpi_delta(s, prec): |
|
sa, sb = s |
|
return mpf_sub(sb, sa, prec, round_up) |
|
|
|
def mpi_mid(s, prec): |
|
sa, sb = s |
|
return mpf_shift(mpf_add(sa, sb, prec, round_nearest), -1) |
|
|
|
def mpi_pos(s, prec): |
|
sa, sb = s |
|
a = mpf_pos(sa, prec, round_floor) |
|
b = mpf_pos(sb, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_neg(s, prec=0): |
|
sa, sb = s |
|
a = mpf_neg(sb, prec, round_floor) |
|
b = mpf_neg(sa, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_abs(s, prec=0): |
|
sa, sb = s |
|
sas = mpf_sign(sa) |
|
sbs = mpf_sign(sb) |
|
|
|
if sas >= 0: |
|
a = mpf_pos(sa, prec, round_floor) |
|
b = mpf_pos(sb, prec, round_ceiling) |
|
|
|
elif sbs >= 0: |
|
a = fzero |
|
negsa = mpf_neg(sa) |
|
if mpf_lt(negsa, sb): |
|
b = mpf_pos(sb, prec, round_ceiling) |
|
else: |
|
b = mpf_pos(negsa, prec, round_ceiling) |
|
|
|
else: |
|
a = mpf_neg(sb, prec, round_floor) |
|
b = mpf_neg(sa, prec, round_ceiling) |
|
return a, b |
|
|
|
|
|
def mpi_mul_mpf(s, t, prec): |
|
return mpi_mul(s, (t, t), prec) |
|
|
|
def mpi_div_mpf(s, t, prec): |
|
return mpi_div(s, (t, t), prec) |
|
|
|
def mpi_mul(s, t, prec=0): |
|
sa, sb = s |
|
ta, tb = t |
|
sas = mpf_sign(sa) |
|
sbs = mpf_sign(sb) |
|
tas = mpf_sign(ta) |
|
tbs = mpf_sign(tb) |
|
if sas == sbs == 0: |
|
|
|
if ta == fninf or tb == finf: |
|
return fninf, finf |
|
return fzero, fzero |
|
if tas == tbs == 0: |
|
|
|
if sa == fninf or sb == finf: |
|
return fninf, finf |
|
return fzero, fzero |
|
if sas >= 0: |
|
|
|
if tas >= 0: |
|
a = mpf_mul(sa, ta, prec, round_floor) |
|
b = mpf_mul(sb, tb, prec, round_ceiling) |
|
if a == fnan: a = fzero |
|
if b == fnan: b = finf |
|
|
|
elif tbs <= 0: |
|
a = mpf_mul(sb, ta, prec, round_floor) |
|
b = mpf_mul(sa, tb, prec, round_ceiling) |
|
if a == fnan: a = fninf |
|
if b == fnan: b = fzero |
|
|
|
else: |
|
a = mpf_mul(sb, ta, prec, round_floor) |
|
b = mpf_mul(sb, tb, prec, round_ceiling) |
|
if a == fnan: a = fninf |
|
if b == fnan: b = finf |
|
elif sbs <= 0: |
|
|
|
if tas >= 0: |
|
a = mpf_mul(sa, tb, prec, round_floor) |
|
b = mpf_mul(sb, ta, prec, round_ceiling) |
|
if a == fnan: a = fninf |
|
if b == fnan: b = fzero |
|
|
|
elif tbs <= 0: |
|
a = mpf_mul(sb, tb, prec, round_floor) |
|
b = mpf_mul(sa, ta, prec, round_ceiling) |
|
if a == fnan: a = fzero |
|
if b == fnan: b = finf |
|
|
|
else: |
|
a = mpf_mul(sa, tb, prec, round_floor) |
|
b = mpf_mul(sa, ta, prec, round_ceiling) |
|
if a == fnan: a = fninf |
|
if b == fnan: b = finf |
|
else: |
|
|
|
|
|
|
|
cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)] |
|
if fnan in cases: |
|
a, b = (fninf, finf) |
|
else: |
|
a, b = mpf_min_max(cases) |
|
a = mpf_pos(a, prec, round_floor) |
|
b = mpf_pos(b, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_square(s, prec=0): |
|
sa, sb = s |
|
if mpf_ge(sa, fzero): |
|
a = mpf_mul(sa, sa, prec, round_floor) |
|
b = mpf_mul(sb, sb, prec, round_ceiling) |
|
elif mpf_le(sb, fzero): |
|
a = mpf_mul(sb, sb, prec, round_floor) |
|
b = mpf_mul(sa, sa, prec, round_ceiling) |
|
else: |
|
sa = mpf_neg(sa) |
|
sa, sb = mpf_min_max([sa, sb]) |
|
a = fzero |
|
b = mpf_mul(sb, sb, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_div(s, t, prec): |
|
sa, sb = s |
|
ta, tb = t |
|
sas = mpf_sign(sa) |
|
sbs = mpf_sign(sb) |
|
tas = mpf_sign(ta) |
|
tbs = mpf_sign(tb) |
|
|
|
if sas == sbs == 0: |
|
|
|
if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0): |
|
return fninf, finf |
|
return fzero, fzero |
|
|
|
|
|
|
|
if tas < 0 and tbs > 0: |
|
return fninf, finf |
|
|
|
if tas < 0: |
|
return mpi_div(mpi_neg(s), mpi_neg(t), prec) |
|
|
|
|
|
if tas == 0: |
|
|
|
if sas < 0 and sbs > 0: |
|
return fninf, finf |
|
if tas == tbs: |
|
return fninf, finf |
|
|
|
if sas >= 0: |
|
a = mpf_div(sa, tb, prec, round_floor) |
|
b = finf |
|
if sbs <= 0: |
|
a = fninf |
|
b = mpf_div(sb, tb, prec, round_ceiling) |
|
|
|
|
|
else: |
|
|
|
if sas >= 0: |
|
a = mpf_div(sa, tb, prec, round_floor) |
|
b = mpf_div(sb, ta, prec, round_ceiling) |
|
if a == fnan: a = fzero |
|
if b == fnan: b = finf |
|
|
|
elif sbs <= 0: |
|
a = mpf_div(sa, ta, prec, round_floor) |
|
b = mpf_div(sb, tb, prec, round_ceiling) |
|
if a == fnan: a = fninf |
|
if b == fnan: b = fzero |
|
|
|
else: |
|
a = mpf_div(sa, ta, prec, round_floor) |
|
b = mpf_div(sb, ta, prec, round_ceiling) |
|
if a == fnan: a = fninf |
|
if b == fnan: b = finf |
|
return a, b |
|
|
|
def mpi_pi(prec): |
|
a = mpf_pi(prec, round_floor) |
|
b = mpf_pi(prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_exp(s, prec): |
|
sa, sb = s |
|
|
|
a = mpf_exp(sa, prec, round_floor) |
|
b = mpf_exp(sb, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_log(s, prec): |
|
sa, sb = s |
|
|
|
a = mpf_log(sa, prec, round_floor) |
|
b = mpf_log(sb, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_sqrt(s, prec): |
|
sa, sb = s |
|
|
|
a = mpf_sqrt(sa, prec, round_floor) |
|
b = mpf_sqrt(sb, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_atan(s, prec): |
|
sa, sb = s |
|
a = mpf_atan(sa, prec, round_floor) |
|
b = mpf_atan(sb, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_pow_int(s, n, prec): |
|
sa, sb = s |
|
if n < 0: |
|
return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec) |
|
if n == 0: |
|
return (fone, fone) |
|
if n == 1: |
|
return s |
|
if n == 2: |
|
return mpi_square(s, prec) |
|
|
|
if n & 1: |
|
a = mpf_pow_int(sa, n, prec, round_floor) |
|
b = mpf_pow_int(sb, n, prec, round_ceiling) |
|
|
|
else: |
|
sas = mpf_sign(sa) |
|
sbs = mpf_sign(sb) |
|
|
|
if sas >= 0: |
|
a = mpf_pow_int(sa, n, prec, round_floor) |
|
b = mpf_pow_int(sb, n, prec, round_ceiling) |
|
|
|
elif sbs <= 0: |
|
a = mpf_pow_int(sb, n, prec, round_floor) |
|
b = mpf_pow_int(sa, n, prec, round_ceiling) |
|
|
|
else: |
|
a = fzero |
|
|
|
sa = mpf_neg(sa) |
|
if mpf_ge(sa, sb): |
|
b = mpf_pow_int(sa, n, prec, round_ceiling) |
|
else: |
|
b = mpf_pow_int(sb, n, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_pow(s, t, prec): |
|
ta, tb = t |
|
if ta == tb and ta not in (finf, fninf): |
|
if ta == from_int(to_int(ta)): |
|
return mpi_pow_int(s, to_int(ta), prec) |
|
if ta == fhalf: |
|
return mpi_sqrt(s, prec) |
|
u = mpi_log(s, prec + 20) |
|
v = mpi_mul(u, t, prec + 20) |
|
return mpi_exp(v, prec) |
|
|
|
def MIN(x, y): |
|
if mpf_le(x, y): |
|
return x |
|
return y |
|
|
|
def MAX(x, y): |
|
if mpf_ge(x, y): |
|
return x |
|
return y |
|
|
|
def cos_sin_quadrant(x, wp): |
|
sign, man, exp, bc = x |
|
if x == fzero: |
|
return fone, fzero, 0 |
|
|
|
c, s = mpf_cos_sin(x, wp) |
|
t, n, wp_ = mod_pi2(man, exp, exp+bc, 15) |
|
if sign: |
|
n = -1-n |
|
return c, s, n |
|
|
|
def mpi_cos_sin(x, prec): |
|
a, b = x |
|
if a == b == fzero: |
|
return (fone, fone), (fzero, fzero) |
|
|
|
if (finf in x) or (fninf in x): |
|
return (fnone, fone), (fnone, fone) |
|
wp = prec + 20 |
|
ca, sa, na = cos_sin_quadrant(a, wp) |
|
cb, sb, nb = cos_sin_quadrant(b, wp) |
|
ca, cb = mpf_min_max([ca, cb]) |
|
sa, sb = mpf_min_max([sa, sb]) |
|
|
|
if na == nb: |
|
pass |
|
|
|
elif nb - na >= 4: |
|
return (fnone, fone), (fnone, fone) |
|
else: |
|
|
|
if na//4 != nb//4: |
|
cb = fone |
|
|
|
if (na-2)//4 != (nb-2)//4: |
|
ca = fnone |
|
|
|
if (na-1)//4 != (nb-1)//4: |
|
sb = fone |
|
|
|
if (na-3)//4 != (nb-3)//4: |
|
sa = fnone |
|
|
|
more = from_man_exp((MPZ_ONE<<wp) + (MPZ_ONE<<10), -wp) |
|
less = from_man_exp((MPZ_ONE<<wp) - (MPZ_ONE<<10), -wp) |
|
def finalize(v, rounding): |
|
if bool(v[0]) == (rounding == round_floor): |
|
p = more |
|
else: |
|
p = less |
|
v = mpf_mul(v, p, prec, rounding) |
|
sign, man, exp, bc = v |
|
if exp+bc >= 1: |
|
if sign: |
|
return fnone |
|
return fone |
|
return v |
|
ca = finalize(ca, round_floor) |
|
cb = finalize(cb, round_ceiling) |
|
sa = finalize(sa, round_floor) |
|
sb = finalize(sb, round_ceiling) |
|
return (ca,cb), (sa,sb) |
|
|
|
def mpi_cos(x, prec): |
|
return mpi_cos_sin(x, prec)[0] |
|
|
|
def mpi_sin(x, prec): |
|
return mpi_cos_sin(x, prec)[1] |
|
|
|
def mpi_tan(x, prec): |
|
cos, sin = mpi_cos_sin(x, prec+20) |
|
return mpi_div(sin, cos, prec) |
|
|
|
def mpi_cot(x, prec): |
|
cos, sin = mpi_cos_sin(x, prec+20) |
|
return mpi_div(cos, sin, prec) |
|
|
|
def mpi_from_str_a_b(x, y, percent, prec): |
|
wp = prec + 20 |
|
xa = from_str(x, wp, round_floor) |
|
xb = from_str(x, wp, round_ceiling) |
|
|
|
y = from_str(y, wp, round_ceiling) |
|
assert mpf_ge(y, fzero) |
|
if percent: |
|
y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling) |
|
y = mpf_div(y, from_int(100), wp, round_ceiling) |
|
a = mpf_sub(xa, y, prec, round_floor) |
|
b = mpf_add(xb, y, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_from_str(s, prec): |
|
""" |
|
Parse an interval number given as a string. |
|
|
|
Allowed forms are |
|
|
|
"-1.23e-27" |
|
Any single decimal floating-point literal. |
|
"a +- b" or "a (b)" |
|
a is the midpoint of the interval and b is the half-width |
|
"a +- b%" or "a (b%)" |
|
a is the midpoint of the interval and the half-width |
|
is b percent of a (`a \times b / 100`). |
|
"[a, b]" |
|
The interval indicated directly. |
|
"x[y,z]e" |
|
x are shared digits, y and z are unequal digits, e is the exponent. |
|
|
|
""" |
|
e = ValueError("Improperly formed interval number '%s'" % s) |
|
s = s.replace(" ", "") |
|
wp = prec + 20 |
|
if "+-" in s: |
|
x, y = s.split("+-") |
|
return mpi_from_str_a_b(x, y, False, prec) |
|
|
|
elif "(" in s: |
|
|
|
if s[0] == "(" or ")" not in s: |
|
raise e |
|
s = s.replace(")", "") |
|
percent = False |
|
if "%" in s: |
|
if s[-1] != "%": |
|
raise e |
|
percent = True |
|
s = s.replace("%", "") |
|
x, y = s.split("(") |
|
return mpi_from_str_a_b(x, y, percent, prec) |
|
elif "," in s: |
|
if ('[' not in s) or (']' not in s): |
|
raise e |
|
if s[0] == '[': |
|
|
|
s = s.replace("[", "") |
|
s = s.replace("]", "") |
|
a, b = s.split(",") |
|
a = from_str(a, prec, round_floor) |
|
b = from_str(b, prec, round_ceiling) |
|
return a, b |
|
else: |
|
|
|
x, y = s.split('[') |
|
y, z = y.split(',') |
|
if 'e' in s: |
|
z, e = z.split(']') |
|
else: |
|
z, e = z.rstrip(']'), '' |
|
a = from_str(x+y+e, prec, round_floor) |
|
b = from_str(x+z+e, prec, round_ceiling) |
|
return a, b |
|
else: |
|
a = from_str(s, prec, round_floor) |
|
b = from_str(s, prec, round_ceiling) |
|
return a, b |
|
|
|
def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs): |
|
""" |
|
Convert a mpi interval to a string. |
|
|
|
**Arguments** |
|
|
|
*dps* |
|
decimal places to use for printing |
|
*use_spaces* |
|
use spaces for more readable output, defaults to true |
|
*brackets* |
|
pair of strings (or two-character string) giving left and right brackets |
|
*mode* |
|
mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff' |
|
*error_dps* |
|
limit the error to *error_dps* digits (mode 'plusminus and 'percent') |
|
|
|
Additional keyword arguments are forwarded to the mpf-to-string conversion |
|
for the components of the output. |
|
|
|
**Examples** |
|
|
|
>>> from mpmath import mpi, mp |
|
>>> mp.dps = 30 |
|
>>> x = mpi(1, 2)._mpi_ |
|
>>> mpi_to_str(x, 2, mode='plusminus') |
|
'1.5 +- 0.5' |
|
>>> mpi_to_str(x, 2, mode='percent') |
|
'1.5 (33.33%)' |
|
>>> mpi_to_str(x, 2, mode='brackets') |
|
'[1.0, 2.0]' |
|
>>> mpi_to_str(x, 2, mode='brackets' , brackets=('<', '>')) |
|
'<1.0, 2.0>' |
|
>>> x = mpi('5.2582327113062393041', '5.2582327113062749951')._mpi_ |
|
>>> mpi_to_str(x, 15, mode='diff') |
|
'5.2582327113062[4, 7]' |
|
>>> mpi_to_str(mpi(0)._mpi_, 2, mode='percent') |
|
'0.0 (0.0%)' |
|
|
|
""" |
|
prec = dps_to_prec(dps) |
|
wp = prec + 20 |
|
a, b = x |
|
mid = mpi_mid(x, prec) |
|
delta = mpi_delta(x, prec) |
|
a_str = to_str(a, dps, **kwargs) |
|
b_str = to_str(b, dps, **kwargs) |
|
mid_str = to_str(mid, dps, **kwargs) |
|
sp = "" |
|
if use_spaces: |
|
sp = " " |
|
br1, br2 = brackets |
|
if mode == 'plusminus': |
|
delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs) |
|
s = mid_str + sp + "+-" + sp + delta_str |
|
elif mode == 'percent': |
|
if mid == fzero: |
|
p = fzero |
|
else: |
|
|
|
p = mpf_mul(delta, from_int(100)) |
|
p = mpf_div(p, mpf_mul(mid, from_int(2)), wp) |
|
s = mid_str + sp + "(" + to_str(p, error_dps) + "%)" |
|
elif mode == 'brackets': |
|
s = br1 + a_str + "," + sp + b_str + br2 |
|
elif mode == 'diff': |
|
|
|
if a_str == b_str: |
|
a_str = to_str(a, dps+3, **kwargs) |
|
b_str = to_str(b, dps+3, **kwargs) |
|
|
|
a = a_str.split('e') |
|
if len(a) == 1: |
|
a.append('') |
|
b = b_str.split('e') |
|
if len(b) == 1: |
|
b.append('') |
|
if a[1] == b[1]: |
|
if a[0] != b[0]: |
|
for i in xrange(len(a[0]) + 1): |
|
if a[0][i] != b[0][i]: |
|
break |
|
s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2 |
|
+ 'e'*min(len(a[1]), 1) + a[1]) |
|
else: |
|
s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1] |
|
else: |
|
s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2 |
|
else: |
|
raise ValueError("'%s' is unknown mode for printing mpi" % mode) |
|
return s |
|
|
|
def mpci_add(x, y, prec): |
|
a, b = x |
|
c, d = y |
|
return mpi_add(a, c, prec), mpi_add(b, d, prec) |
|
|
|
def mpci_sub(x, y, prec): |
|
a, b = x |
|
c, d = y |
|
return mpi_sub(a, c, prec), mpi_sub(b, d, prec) |
|
|
|
def mpci_neg(x, prec=0): |
|
a, b = x |
|
return mpi_neg(a, prec), mpi_neg(b, prec) |
|
|
|
def mpci_pos(x, prec): |
|
a, b = x |
|
return mpi_pos(a, prec), mpi_pos(b, prec) |
|
|
|
def mpci_mul(x, y, prec): |
|
|
|
a, b = x |
|
c, d = y |
|
r1 = mpi_mul(a,c) |
|
r2 = mpi_mul(b,d) |
|
re = mpi_sub(r1,r2,prec) |
|
i1 = mpi_mul(a,d) |
|
i2 = mpi_mul(b,c) |
|
im = mpi_add(i1,i2,prec) |
|
return re, im |
|
|
|
def mpci_div(x, y, prec): |
|
|
|
a, b = x |
|
c, d = y |
|
wp = prec+20 |
|
m1 = mpi_square(c) |
|
m2 = mpi_square(d) |
|
m = mpi_add(m1,m2,wp) |
|
re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp) |
|
im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp) |
|
re = mpi_div(re, m, prec) |
|
im = mpi_div(im, m, prec) |
|
return re, im |
|
|
|
def mpci_exp(x, prec): |
|
a, b = x |
|
wp = prec+20 |
|
r = mpi_exp(a, wp) |
|
c, s = mpi_cos_sin(b, wp) |
|
a = mpi_mul(r, c, prec) |
|
b = mpi_mul(r, s, prec) |
|
return a, b |
|
|
|
def mpi_shift(x, n): |
|
a, b = x |
|
return mpf_shift(a,n), mpf_shift(b,n) |
|
|
|
def mpi_cosh_sinh(x, prec): |
|
|
|
wp = prec+20 |
|
e1 = mpi_exp(x, wp) |
|
e2 = mpi_div(mpi_one, e1, wp) |
|
c = mpi_add(e1, e2, prec) |
|
s = mpi_sub(e1, e2, prec) |
|
c = mpi_shift(c, -1) |
|
s = mpi_shift(s, -1) |
|
return c, s |
|
|
|
def mpci_cos(x, prec): |
|
a, b = x |
|
wp = prec+10 |
|
c, s = mpi_cos_sin(a, wp) |
|
ch, sh = mpi_cosh_sinh(b, wp) |
|
re = mpi_mul(c, ch, prec) |
|
im = mpi_mul(s, sh, prec) |
|
return re, mpi_neg(im) |
|
|
|
def mpci_sin(x, prec): |
|
a, b = x |
|
wp = prec+10 |
|
c, s = mpi_cos_sin(a, wp) |
|
ch, sh = mpi_cosh_sinh(b, wp) |
|
re = mpi_mul(s, ch, prec) |
|
im = mpi_mul(c, sh, prec) |
|
return re, im |
|
|
|
def mpci_abs(x, prec): |
|
a, b = x |
|
if a == mpi_zero: |
|
return mpi_abs(b) |
|
if b == mpi_zero: |
|
return mpi_abs(a) |
|
|
|
a = mpi_square(a) |
|
b = mpi_square(b) |
|
t = mpi_add(a, b, prec+20) |
|
return mpi_sqrt(t, prec) |
|
|
|
def mpi_atan2(y, x, prec): |
|
ya, yb = y |
|
xa, xb = x |
|
|
|
if ya == yb == fzero: |
|
if mpf_ge(xa, fzero): |
|
return mpi_zero |
|
return mpi_pi(prec) |
|
|
|
if mpf_ge(xa, fzero): |
|
if mpf_ge(ya, fzero): |
|
a = mpf_atan2(ya, xb, prec, round_floor) |
|
else: |
|
a = mpf_atan2(ya, xa, prec, round_floor) |
|
if mpf_ge(yb, fzero): |
|
b = mpf_atan2(yb, xa, prec, round_ceiling) |
|
else: |
|
b = mpf_atan2(yb, xb, prec, round_ceiling) |
|
|
|
elif mpf_ge(ya, fzero): |
|
b = mpf_atan2(ya, xa, prec, round_ceiling) |
|
if mpf_le(xb, fzero): |
|
a = mpf_atan2(yb, xb, prec, round_floor) |
|
else: |
|
a = mpf_atan2(ya, xb, prec, round_floor) |
|
|
|
elif mpf_le(yb, fzero): |
|
a = mpf_atan2(yb, xa, prec, round_floor) |
|
if mpf_le(xb, fzero): |
|
b = mpf_atan2(ya, xb, prec, round_ceiling) |
|
else: |
|
b = mpf_atan2(yb, xb, prec, round_ceiling) |
|
|
|
else: |
|
b = mpf_pi(prec, round_ceiling) |
|
a = mpf_neg(b) |
|
return a, b |
|
|
|
def mpci_arg(z, prec): |
|
x, y = z |
|
return mpi_atan2(y, x, prec) |
|
|
|
def mpci_log(z, prec): |
|
x, y = z |
|
re = mpi_log(mpci_abs(z, prec+20), prec) |
|
im = mpci_arg(z, prec) |
|
return re, im |
|
|
|
def mpci_pow(x, y, prec): |
|
|
|
yre, yim = y |
|
if yim == mpi_zero: |
|
ya, yb = yre |
|
if ya == yb: |
|
sign, man, exp, bc = yb |
|
if man and exp >= 0: |
|
return mpci_pow_int(x, (-1)**sign * int(man<<exp), prec) |
|
|
|
if yb == fzero: |
|
return mpci_pow_int(x, 0, prec) |
|
wp = prec+20 |
|
return mpci_exp(mpci_mul(y, mpci_log(x, wp), wp), prec) |
|
|
|
def mpci_square(x, prec): |
|
a, b = x |
|
|
|
re = mpi_sub(mpi_square(a), mpi_square(b), prec) |
|
im = mpi_mul(a, b, prec) |
|
im = mpi_shift(im, 1) |
|
return re, im |
|
|
|
def mpci_pow_int(x, n, prec): |
|
if n < 0: |
|
return mpci_div((mpi_one,mpi_zero), mpci_pow_int(x, -n, prec+20), prec) |
|
if n == 0: |
|
return mpi_one, mpi_zero |
|
if n == 1: |
|
return mpci_pos(x, prec) |
|
if n == 2: |
|
return mpci_square(x, prec) |
|
wp = prec + 20 |
|
result = (mpi_one, mpi_zero) |
|
while n: |
|
if n & 1: |
|
result = mpci_mul(result, x, wp) |
|
n -= 1 |
|
x = mpci_square(x, wp) |
|
n >>= 1 |
|
return mpci_pos(result, prec) |
|
|
|
gamma_min_a = from_float(1.46163214496) |
|
gamma_min_b = from_float(1.46163214497) |
|
gamma_min = (gamma_min_a, gamma_min_b) |
|
gamma_mono_imag_a = from_float(-1.1) |
|
gamma_mono_imag_b = from_float(1.1) |
|
|
|
def mpi_overlap(x, y): |
|
a, b = x |
|
c, d = y |
|
if mpf_lt(d, a): return False |
|
if mpf_gt(c, b): return False |
|
return True |
|
|
|
|
|
|
|
|
|
|
|
|
|
def mpi_gamma(z, prec, type=0): |
|
a, b = z |
|
wp = prec+20 |
|
|
|
if type == 1: |
|
return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0) |
|
|
|
|
|
if mpf_gt(a, gamma_min_b): |
|
if type == 0: |
|
c = mpf_gamma(a, prec, round_floor) |
|
d = mpf_gamma(b, prec, round_ceiling) |
|
elif type == 2: |
|
c = mpf_rgamma(b, prec, round_floor) |
|
d = mpf_rgamma(a, prec, round_ceiling) |
|
elif type == 3: |
|
c = mpf_loggamma(a, prec, round_floor) |
|
d = mpf_loggamma(b, prec, round_ceiling) |
|
|
|
elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a): |
|
if type == 0: |
|
c = mpf_gamma(b, prec, round_floor) |
|
d = mpf_gamma(a, prec, round_ceiling) |
|
elif type == 2: |
|
c = mpf_rgamma(a, prec, round_floor) |
|
d = mpf_rgamma(b, prec, round_ceiling) |
|
elif type == 3: |
|
c = mpf_loggamma(b, prec, round_floor) |
|
d = mpf_loggamma(a, prec, round_ceiling) |
|
else: |
|
|
|
znew = mpi_add(z, mpi_one, wp) |
|
if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec) |
|
if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec) |
|
if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec) |
|
return c, d |
|
|
|
def mpci_gamma(z, prec, type=0): |
|
(a1,a2), (b1,b2) = z |
|
|
|
|
|
if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)): |
|
return mpi_gamma(z, prec, type), mpi_zero |
|
|
|
|
|
wp = prec+20 |
|
if type != 3: |
|
amag = a2[2]+a2[3] |
|
bmag = b2[2]+b2[3] |
|
if a2 != fzero: |
|
mag = max(amag, bmag) |
|
else: |
|
mag = bmag |
|
an = abs(to_int(a2)) |
|
bn = abs(to_int(b2)) |
|
absn = max(an, bn) |
|
gamma_size = max(0,absn*mag) |
|
wp += bitcount(gamma_size) |
|
|
|
|
|
if type == 1: |
|
(a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2) |
|
type = 0 |
|
|
|
|
|
if mpf_lt(a1, gamma_min_b): |
|
if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)): |
|
|
|
|
|
|
|
|
|
|
|
|
|
znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2) |
|
if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec) |
|
if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec) |
|
if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec) |
|
|
|
|
|
|
|
|
|
if mpf_ge(b1, fzero): |
|
minre = mpc_loggamma((a1,b2), wp, round_floor) |
|
maxre = mpc_loggamma((a2,b1), wp, round_ceiling) |
|
minim = mpc_loggamma((a1,b1), wp, round_floor) |
|
maxim = mpc_loggamma((a2,b2), wp, round_ceiling) |
|
|
|
elif mpf_le(b2, fzero): |
|
minre = mpc_loggamma((a1,b1), wp, round_floor) |
|
maxre = mpc_loggamma((a2,b2), wp, round_ceiling) |
|
minim = mpc_loggamma((a2,b1), wp, round_floor) |
|
maxim = mpc_loggamma((a1,b2), wp, round_ceiling) |
|
|
|
else: |
|
maxre = mpc_loggamma((a2,fzero), wp, round_ceiling) |
|
|
|
if mpf_gt(mpf_neg(b1), b2): |
|
minre = mpc_loggamma((a1,b1), wp, round_ceiling) |
|
else: |
|
minre = mpc_loggamma((a1,b2), wp, round_ceiling) |
|
minim = mpc_loggamma((a2,b1), wp, round_floor) |
|
maxim = mpc_loggamma((a2,b2), wp, round_floor) |
|
|
|
w = (minre[0], maxre[0]), (minim[1], maxim[1]) |
|
if type == 3: |
|
return mpi_pos(w[0], prec), mpi_pos(w[1], prec) |
|
if type == 2: |
|
w = mpci_neg(w) |
|
return mpci_exp(w, prec) |
|
|
|
def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3) |
|
def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3) |
|
|
|
def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2) |
|
def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2) |
|
|
|
def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1) |
|
def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1) |
|
|