|
""" |
|
Implements the PSLQ algorithm for integer relation detection, |
|
and derivative algorithms for constant recognition. |
|
""" |
|
|
|
from .libmp.backend import xrange |
|
from .libmp import int_types, sqrt_fixed |
|
|
|
|
|
def round_fixed(x, prec): |
|
return ((x + (1<<(prec-1))) >> prec) << prec |
|
|
|
class IdentificationMethods(object): |
|
pass |
|
|
|
|
|
def pslq(ctx, x, tol=None, maxcoeff=1000, maxsteps=100, verbose=False): |
|
r""" |
|
Given a vector of real numbers `x = [x_0, x_1, ..., x_n]`, ``pslq(x)`` |
|
uses the PSLQ algorithm to find a list of integers |
|
`[c_0, c_1, ..., c_n]` such that |
|
|
|
.. math :: |
|
|
|
|c_1 x_1 + c_2 x_2 + ... + c_n x_n| < \mathrm{tol} |
|
|
|
and such that `\max |c_k| < \mathrm{maxcoeff}`. If no such vector |
|
exists, :func:`~mpmath.pslq` returns ``None``. The tolerance defaults to |
|
3/4 of the working precision. |
|
|
|
**Examples** |
|
|
|
Find rational approximations for `\pi`:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> pslq([-1, pi], tol=0.01) |
|
[22, 7] |
|
>>> pslq([-1, pi], tol=0.001) |
|
[355, 113] |
|
>>> mpf(22)/7; mpf(355)/113; +pi |
|
3.14285714285714 |
|
3.14159292035398 |
|
3.14159265358979 |
|
|
|
Pi is not a rational number with denominator less than 1000:: |
|
|
|
>>> pslq([-1, pi]) |
|
>>> |
|
|
|
To within the standard precision, it can however be approximated |
|
by at least one rational number with denominator less than `10^{12}`:: |
|
|
|
>>> p, q = pslq([-1, pi], maxcoeff=10**12) |
|
>>> print(p); print(q) |
|
238410049439 |
|
75888275702 |
|
>>> mpf(p)/q |
|
3.14159265358979 |
|
|
|
The PSLQ algorithm can be applied to long vectors. For example, |
|
we can investigate the rational (in)dependence of integer square |
|
roots:: |
|
|
|
>>> mp.dps = 30 |
|
>>> pslq([sqrt(n) for n in range(2, 5+1)]) |
|
>>> |
|
>>> pslq([sqrt(n) for n in range(2, 6+1)]) |
|
>>> |
|
>>> pslq([sqrt(n) for n in range(2, 8+1)]) |
|
[2, 0, 0, 0, 0, 0, -1] |
|
|
|
**Machin formulas** |
|
|
|
A famous formula for `\pi` is Machin's, |
|
|
|
.. math :: |
|
|
|
\frac{\pi}{4} = 4 \operatorname{acot} 5 - \operatorname{acot} 239 |
|
|
|
There are actually infinitely many formulas of this type. Two |
|
others are |
|
|
|
.. math :: |
|
|
|
\frac{\pi}{4} = \operatorname{acot} 1 |
|
|
|
\frac{\pi}{4} = 12 \operatorname{acot} 49 + 32 \operatorname{acot} 57 |
|
+ 5 \operatorname{acot} 239 + 12 \operatorname{acot} 110443 |
|
|
|
We can easily verify the formulas using the PSLQ algorithm:: |
|
|
|
>>> mp.dps = 30 |
|
>>> pslq([pi/4, acot(1)]) |
|
[1, -1] |
|
>>> pslq([pi/4, acot(5), acot(239)]) |
|
[1, -4, 1] |
|
>>> pslq([pi/4, acot(49), acot(57), acot(239), acot(110443)]) |
|
[1, -12, -32, 5, -12] |
|
|
|
We could try to generate a custom Machin-like formula by running |
|
the PSLQ algorithm with a few inverse cotangent values, for example |
|
acot(2), acot(3) ... acot(10). Unfortunately, there is a linear |
|
dependence among these values, resulting in only that dependence |
|
being detected, with a zero coefficient for `\pi`:: |
|
|
|
>>> pslq([pi] + [acot(n) for n in range(2,11)]) |
|
[0, 1, -1, 0, 0, 0, -1, 0, 0, 0] |
|
|
|
We get better luck by removing linearly dependent terms:: |
|
|
|
>>> pslq([pi] + [acot(n) for n in range(2,11) if n not in (3, 5)]) |
|
[1, -8, 0, 0, 4, 0, 0, 0] |
|
|
|
In other words, we found the following formula:: |
|
|
|
>>> 8*acot(2) - 4*acot(7) |
|
3.14159265358979323846264338328 |
|
>>> +pi |
|
3.14159265358979323846264338328 |
|
|
|
**Algorithm** |
|
|
|
This is a fairly direct translation to Python of the pseudocode given by |
|
David Bailey, "The PSLQ Integer Relation Algorithm": |
|
http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html |
|
|
|
The present implementation uses fixed-point instead of floating-point |
|
arithmetic, since this is significantly (about 7x) faster. |
|
""" |
|
|
|
n = len(x) |
|
if n < 2: |
|
raise ValueError("n cannot be less than 2") |
|
|
|
|
|
prec = ctx.prec |
|
if prec < 53: |
|
raise ValueError("prec cannot be less than 53") |
|
|
|
if verbose and prec // max(2,n) < 5: |
|
print("Warning: precision for PSLQ may be too low") |
|
|
|
target = int(prec * 0.75) |
|
|
|
if tol is None: |
|
tol = ctx.mpf(2)**(-target) |
|
else: |
|
tol = ctx.convert(tol) |
|
|
|
extra = 60 |
|
prec += extra |
|
|
|
if verbose: |
|
print("PSLQ using prec %i and tol %s" % (prec, ctx.nstr(tol))) |
|
|
|
tol = ctx.to_fixed(tol, prec) |
|
assert tol |
|
|
|
|
|
|
|
|
|
|
|
x = [None] + [ctx.to_fixed(ctx.mpf(xk), prec) for xk in x] |
|
|
|
|
|
minx = min(abs(xx) for xx in x[1:]) |
|
if not minx: |
|
raise ValueError("PSLQ requires a vector of nonzero numbers") |
|
if minx < tol//100: |
|
if verbose: |
|
print("STOPPING: (one number is too small)") |
|
return None |
|
|
|
g = sqrt_fixed((4<<prec)//3, prec) |
|
A = {} |
|
B = {} |
|
H = {} |
|
|
|
|
|
for i in xrange(1, n+1): |
|
for j in xrange(1, n+1): |
|
A[i,j] = B[i,j] = (i==j) << prec |
|
H[i,j] = 0 |
|
|
|
s = [None] + [0] * n |
|
for k in xrange(1, n+1): |
|
t = 0 |
|
for j in xrange(k, n+1): |
|
t += (x[j]**2 >> prec) |
|
s[k] = sqrt_fixed(t, prec) |
|
t = s[1] |
|
y = x[:] |
|
for k in xrange(1, n+1): |
|
y[k] = (x[k] << prec) // t |
|
s[k] = (s[k] << prec) // t |
|
|
|
for i in xrange(1, n+1): |
|
for j in xrange(i+1, n): |
|
H[i,j] = 0 |
|
if i <= n-1: |
|
if s[i]: |
|
H[i,i] = (s[i+1] << prec) // s[i] |
|
else: |
|
H[i,i] = 0 |
|
for j in range(1, i): |
|
sjj1 = s[j]*s[j+1] |
|
if sjj1: |
|
H[i,j] = ((-y[i]*y[j])<<prec)//sjj1 |
|
else: |
|
H[i,j] = 0 |
|
|
|
for i in xrange(2, n+1): |
|
for j in xrange(i-1, 0, -1): |
|
|
|
if H[j,j]: |
|
t = round_fixed((H[i,j] << prec)//H[j,j], prec) |
|
else: |
|
|
|
continue |
|
y[j] = y[j] + (t*y[i] >> prec) |
|
for k in xrange(1, j+1): |
|
H[i,k] = H[i,k] - (t*H[j,k] >> prec) |
|
for k in xrange(1, n+1): |
|
A[i,k] = A[i,k] - (t*A[j,k] >> prec) |
|
B[k,j] = B[k,j] + (t*B[k,i] >> prec) |
|
|
|
for REP in range(maxsteps): |
|
|
|
m = -1 |
|
szmax = -1 |
|
for i in range(1, n): |
|
h = H[i,i] |
|
sz = (g**i * abs(h)) >> (prec*(i-1)) |
|
if sz > szmax: |
|
m = i |
|
szmax = sz |
|
|
|
y[m], y[m+1] = y[m+1], y[m] |
|
for i in xrange(1,n+1): H[m,i], H[m+1,i] = H[m+1,i], H[m,i] |
|
for i in xrange(1,n+1): A[m,i], A[m+1,i] = A[m+1,i], A[m,i] |
|
for i in xrange(1,n+1): B[i,m], B[i,m+1] = B[i,m+1], B[i,m] |
|
|
|
if m <= n - 2: |
|
t0 = sqrt_fixed((H[m,m]**2 + H[m,m+1]**2)>>prec, prec) |
|
|
|
|
|
|
|
if not t0: |
|
break |
|
t1 = (H[m,m] << prec) // t0 |
|
t2 = (H[m,m+1] << prec) // t0 |
|
for i in xrange(m, n+1): |
|
t3 = H[i,m] |
|
t4 = H[i,m+1] |
|
H[i,m] = (t1*t3+t2*t4) >> prec |
|
H[i,m+1] = (-t2*t3+t1*t4) >> prec |
|
|
|
for i in xrange(m+1, n+1): |
|
for j in xrange(min(i-1, m+1), 0, -1): |
|
try: |
|
t = round_fixed((H[i,j] << prec)//H[j,j], prec) |
|
|
|
except ZeroDivisionError: |
|
break |
|
y[j] = y[j] + ((t*y[i]) >> prec) |
|
for k in xrange(1, j+1): |
|
H[i,k] = H[i,k] - (t*H[j,k] >> prec) |
|
for k in xrange(1, n+1): |
|
A[i,k] = A[i,k] - (t*A[j,k] >> prec) |
|
B[k,j] = B[k,j] + (t*B[k,i] >> prec) |
|
|
|
|
|
|
|
|
|
|
|
|
|
best_err = maxcoeff<<prec |
|
for i in xrange(1, n+1): |
|
err = abs(y[i]) |
|
|
|
if err < tol: |
|
|
|
vec = [int(round_fixed(B[j,i], prec) >> prec) for j in \ |
|
range(1,n+1)] |
|
if max(abs(v) for v in vec) < maxcoeff: |
|
if verbose: |
|
print("FOUND relation at iter %i/%i, error: %s" % \ |
|
(REP, maxsteps, ctx.nstr(err / ctx.mpf(2)**prec, 1))) |
|
return vec |
|
best_err = min(err, best_err) |
|
|
|
|
|
|
|
recnorm = max(abs(h) for h in H.values()) |
|
if recnorm: |
|
norm = ((1 << (2*prec)) // recnorm) >> prec |
|
norm //= 100 |
|
else: |
|
norm = ctx.inf |
|
if verbose: |
|
print("%i/%i: Error: %8s Norm: %s" % \ |
|
(REP, maxsteps, ctx.nstr(best_err / ctx.mpf(2)**prec, 1), norm)) |
|
if norm >= maxcoeff: |
|
break |
|
if verbose: |
|
print("CANCELLING after step %i/%i." % (REP, maxsteps)) |
|
print("Could not find an integer relation. Norm bound: %s" % norm) |
|
return None |
|
|
|
def findpoly(ctx, x, n=1, **kwargs): |
|
r""" |
|
``findpoly(x, n)`` returns the coefficients of an integer |
|
polynomial `P` of degree at most `n` such that `P(x) \approx 0`. |
|
If no polynomial having `x` as a root can be found, |
|
:func:`~mpmath.findpoly` returns ``None``. |
|
|
|
:func:`~mpmath.findpoly` works by successively calling :func:`~mpmath.pslq` with |
|
the vectors `[1, x]`, `[1, x, x^2]`, `[1, x, x^2, x^3]`, ..., |
|
`[1, x, x^2, .., x^n]` as input. Keyword arguments given to |
|
:func:`~mpmath.findpoly` are forwarded verbatim to :func:`~mpmath.pslq`. In |
|
particular, you can specify a tolerance for `P(x)` with ``tol`` |
|
and a maximum permitted coefficient size with ``maxcoeff``. |
|
|
|
For large values of `n`, it is recommended to run :func:`~mpmath.findpoly` |
|
at high precision; preferably 50 digits or more. |
|
|
|
**Examples** |
|
|
|
By default (degree `n = 1`), :func:`~mpmath.findpoly` simply finds a linear |
|
polynomial with a rational root:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> findpoly(0.7) |
|
[-10, 7] |
|
|
|
The generated coefficient list is valid input to ``polyval`` and |
|
``polyroots``:: |
|
|
|
>>> nprint(polyval(findpoly(phi, 2), phi), 1) |
|
-2.0e-16 |
|
>>> for r in polyroots(findpoly(phi, 2)): |
|
... print(r) |
|
... |
|
-0.618033988749895 |
|
1.61803398874989 |
|
|
|
Numbers of the form `m + n \sqrt p` for integers `(m, n, p)` are |
|
solutions to quadratic equations. As we find here, `1+\sqrt 2` |
|
is a root of the polynomial `x^2 - 2x - 1`:: |
|
|
|
>>> findpoly(1+sqrt(2), 2) |
|
[1, -2, -1] |
|
>>> findroot(lambda x: x**2 - 2*x - 1, 1) |
|
2.4142135623731 |
|
|
|
Despite only containing square roots, the following number results |
|
in a polynomial of degree 4:: |
|
|
|
>>> findpoly(sqrt(2)+sqrt(3), 4) |
|
[1, 0, -10, 0, 1] |
|
|
|
In fact, `x^4 - 10x^2 + 1` is the *minimal polynomial* of |
|
`r = \sqrt 2 + \sqrt 3`, meaning that a rational polynomial of |
|
lower degree having `r` as a root does not exist. Given sufficient |
|
precision, :func:`~mpmath.findpoly` will usually find the correct |
|
minimal polynomial of a given algebraic number. |
|
|
|
**Non-algebraic numbers** |
|
|
|
If :func:`~mpmath.findpoly` fails to find a polynomial with given |
|
coefficient size and tolerance constraints, that means no such |
|
polynomial exists. |
|
|
|
We can verify that `\pi` is not an algebraic number of degree 3 with |
|
coefficients less than 1000:: |
|
|
|
>>> mp.dps = 15 |
|
>>> findpoly(pi, 3) |
|
>>> |
|
|
|
It is always possible to find an algebraic approximation of a number |
|
using one (or several) of the following methods: |
|
|
|
1. Increasing the permitted degree |
|
2. Allowing larger coefficients |
|
3. Reducing the tolerance |
|
|
|
One example of each method is shown below:: |
|
|
|
>>> mp.dps = 15 |
|
>>> findpoly(pi, 4) |
|
[95, -545, 863, -183, -298] |
|
>>> findpoly(pi, 3, maxcoeff=10000) |
|
[836, -1734, -2658, -457] |
|
>>> findpoly(pi, 3, tol=1e-7) |
|
[-4, 22, -29, -2] |
|
|
|
It is unknown whether Euler's constant is transcendental (or even |
|
irrational). We can use :func:`~mpmath.findpoly` to check that if is |
|
an algebraic number, its minimal polynomial must have degree |
|
at least 7 and a coefficient of magnitude at least 1000000:: |
|
|
|
>>> mp.dps = 200 |
|
>>> findpoly(euler, 6, maxcoeff=10**6, tol=1e-100, maxsteps=1000) |
|
>>> |
|
|
|
Note that the high precision and strict tolerance is necessary |
|
for such high-degree runs, since otherwise unwanted low-accuracy |
|
approximations will be detected. It may also be necessary to set |
|
maxsteps high to prevent a premature exit (before the coefficient |
|
bound has been reached). Running with ``verbose=True`` to get an |
|
idea what is happening can be useful. |
|
""" |
|
x = ctx.mpf(x) |
|
if n < 1: |
|
raise ValueError("n cannot be less than 1") |
|
if x == 0: |
|
return [1, 0] |
|
xs = [ctx.mpf(1)] |
|
for i in range(1,n+1): |
|
xs.append(x**i) |
|
a = ctx.pslq(xs, **kwargs) |
|
if a is not None: |
|
return a[::-1] |
|
|
|
def fracgcd(p, q): |
|
x, y = p, q |
|
while y: |
|
x, y = y, x % y |
|
if x != 1: |
|
p //= x |
|
q //= x |
|
if q == 1: |
|
return p |
|
return p, q |
|
|
|
def pslqstring(r, constants): |
|
q = r[0] |
|
r = r[1:] |
|
s = [] |
|
for i in range(len(r)): |
|
p = r[i] |
|
if p: |
|
z = fracgcd(-p,q) |
|
cs = constants[i][1] |
|
if cs == '1': |
|
cs = '' |
|
else: |
|
cs = '*' + cs |
|
if isinstance(z, int_types): |
|
if z > 0: term = str(z) + cs |
|
else: term = ("(%s)" % z) + cs |
|
else: |
|
term = ("(%s/%s)" % z) + cs |
|
s.append(term) |
|
s = ' + '.join(s) |
|
if '+' in s or '*' in s: |
|
s = '(' + s + ')' |
|
return s or '0' |
|
|
|
def prodstring(r, constants): |
|
q = r[0] |
|
r = r[1:] |
|
num = [] |
|
den = [] |
|
for i in range(len(r)): |
|
p = r[i] |
|
if p: |
|
z = fracgcd(-p,q) |
|
cs = constants[i][1] |
|
if isinstance(z, int_types): |
|
if abs(z) == 1: t = cs |
|
else: t = '%s**%s' % (cs, abs(z)) |
|
([num,den][z<0]).append(t) |
|
else: |
|
t = '%s**(%s/%s)' % (cs, abs(z[0]), z[1]) |
|
([num,den][z[0]<0]).append(t) |
|
num = '*'.join(num) |
|
den = '*'.join(den) |
|
if num and den: return "(%s)/(%s)" % (num, den) |
|
if num: return num |
|
if den: return "1/(%s)" % den |
|
|
|
def quadraticstring(ctx,t,a,b,c): |
|
if c < 0: |
|
a,b,c = -a,-b,-c |
|
u1 = (-b+ctx.sqrt(b**2-4*a*c))/(2*c) |
|
u2 = (-b-ctx.sqrt(b**2-4*a*c))/(2*c) |
|
if abs(u1-t) < abs(u2-t): |
|
if b: s = '((%s+sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c) |
|
else: s = '(sqrt(%s)/%s)' % (-4*a*c,2*c) |
|
else: |
|
if b: s = '((%s-sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c) |
|
else: s = '(-sqrt(%s)/%s)' % (-4*a*c,2*c) |
|
return s |
|
|
|
|
|
|
|
|
|
transforms = [ |
|
(lambda ctx,x,c: x*c, '$y/$c', 0), |
|
(lambda ctx,x,c: x/c, '$c*$y', 1), |
|
(lambda ctx,x,c: c/x, '$c/$y', 0), |
|
(lambda ctx,x,c: (x*c)**2, 'sqrt($y)/$c', 0), |
|
(lambda ctx,x,c: (x/c)**2, '$c*sqrt($y)', 1), |
|
(lambda ctx,x,c: (c/x)**2, '$c/sqrt($y)', 0), |
|
(lambda ctx,x,c: c*x**2, 'sqrt($y)/sqrt($c)', 1), |
|
(lambda ctx,x,c: x**2/c, 'sqrt($c)*sqrt($y)', 1), |
|
(lambda ctx,x,c: c/x**2, 'sqrt($c)/sqrt($y)', 1), |
|
(lambda ctx,x,c: ctx.sqrt(x*c), '$y**2/$c', 0), |
|
(lambda ctx,x,c: ctx.sqrt(x/c), '$c*$y**2', 1), |
|
(lambda ctx,x,c: ctx.sqrt(c/x), '$c/$y**2', 0), |
|
(lambda ctx,x,c: c*ctx.sqrt(x), '$y**2/$c**2', 1), |
|
(lambda ctx,x,c: ctx.sqrt(x)/c, '$c**2*$y**2', 1), |
|
(lambda ctx,x,c: c/ctx.sqrt(x), '$c**2/$y**2', 1), |
|
(lambda ctx,x,c: ctx.exp(x*c), 'log($y)/$c', 0), |
|
(lambda ctx,x,c: ctx.exp(x/c), '$c*log($y)', 1), |
|
(lambda ctx,x,c: ctx.exp(c/x), '$c/log($y)', 0), |
|
(lambda ctx,x,c: c*ctx.exp(x), 'log($y/$c)', 1), |
|
(lambda ctx,x,c: ctx.exp(x)/c, 'log($c*$y)', 1), |
|
(lambda ctx,x,c: c/ctx.exp(x), 'log($c/$y)', 0), |
|
(lambda ctx,x,c: ctx.ln(x*c), 'exp($y)/$c', 0), |
|
(lambda ctx,x,c: ctx.ln(x/c), '$c*exp($y)', 1), |
|
(lambda ctx,x,c: ctx.ln(c/x), '$c/exp($y)', 0), |
|
(lambda ctx,x,c: c*ctx.ln(x), 'exp($y/$c)', 1), |
|
(lambda ctx,x,c: ctx.ln(x)/c, 'exp($c*$y)', 1), |
|
(lambda ctx,x,c: c/ctx.ln(x), 'exp($c/$y)', 0), |
|
] |
|
|
|
def identify(ctx, x, constants=[], tol=None, maxcoeff=1000, full=False, |
|
verbose=False): |
|
r""" |
|
Given a real number `x`, ``identify(x)`` attempts to find an exact |
|
formula for `x`. This formula is returned as a string. If no match |
|
is found, ``None`` is returned. With ``full=True``, a list of |
|
matching formulas is returned. |
|
|
|
As a simple example, :func:`~mpmath.identify` will find an algebraic |
|
formula for the golden ratio:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15; mp.pretty = True |
|
>>> identify(phi) |
|
'((1+sqrt(5))/2)' |
|
|
|
:func:`~mpmath.identify` can identify simple algebraic numbers and simple |
|
combinations of given base constants, as well as certain basic |
|
transformations thereof. More specifically, :func:`~mpmath.identify` |
|
looks for the following: |
|
|
|
1. Fractions |
|
2. Quadratic algebraic numbers |
|
3. Rational linear combinations of the base constants |
|
4. Any of the above after first transforming `x` into `f(x)` where |
|
`f(x)` is `1/x`, `\sqrt x`, `x^2`, `\log x` or `\exp x`, either |
|
directly or with `x` or `f(x)` multiplied or divided by one of |
|
the base constants |
|
5. Products of fractional powers of the base constants and |
|
small integers |
|
|
|
Base constants can be given as a list of strings representing mpmath |
|
expressions (:func:`~mpmath.identify` will ``eval`` the strings to numerical |
|
values and use the original strings for the output), or as a dict of |
|
formula:value pairs. |
|
|
|
In order not to produce spurious results, :func:`~mpmath.identify` should |
|
be used with high precision; preferably 50 digits or more. |
|
|
|
**Examples** |
|
|
|
Simple identifications can be performed safely at standard |
|
precision. Here the default recognition of rational, algebraic, |
|
and exp/log of algebraic numbers is demonstrated:: |
|
|
|
>>> mp.dps = 15 |
|
>>> identify(0.22222222222222222) |
|
'(2/9)' |
|
>>> identify(1.9662210973805663) |
|
'sqrt(((24+sqrt(48))/8))' |
|
>>> identify(4.1132503787829275) |
|
'exp((sqrt(8)/2))' |
|
>>> identify(0.881373587019543) |
|
'log(((2+sqrt(8))/2))' |
|
|
|
By default, :func:`~mpmath.identify` does not recognize `\pi`. At standard |
|
precision it finds a not too useful approximation. At slightly |
|
increased precision, this approximation is no longer accurate |
|
enough and :func:`~mpmath.identify` more correctly returns ``None``:: |
|
|
|
>>> identify(pi) |
|
'(2**(176/117)*3**(20/117)*5**(35/39))/(7**(92/117))' |
|
>>> mp.dps = 30 |
|
>>> identify(pi) |
|
>>> |
|
|
|
Numbers such as `\pi`, and simple combinations of user-defined |
|
constants, can be identified if they are provided explicitly:: |
|
|
|
>>> identify(3*pi-2*e, ['pi', 'e']) |
|
'(3*pi + (-2)*e)' |
|
|
|
Here is an example using a dict of constants. Note that the |
|
constants need not be "atomic"; :func:`~mpmath.identify` can just |
|
as well express the given number in terms of expressions |
|
given by formulas:: |
|
|
|
>>> identify(pi+e, {'a':pi+2, 'b':2*e}) |
|
'((-2) + 1*a + (1/2)*b)' |
|
|
|
Next, we attempt some identifications with a set of base constants. |
|
It is necessary to increase the precision a bit. |
|
|
|
>>> mp.dps = 50 |
|
>>> base = ['sqrt(2)','pi','log(2)'] |
|
>>> identify(0.25, base) |
|
'(1/4)' |
|
>>> identify(3*pi + 2*sqrt(2) + 5*log(2)/7, base) |
|
'(2*sqrt(2) + 3*pi + (5/7)*log(2))' |
|
>>> identify(exp(pi+2), base) |
|
'exp((2 + 1*pi))' |
|
>>> identify(1/(3+sqrt(2)), base) |
|
'((3/7) + (-1/7)*sqrt(2))' |
|
>>> identify(sqrt(2)/(3*pi+4), base) |
|
'sqrt(2)/(4 + 3*pi)' |
|
>>> identify(5**(mpf(1)/3)*pi*log(2)**2, base) |
|
'5**(1/3)*pi*log(2)**2' |
|
|
|
An example of an erroneous solution being found when too low |
|
precision is used:: |
|
|
|
>>> mp.dps = 15 |
|
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)']) |
|
'((11/25) + (-158/75)*pi + (76/75)*e + (44/15)*sqrt(2))' |
|
>>> mp.dps = 50 |
|
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)']) |
|
'1/(3*pi + (-4)*e + 2*sqrt(2))' |
|
|
|
**Finding approximate solutions** |
|
|
|
The tolerance ``tol`` defaults to 3/4 of the working precision. |
|
Lowering the tolerance is useful for finding approximate matches. |
|
We can for example try to generate approximations for pi:: |
|
|
|
>>> mp.dps = 15 |
|
>>> identify(pi, tol=1e-2) |
|
'(22/7)' |
|
>>> identify(pi, tol=1e-3) |
|
'(355/113)' |
|
>>> identify(pi, tol=1e-10) |
|
'(5**(339/269))/(2**(64/269)*3**(13/269)*7**(92/269))' |
|
|
|
With ``full=True``, and by supplying a few base constants, |
|
``identify`` can generate almost endless lists of approximations |
|
for any number (the output below has been truncated to show only |
|
the first few):: |
|
|
|
>>> for p in identify(pi, ['e', 'catalan'], tol=1e-5, full=True): |
|
... print(p) |
|
... # doctest: +ELLIPSIS |
|
e/log((6 + (-4/3)*e)) |
|
(3**3*5*e*catalan**2)/(2*7**2) |
|
sqrt(((-13) + 1*e + 22*catalan)) |
|
log(((-6) + 24*e + 4*catalan)/e) |
|
exp(catalan*((-1/5) + (8/15)*e)) |
|
catalan*(6 + (-6)*e + 15*catalan) |
|
sqrt((5 + 26*e + (-3)*catalan))/e |
|
e*sqrt(((-27) + 2*e + 25*catalan)) |
|
log(((-1) + (-11)*e + 59*catalan)) |
|
((3/20) + (21/20)*e + (3/20)*catalan) |
|
... |
|
|
|
The numerical values are roughly as close to `\pi` as permitted by the |
|
specified tolerance: |
|
|
|
>>> e/log(6-4*e/3) |
|
3.14157719846001 |
|
>>> 135*e*catalan**2/98 |
|
3.14166950419369 |
|
>>> sqrt(e-13+22*catalan) |
|
3.14158000062992 |
|
>>> log(24*e-6+4*catalan)-1 |
|
3.14158791577159 |
|
|
|
**Symbolic processing** |
|
|
|
The output formula can be evaluated as a Python expression. |
|
Note however that if fractions (like '2/3') are present in |
|
the formula, Python's :func:`~mpmath.eval()` may erroneously perform |
|
integer division. Note also that the output is not necessarily |
|
in the algebraically simplest form:: |
|
|
|
>>> identify(sqrt(2)) |
|
'(sqrt(8)/2)' |
|
|
|
As a solution to both problems, consider using SymPy's |
|
:func:`~mpmath.sympify` to convert the formula into a symbolic expression. |
|
SymPy can be used to pretty-print or further simplify the formula |
|
symbolically:: |
|
|
|
>>> from sympy import sympify # doctest: +SKIP |
|
>>> sympify(identify(sqrt(2))) # doctest: +SKIP |
|
2**(1/2) |
|
|
|
Sometimes :func:`~mpmath.identify` can simplify an expression further than |
|
a symbolic algorithm:: |
|
|
|
>>> from sympy import simplify # doctest: +SKIP |
|
>>> x = sympify('-1/(-3/2+(1/2)*5**(1/2))*(3/2-1/2*5**(1/2))**(1/2)') # doctest: +SKIP |
|
>>> x # doctest: +SKIP |
|
(3/2 - 5**(1/2)/2)**(-1/2) |
|
>>> x = simplify(x) # doctest: +SKIP |
|
>>> x # doctest: +SKIP |
|
2/(6 - 2*5**(1/2))**(1/2) |
|
>>> mp.dps = 30 # doctest: +SKIP |
|
>>> x = sympify(identify(x.evalf(30))) # doctest: +SKIP |
|
>>> x # doctest: +SKIP |
|
1/2 + 5**(1/2)/2 |
|
|
|
(In fact, this functionality is available directly in SymPy as the |
|
function :func:`~mpmath.nsimplify`, which is essentially a wrapper for |
|
:func:`~mpmath.identify`.) |
|
|
|
**Miscellaneous issues and limitations** |
|
|
|
The input `x` must be a real number. All base constants must be |
|
positive real numbers and must not be rationals or rational linear |
|
combinations of each other. |
|
|
|
The worst-case computation time grows quickly with the number of |
|
base constants. Already with 3 or 4 base constants, |
|
:func:`~mpmath.identify` may require several seconds to finish. To search |
|
for relations among a large number of constants, you should |
|
consider using :func:`~mpmath.pslq` directly. |
|
|
|
The extended transformations are applied to x, not the constants |
|
separately. As a result, ``identify`` will for example be able to |
|
recognize ``exp(2*pi+3)`` with ``pi`` given as a base constant, but |
|
not ``2*exp(pi)+3``. It will be able to recognize the latter if |
|
``exp(pi)`` is given explicitly as a base constant. |
|
|
|
""" |
|
|
|
solutions = [] |
|
|
|
def addsolution(s): |
|
if verbose: print("Found: ", s) |
|
solutions.append(s) |
|
|
|
x = ctx.mpf(x) |
|
|
|
|
|
if x == 0: |
|
if full: return ['0'] |
|
else: return '0' |
|
if x < 0: |
|
sol = ctx.identify(-x, constants, tol, maxcoeff, full, verbose) |
|
if sol is None: |
|
return sol |
|
if full: |
|
return ["-(%s)"%s for s in sol] |
|
else: |
|
return "-(%s)" % sol |
|
|
|
if tol: |
|
tol = ctx.mpf(tol) |
|
else: |
|
tol = ctx.eps**0.7 |
|
M = maxcoeff |
|
|
|
if constants: |
|
if isinstance(constants, dict): |
|
constants = [(ctx.mpf(v), name) for (name, v) in sorted(constants.items())] |
|
else: |
|
namespace = dict((name, getattr(ctx,name)) for name in dir(ctx)) |
|
constants = [(eval(p, namespace), p) for p in constants] |
|
else: |
|
constants = [] |
|
|
|
|
|
if 1 not in [value for (name, value) in constants]: |
|
constants = [(ctx.mpf(1), '1')] + constants |
|
|
|
|
|
for ft, ftn, red in transforms: |
|
for c, cn in constants: |
|
if red and cn == '1': |
|
continue |
|
t = ft(ctx,x,c) |
|
|
|
if abs(t) > M**2 or abs(t) < tol: |
|
continue |
|
|
|
r = ctx.pslq([t] + [a[0] for a in constants], tol, M) |
|
s = None |
|
if r is not None and max(abs(uw) for uw in r) <= M and r[0]: |
|
s = pslqstring(r, constants) |
|
|
|
else: |
|
q = ctx.pslq([ctx.one, t, t**2], tol, M) |
|
if q is not None and len(q) == 3 and q[2]: |
|
aa, bb, cc = q |
|
if max(abs(aa),abs(bb),abs(cc)) <= M: |
|
s = quadraticstring(ctx,t,aa,bb,cc) |
|
if s: |
|
if cn == '1' and ('/$c' in ftn): |
|
s = ftn.replace('$y', s).replace('/$c', '') |
|
else: |
|
s = ftn.replace('$y', s).replace('$c', cn) |
|
addsolution(s) |
|
if not full: return solutions[0] |
|
|
|
if verbose: |
|
print(".") |
|
|
|
|
|
if x != 1: |
|
|
|
ilogs = [2,3,5,7] |
|
|
|
logs = [] |
|
for a, s in constants: |
|
if not sum(bool(ctx.findpoly(ctx.ln(a)/ctx.ln(i),1)) for i in ilogs): |
|
logs.append((ctx.ln(a), s)) |
|
logs = [(ctx.ln(i),str(i)) for i in ilogs] + logs |
|
r = ctx.pslq([ctx.ln(x)] + [a[0] for a in logs], tol, M) |
|
if r is not None and max(abs(uw) for uw in r) <= M and r[0]: |
|
addsolution(prodstring(r, logs)) |
|
if not full: return solutions[0] |
|
|
|
if full: |
|
return sorted(solutions, key=len) |
|
else: |
|
return None |
|
|
|
IdentificationMethods.pslq = pslq |
|
IdentificationMethods.findpoly = findpoly |
|
IdentificationMethods.identify = identify |
|
|
|
|
|
if __name__ == '__main__': |
|
import doctest |
|
doctest.testmod() |
|
|