reach-vb's picture
reach-vb HF staff
5196c2cb84e1a787c43794229370aa2a1975ce16c5a8ae4ded7470fd1bfe6153
eb90369
raw
history blame
29.3 kB
"""
Implements the PSLQ algorithm for integer relation detection,
and derivative algorithms for constant recognition.
"""
from .libmp.backend import xrange
from .libmp import int_types, sqrt_fixed
# round to nearest integer (can be done more elegantly...)
def round_fixed(x, prec):
return ((x + (1<<(prec-1))) >> prec) << prec
class IdentificationMethods(object):
pass
def pslq(ctx, x, tol=None, maxcoeff=1000, maxsteps=100, verbose=False):
r"""
Given a vector of real numbers `x = [x_0, x_1, ..., x_n]`, ``pslq(x)``
uses the PSLQ algorithm to find a list of integers
`[c_0, c_1, ..., c_n]` such that
.. math ::
|c_1 x_1 + c_2 x_2 + ... + c_n x_n| < \mathrm{tol}
and such that `\max |c_k| < \mathrm{maxcoeff}`. If no such vector
exists, :func:`~mpmath.pslq` returns ``None``. The tolerance defaults to
3/4 of the working precision.
**Examples**
Find rational approximations for `\pi`::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> pslq([-1, pi], tol=0.01)
[22, 7]
>>> pslq([-1, pi], tol=0.001)
[355, 113]
>>> mpf(22)/7; mpf(355)/113; +pi
3.14285714285714
3.14159292035398
3.14159265358979
Pi is not a rational number with denominator less than 1000::
>>> pslq([-1, pi])
>>>
To within the standard precision, it can however be approximated
by at least one rational number with denominator less than `10^{12}`::
>>> p, q = pslq([-1, pi], maxcoeff=10**12)
>>> print(p); print(q)
238410049439
75888275702
>>> mpf(p)/q
3.14159265358979
The PSLQ algorithm can be applied to long vectors. For example,
we can investigate the rational (in)dependence of integer square
roots::
>>> mp.dps = 30
>>> pslq([sqrt(n) for n in range(2, 5+1)])
>>>
>>> pslq([sqrt(n) for n in range(2, 6+1)])
>>>
>>> pslq([sqrt(n) for n in range(2, 8+1)])
[2, 0, 0, 0, 0, 0, -1]
**Machin formulas**
A famous formula for `\pi` is Machin's,
.. math ::
\frac{\pi}{4} = 4 \operatorname{acot} 5 - \operatorname{acot} 239
There are actually infinitely many formulas of this type. Two
others are
.. math ::
\frac{\pi}{4} = \operatorname{acot} 1
\frac{\pi}{4} = 12 \operatorname{acot} 49 + 32 \operatorname{acot} 57
+ 5 \operatorname{acot} 239 + 12 \operatorname{acot} 110443
We can easily verify the formulas using the PSLQ algorithm::
>>> mp.dps = 30
>>> pslq([pi/4, acot(1)])
[1, -1]
>>> pslq([pi/4, acot(5), acot(239)])
[1, -4, 1]
>>> pslq([pi/4, acot(49), acot(57), acot(239), acot(110443)])
[1, -12, -32, 5, -12]
We could try to generate a custom Machin-like formula by running
the PSLQ algorithm with a few inverse cotangent values, for example
acot(2), acot(3) ... acot(10). Unfortunately, there is a linear
dependence among these values, resulting in only that dependence
being detected, with a zero coefficient for `\pi`::
>>> pslq([pi] + [acot(n) for n in range(2,11)])
[0, 1, -1, 0, 0, 0, -1, 0, 0, 0]
We get better luck by removing linearly dependent terms::
>>> pslq([pi] + [acot(n) for n in range(2,11) if n not in (3, 5)])
[1, -8, 0, 0, 4, 0, 0, 0]
In other words, we found the following formula::
>>> 8*acot(2) - 4*acot(7)
3.14159265358979323846264338328
>>> +pi
3.14159265358979323846264338328
**Algorithm**
This is a fairly direct translation to Python of the pseudocode given by
David Bailey, "The PSLQ Integer Relation Algorithm":
http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
The present implementation uses fixed-point instead of floating-point
arithmetic, since this is significantly (about 7x) faster.
"""
n = len(x)
if n < 2:
raise ValueError("n cannot be less than 2")
# At too low precision, the algorithm becomes meaningless
prec = ctx.prec
if prec < 53:
raise ValueError("prec cannot be less than 53")
if verbose and prec // max(2,n) < 5:
print("Warning: precision for PSLQ may be too low")
target = int(prec * 0.75)
if tol is None:
tol = ctx.mpf(2)**(-target)
else:
tol = ctx.convert(tol)
extra = 60
prec += extra
if verbose:
print("PSLQ using prec %i and tol %s" % (prec, ctx.nstr(tol)))
tol = ctx.to_fixed(tol, prec)
assert tol
# Convert to fixed-point numbers. The dummy None is added so we can
# use 1-based indexing. (This just allows us to be consistent with
# Bailey's indexing. The algorithm is 100 lines long, so debugging
# a single wrong index can be painful.)
x = [None] + [ctx.to_fixed(ctx.mpf(xk), prec) for xk in x]
# Sanity check on magnitudes
minx = min(abs(xx) for xx in x[1:])
if not minx:
raise ValueError("PSLQ requires a vector of nonzero numbers")
if minx < tol//100:
if verbose:
print("STOPPING: (one number is too small)")
return None
g = sqrt_fixed((4<<prec)//3, prec)
A = {}
B = {}
H = {}
# Initialization
# step 1
for i in xrange(1, n+1):
for j in xrange(1, n+1):
A[i,j] = B[i,j] = (i==j) << prec
H[i,j] = 0
# step 2
s = [None] + [0] * n
for k in xrange(1, n+1):
t = 0
for j in xrange(k, n+1):
t += (x[j]**2 >> prec)
s[k] = sqrt_fixed(t, prec)
t = s[1]
y = x[:]
for k in xrange(1, n+1):
y[k] = (x[k] << prec) // t
s[k] = (s[k] << prec) // t
# step 3
for i in xrange(1, n+1):
for j in xrange(i+1, n):
H[i,j] = 0
if i <= n-1:
if s[i]:
H[i,i] = (s[i+1] << prec) // s[i]
else:
H[i,i] = 0
for j in range(1, i):
sjj1 = s[j]*s[j+1]
if sjj1:
H[i,j] = ((-y[i]*y[j])<<prec)//sjj1
else:
H[i,j] = 0
# step 4
for i in xrange(2, n+1):
for j in xrange(i-1, 0, -1):
#t = floor(H[i,j]/H[j,j] + 0.5)
if H[j,j]:
t = round_fixed((H[i,j] << prec)//H[j,j], prec)
else:
#t = 0
continue
y[j] = y[j] + (t*y[i] >> prec)
for k in xrange(1, j+1):
H[i,k] = H[i,k] - (t*H[j,k] >> prec)
for k in xrange(1, n+1):
A[i,k] = A[i,k] - (t*A[j,k] >> prec)
B[k,j] = B[k,j] + (t*B[k,i] >> prec)
# Main algorithm
for REP in range(maxsteps):
# Step 1
m = -1
szmax = -1
for i in range(1, n):
h = H[i,i]
sz = (g**i * abs(h)) >> (prec*(i-1))
if sz > szmax:
m = i
szmax = sz
# Step 2
y[m], y[m+1] = y[m+1], y[m]
for i in xrange(1,n+1): H[m,i], H[m+1,i] = H[m+1,i], H[m,i]
for i in xrange(1,n+1): A[m,i], A[m+1,i] = A[m+1,i], A[m,i]
for i in xrange(1,n+1): B[i,m], B[i,m+1] = B[i,m+1], B[i,m]
# Step 3
if m <= n - 2:
t0 = sqrt_fixed((H[m,m]**2 + H[m,m+1]**2)>>prec, prec)
# A zero element probably indicates that the precision has
# been exhausted. XXX: this could be spurious, due to
# using fixed-point arithmetic
if not t0:
break
t1 = (H[m,m] << prec) // t0
t2 = (H[m,m+1] << prec) // t0
for i in xrange(m, n+1):
t3 = H[i,m]
t4 = H[i,m+1]
H[i,m] = (t1*t3+t2*t4) >> prec
H[i,m+1] = (-t2*t3+t1*t4) >> prec
# Step 4
for i in xrange(m+1, n+1):
for j in xrange(min(i-1, m+1), 0, -1):
try:
t = round_fixed((H[i,j] << prec)//H[j,j], prec)
# Precision probably exhausted
except ZeroDivisionError:
break
y[j] = y[j] + ((t*y[i]) >> prec)
for k in xrange(1, j+1):
H[i,k] = H[i,k] - (t*H[j,k] >> prec)
for k in xrange(1, n+1):
A[i,k] = A[i,k] - (t*A[j,k] >> prec)
B[k,j] = B[k,j] + (t*B[k,i] >> prec)
# Until a relation is found, the error typically decreases
# slowly (e.g. a factor 1-10) with each step TODO: we could
# compare err from two successive iterations. If there is a
# large drop (several orders of magnitude), that indicates a
# "high quality" relation was detected. Reporting this to
# the user somehow might be useful.
best_err = maxcoeff<<prec
for i in xrange(1, n+1):
err = abs(y[i])
# Maybe we are done?
if err < tol:
# We are done if the coefficients are acceptable
vec = [int(round_fixed(B[j,i], prec) >> prec) for j in \
range(1,n+1)]
if max(abs(v) for v in vec) < maxcoeff:
if verbose:
print("FOUND relation at iter %i/%i, error: %s" % \
(REP, maxsteps, ctx.nstr(err / ctx.mpf(2)**prec, 1)))
return vec
best_err = min(err, best_err)
# Calculate a lower bound for the norm. We could do this
# more exactly (using the Euclidean norm) but there is probably
# no practical benefit.
recnorm = max(abs(h) for h in H.values())
if recnorm:
norm = ((1 << (2*prec)) // recnorm) >> prec
norm //= 100
else:
norm = ctx.inf
if verbose:
print("%i/%i: Error: %8s Norm: %s" % \
(REP, maxsteps, ctx.nstr(best_err / ctx.mpf(2)**prec, 1), norm))
if norm >= maxcoeff:
break
if verbose:
print("CANCELLING after step %i/%i." % (REP, maxsteps))
print("Could not find an integer relation. Norm bound: %s" % norm)
return None
def findpoly(ctx, x, n=1, **kwargs):
r"""
``findpoly(x, n)`` returns the coefficients of an integer
polynomial `P` of degree at most `n` such that `P(x) \approx 0`.
If no polynomial having `x` as a root can be found,
:func:`~mpmath.findpoly` returns ``None``.
:func:`~mpmath.findpoly` works by successively calling :func:`~mpmath.pslq` with
the vectors `[1, x]`, `[1, x, x^2]`, `[1, x, x^2, x^3]`, ...,
`[1, x, x^2, .., x^n]` as input. Keyword arguments given to
:func:`~mpmath.findpoly` are forwarded verbatim to :func:`~mpmath.pslq`. In
particular, you can specify a tolerance for `P(x)` with ``tol``
and a maximum permitted coefficient size with ``maxcoeff``.
For large values of `n`, it is recommended to run :func:`~mpmath.findpoly`
at high precision; preferably 50 digits or more.
**Examples**
By default (degree `n = 1`), :func:`~mpmath.findpoly` simply finds a linear
polynomial with a rational root::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> findpoly(0.7)
[-10, 7]
The generated coefficient list is valid input to ``polyval`` and
``polyroots``::
>>> nprint(polyval(findpoly(phi, 2), phi), 1)
-2.0e-16
>>> for r in polyroots(findpoly(phi, 2)):
... print(r)
...
-0.618033988749895
1.61803398874989
Numbers of the form `m + n \sqrt p` for integers `(m, n, p)` are
solutions to quadratic equations. As we find here, `1+\sqrt 2`
is a root of the polynomial `x^2 - 2x - 1`::
>>> findpoly(1+sqrt(2), 2)
[1, -2, -1]
>>> findroot(lambda x: x**2 - 2*x - 1, 1)
2.4142135623731
Despite only containing square roots, the following number results
in a polynomial of degree 4::
>>> findpoly(sqrt(2)+sqrt(3), 4)
[1, 0, -10, 0, 1]
In fact, `x^4 - 10x^2 + 1` is the *minimal polynomial* of
`r = \sqrt 2 + \sqrt 3`, meaning that a rational polynomial of
lower degree having `r` as a root does not exist. Given sufficient
precision, :func:`~mpmath.findpoly` will usually find the correct
minimal polynomial of a given algebraic number.
**Non-algebraic numbers**
If :func:`~mpmath.findpoly` fails to find a polynomial with given
coefficient size and tolerance constraints, that means no such
polynomial exists.
We can verify that `\pi` is not an algebraic number of degree 3 with
coefficients less than 1000::
>>> mp.dps = 15
>>> findpoly(pi, 3)
>>>
It is always possible to find an algebraic approximation of a number
using one (or several) of the following methods:
1. Increasing the permitted degree
2. Allowing larger coefficients
3. Reducing the tolerance
One example of each method is shown below::
>>> mp.dps = 15
>>> findpoly(pi, 4)
[95, -545, 863, -183, -298]
>>> findpoly(pi, 3, maxcoeff=10000)
[836, -1734, -2658, -457]
>>> findpoly(pi, 3, tol=1e-7)
[-4, 22, -29, -2]
It is unknown whether Euler's constant is transcendental (or even
irrational). We can use :func:`~mpmath.findpoly` to check that if is
an algebraic number, its minimal polynomial must have degree
at least 7 and a coefficient of magnitude at least 1000000::
>>> mp.dps = 200
>>> findpoly(euler, 6, maxcoeff=10**6, tol=1e-100, maxsteps=1000)
>>>
Note that the high precision and strict tolerance is necessary
for such high-degree runs, since otherwise unwanted low-accuracy
approximations will be detected. It may also be necessary to set
maxsteps high to prevent a premature exit (before the coefficient
bound has been reached). Running with ``verbose=True`` to get an
idea what is happening can be useful.
"""
x = ctx.mpf(x)
if n < 1:
raise ValueError("n cannot be less than 1")
if x == 0:
return [1, 0]
xs = [ctx.mpf(1)]
for i in range(1,n+1):
xs.append(x**i)
a = ctx.pslq(xs, **kwargs)
if a is not None:
return a[::-1]
def fracgcd(p, q):
x, y = p, q
while y:
x, y = y, x % y
if x != 1:
p //= x
q //= x
if q == 1:
return p
return p, q
def pslqstring(r, constants):
q = r[0]
r = r[1:]
s = []
for i in range(len(r)):
p = r[i]
if p:
z = fracgcd(-p,q)
cs = constants[i][1]
if cs == '1':
cs = ''
else:
cs = '*' + cs
if isinstance(z, int_types):
if z > 0: term = str(z) + cs
else: term = ("(%s)" % z) + cs
else:
term = ("(%s/%s)" % z) + cs
s.append(term)
s = ' + '.join(s)
if '+' in s or '*' in s:
s = '(' + s + ')'
return s or '0'
def prodstring(r, constants):
q = r[0]
r = r[1:]
num = []
den = []
for i in range(len(r)):
p = r[i]
if p:
z = fracgcd(-p,q)
cs = constants[i][1]
if isinstance(z, int_types):
if abs(z) == 1: t = cs
else: t = '%s**%s' % (cs, abs(z))
([num,den][z<0]).append(t)
else:
t = '%s**(%s/%s)' % (cs, abs(z[0]), z[1])
([num,den][z[0]<0]).append(t)
num = '*'.join(num)
den = '*'.join(den)
if num and den: return "(%s)/(%s)" % (num, den)
if num: return num
if den: return "1/(%s)" % den
def quadraticstring(ctx,t,a,b,c):
if c < 0:
a,b,c = -a,-b,-c
u1 = (-b+ctx.sqrt(b**2-4*a*c))/(2*c)
u2 = (-b-ctx.sqrt(b**2-4*a*c))/(2*c)
if abs(u1-t) < abs(u2-t):
if b: s = '((%s+sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c)
else: s = '(sqrt(%s)/%s)' % (-4*a*c,2*c)
else:
if b: s = '((%s-sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c)
else: s = '(-sqrt(%s)/%s)' % (-4*a*c,2*c)
return s
# Transformation y = f(x,c), with inverse function x = f(y,c)
# The third entry indicates whether the transformation is
# redundant when c = 1
transforms = [
(lambda ctx,x,c: x*c, '$y/$c', 0),
(lambda ctx,x,c: x/c, '$c*$y', 1),
(lambda ctx,x,c: c/x, '$c/$y', 0),
(lambda ctx,x,c: (x*c)**2, 'sqrt($y)/$c', 0),
(lambda ctx,x,c: (x/c)**2, '$c*sqrt($y)', 1),
(lambda ctx,x,c: (c/x)**2, '$c/sqrt($y)', 0),
(lambda ctx,x,c: c*x**2, 'sqrt($y)/sqrt($c)', 1),
(lambda ctx,x,c: x**2/c, 'sqrt($c)*sqrt($y)', 1),
(lambda ctx,x,c: c/x**2, 'sqrt($c)/sqrt($y)', 1),
(lambda ctx,x,c: ctx.sqrt(x*c), '$y**2/$c', 0),
(lambda ctx,x,c: ctx.sqrt(x/c), '$c*$y**2', 1),
(lambda ctx,x,c: ctx.sqrt(c/x), '$c/$y**2', 0),
(lambda ctx,x,c: c*ctx.sqrt(x), '$y**2/$c**2', 1),
(lambda ctx,x,c: ctx.sqrt(x)/c, '$c**2*$y**2', 1),
(lambda ctx,x,c: c/ctx.sqrt(x), '$c**2/$y**2', 1),
(lambda ctx,x,c: ctx.exp(x*c), 'log($y)/$c', 0),
(lambda ctx,x,c: ctx.exp(x/c), '$c*log($y)', 1),
(lambda ctx,x,c: ctx.exp(c/x), '$c/log($y)', 0),
(lambda ctx,x,c: c*ctx.exp(x), 'log($y/$c)', 1),
(lambda ctx,x,c: ctx.exp(x)/c, 'log($c*$y)', 1),
(lambda ctx,x,c: c/ctx.exp(x), 'log($c/$y)', 0),
(lambda ctx,x,c: ctx.ln(x*c), 'exp($y)/$c', 0),
(lambda ctx,x,c: ctx.ln(x/c), '$c*exp($y)', 1),
(lambda ctx,x,c: ctx.ln(c/x), '$c/exp($y)', 0),
(lambda ctx,x,c: c*ctx.ln(x), 'exp($y/$c)', 1),
(lambda ctx,x,c: ctx.ln(x)/c, 'exp($c*$y)', 1),
(lambda ctx,x,c: c/ctx.ln(x), 'exp($c/$y)', 0),
]
def identify(ctx, x, constants=[], tol=None, maxcoeff=1000, full=False,
verbose=False):
r"""
Given a real number `x`, ``identify(x)`` attempts to find an exact
formula for `x`. This formula is returned as a string. If no match
is found, ``None`` is returned. With ``full=True``, a list of
matching formulas is returned.
As a simple example, :func:`~mpmath.identify` will find an algebraic
formula for the golden ratio::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> identify(phi)
'((1+sqrt(5))/2)'
:func:`~mpmath.identify` can identify simple algebraic numbers and simple
combinations of given base constants, as well as certain basic
transformations thereof. More specifically, :func:`~mpmath.identify`
looks for the following:
1. Fractions
2. Quadratic algebraic numbers
3. Rational linear combinations of the base constants
4. Any of the above after first transforming `x` into `f(x)` where
`f(x)` is `1/x`, `\sqrt x`, `x^2`, `\log x` or `\exp x`, either
directly or with `x` or `f(x)` multiplied or divided by one of
the base constants
5. Products of fractional powers of the base constants and
small integers
Base constants can be given as a list of strings representing mpmath
expressions (:func:`~mpmath.identify` will ``eval`` the strings to numerical
values and use the original strings for the output), or as a dict of
formula:value pairs.
In order not to produce spurious results, :func:`~mpmath.identify` should
be used with high precision; preferably 50 digits or more.
**Examples**
Simple identifications can be performed safely at standard
precision. Here the default recognition of rational, algebraic,
and exp/log of algebraic numbers is demonstrated::
>>> mp.dps = 15
>>> identify(0.22222222222222222)
'(2/9)'
>>> identify(1.9662210973805663)
'sqrt(((24+sqrt(48))/8))'
>>> identify(4.1132503787829275)
'exp((sqrt(8)/2))'
>>> identify(0.881373587019543)
'log(((2+sqrt(8))/2))'
By default, :func:`~mpmath.identify` does not recognize `\pi`. At standard
precision it finds a not too useful approximation. At slightly
increased precision, this approximation is no longer accurate
enough and :func:`~mpmath.identify` more correctly returns ``None``::
>>> identify(pi)
'(2**(176/117)*3**(20/117)*5**(35/39))/(7**(92/117))'
>>> mp.dps = 30
>>> identify(pi)
>>>
Numbers such as `\pi`, and simple combinations of user-defined
constants, can be identified if they are provided explicitly::
>>> identify(3*pi-2*e, ['pi', 'e'])
'(3*pi + (-2)*e)'
Here is an example using a dict of constants. Note that the
constants need not be "atomic"; :func:`~mpmath.identify` can just
as well express the given number in terms of expressions
given by formulas::
>>> identify(pi+e, {'a':pi+2, 'b':2*e})
'((-2) + 1*a + (1/2)*b)'
Next, we attempt some identifications with a set of base constants.
It is necessary to increase the precision a bit.
>>> mp.dps = 50
>>> base = ['sqrt(2)','pi','log(2)']
>>> identify(0.25, base)
'(1/4)'
>>> identify(3*pi + 2*sqrt(2) + 5*log(2)/7, base)
'(2*sqrt(2) + 3*pi + (5/7)*log(2))'
>>> identify(exp(pi+2), base)
'exp((2 + 1*pi))'
>>> identify(1/(3+sqrt(2)), base)
'((3/7) + (-1/7)*sqrt(2))'
>>> identify(sqrt(2)/(3*pi+4), base)
'sqrt(2)/(4 + 3*pi)'
>>> identify(5**(mpf(1)/3)*pi*log(2)**2, base)
'5**(1/3)*pi*log(2)**2'
An example of an erroneous solution being found when too low
precision is used::
>>> mp.dps = 15
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)'])
'((11/25) + (-158/75)*pi + (76/75)*e + (44/15)*sqrt(2))'
>>> mp.dps = 50
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)'])
'1/(3*pi + (-4)*e + 2*sqrt(2))'
**Finding approximate solutions**
The tolerance ``tol`` defaults to 3/4 of the working precision.
Lowering the tolerance is useful for finding approximate matches.
We can for example try to generate approximations for pi::
>>> mp.dps = 15
>>> identify(pi, tol=1e-2)
'(22/7)'
>>> identify(pi, tol=1e-3)
'(355/113)'
>>> identify(pi, tol=1e-10)
'(5**(339/269))/(2**(64/269)*3**(13/269)*7**(92/269))'
With ``full=True``, and by supplying a few base constants,
``identify`` can generate almost endless lists of approximations
for any number (the output below has been truncated to show only
the first few)::
>>> for p in identify(pi, ['e', 'catalan'], tol=1e-5, full=True):
... print(p)
... # doctest: +ELLIPSIS
e/log((6 + (-4/3)*e))
(3**3*5*e*catalan**2)/(2*7**2)
sqrt(((-13) + 1*e + 22*catalan))
log(((-6) + 24*e + 4*catalan)/e)
exp(catalan*((-1/5) + (8/15)*e))
catalan*(6 + (-6)*e + 15*catalan)
sqrt((5 + 26*e + (-3)*catalan))/e
e*sqrt(((-27) + 2*e + 25*catalan))
log(((-1) + (-11)*e + 59*catalan))
((3/20) + (21/20)*e + (3/20)*catalan)
...
The numerical values are roughly as close to `\pi` as permitted by the
specified tolerance:
>>> e/log(6-4*e/3)
3.14157719846001
>>> 135*e*catalan**2/98
3.14166950419369
>>> sqrt(e-13+22*catalan)
3.14158000062992
>>> log(24*e-6+4*catalan)-1
3.14158791577159
**Symbolic processing**
The output formula can be evaluated as a Python expression.
Note however that if fractions (like '2/3') are present in
the formula, Python's :func:`~mpmath.eval()` may erroneously perform
integer division. Note also that the output is not necessarily
in the algebraically simplest form::
>>> identify(sqrt(2))
'(sqrt(8)/2)'
As a solution to both problems, consider using SymPy's
:func:`~mpmath.sympify` to convert the formula into a symbolic expression.
SymPy can be used to pretty-print or further simplify the formula
symbolically::
>>> from sympy import sympify # doctest: +SKIP
>>> sympify(identify(sqrt(2))) # doctest: +SKIP
2**(1/2)
Sometimes :func:`~mpmath.identify` can simplify an expression further than
a symbolic algorithm::
>>> from sympy import simplify # doctest: +SKIP
>>> x = sympify('-1/(-3/2+(1/2)*5**(1/2))*(3/2-1/2*5**(1/2))**(1/2)') # doctest: +SKIP
>>> x # doctest: +SKIP
(3/2 - 5**(1/2)/2)**(-1/2)
>>> x = simplify(x) # doctest: +SKIP
>>> x # doctest: +SKIP
2/(6 - 2*5**(1/2))**(1/2)
>>> mp.dps = 30 # doctest: +SKIP
>>> x = sympify(identify(x.evalf(30))) # doctest: +SKIP
>>> x # doctest: +SKIP
1/2 + 5**(1/2)/2
(In fact, this functionality is available directly in SymPy as the
function :func:`~mpmath.nsimplify`, which is essentially a wrapper for
:func:`~mpmath.identify`.)
**Miscellaneous issues and limitations**
The input `x` must be a real number. All base constants must be
positive real numbers and must not be rationals or rational linear
combinations of each other.
The worst-case computation time grows quickly with the number of
base constants. Already with 3 or 4 base constants,
:func:`~mpmath.identify` may require several seconds to finish. To search
for relations among a large number of constants, you should
consider using :func:`~mpmath.pslq` directly.
The extended transformations are applied to x, not the constants
separately. As a result, ``identify`` will for example be able to
recognize ``exp(2*pi+3)`` with ``pi`` given as a base constant, but
not ``2*exp(pi)+3``. It will be able to recognize the latter if
``exp(pi)`` is given explicitly as a base constant.
"""
solutions = []
def addsolution(s):
if verbose: print("Found: ", s)
solutions.append(s)
x = ctx.mpf(x)
# Further along, x will be assumed positive
if x == 0:
if full: return ['0']
else: return '0'
if x < 0:
sol = ctx.identify(-x, constants, tol, maxcoeff, full, verbose)
if sol is None:
return sol
if full:
return ["-(%s)"%s for s in sol]
else:
return "-(%s)" % sol
if tol:
tol = ctx.mpf(tol)
else:
tol = ctx.eps**0.7
M = maxcoeff
if constants:
if isinstance(constants, dict):
constants = [(ctx.mpf(v), name) for (name, v) in sorted(constants.items())]
else:
namespace = dict((name, getattr(ctx,name)) for name in dir(ctx))
constants = [(eval(p, namespace), p) for p in constants]
else:
constants = []
# We always want to find at least rational terms
if 1 not in [value for (name, value) in constants]:
constants = [(ctx.mpf(1), '1')] + constants
# PSLQ with simple algebraic and functional transformations
for ft, ftn, red in transforms:
for c, cn in constants:
if red and cn == '1':
continue
t = ft(ctx,x,c)
# Prevent exponential transforms from wreaking havoc
if abs(t) > M**2 or abs(t) < tol:
continue
# Linear combination of base constants
r = ctx.pslq([t] + [a[0] for a in constants], tol, M)
s = None
if r is not None and max(abs(uw) for uw in r) <= M and r[0]:
s = pslqstring(r, constants)
# Quadratic algebraic numbers
else:
q = ctx.pslq([ctx.one, t, t**2], tol, M)
if q is not None and len(q) == 3 and q[2]:
aa, bb, cc = q
if max(abs(aa),abs(bb),abs(cc)) <= M:
s = quadraticstring(ctx,t,aa,bb,cc)
if s:
if cn == '1' and ('/$c' in ftn):
s = ftn.replace('$y', s).replace('/$c', '')
else:
s = ftn.replace('$y', s).replace('$c', cn)
addsolution(s)
if not full: return solutions[0]
if verbose:
print(".")
# Check for a direct multiplicative formula
if x != 1:
# Allow fractional powers of fractions
ilogs = [2,3,5,7]
# Watch out for existing fractional powers of fractions
logs = []
for a, s in constants:
if not sum(bool(ctx.findpoly(ctx.ln(a)/ctx.ln(i),1)) for i in ilogs):
logs.append((ctx.ln(a), s))
logs = [(ctx.ln(i),str(i)) for i in ilogs] + logs
r = ctx.pslq([ctx.ln(x)] + [a[0] for a in logs], tol, M)
if r is not None and max(abs(uw) for uw in r) <= M and r[0]:
addsolution(prodstring(r, logs))
if not full: return solutions[0]
if full:
return sorted(solutions, key=len)
else:
return None
IdentificationMethods.pslq = pslq
IdentificationMethods.findpoly = findpoly
IdentificationMethods.identify = identify
if __name__ == '__main__':
import doctest
doctest.testmod()