prince-canuma
commited on
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +29 -0
- added_tokens.json +428 -0
- config.json +39 -0
- config_molmo.py +60 -0
- image_preprocessing_molmo.py +546 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_molmo.py +2367 -0
- preprocessing_molmo.py +192 -0
- preprocessor_config.json +32 -0
- processor_config.json +6 -0
- special_tokens_map.json +441 -0
- tokenizer.json +3 -0
- tokenizer_config.json +3852 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- openai/clip-vit-large-patch14-336
|
4 |
+
- Qwen/Qwen2-7B
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
license: apache-2.0
|
9 |
+
pipeline_tag: image-text-to-text
|
10 |
+
tags:
|
11 |
+
- multimodal
|
12 |
+
- olmo
|
13 |
+
- molmo
|
14 |
+
- pixmo
|
15 |
+
- mlx
|
16 |
+
---
|
17 |
+
|
18 |
+
# mlx-community/Molmo-7B-D-0924-6bit
|
19 |
+
This model was converted to MLX format from [`allenai/Molmo-7B-D-0924`]() using mlx-vlm version **0.1.0**.
|
20 |
+
Refer to the [original model card](https://huggingface.co/allenai/Molmo-7B-D-0924) for more details on the model.
|
21 |
+
## Use with mlx
|
22 |
+
|
23 |
+
```bash
|
24 |
+
pip install -U mlx-vlm
|
25 |
+
```
|
26 |
+
|
27 |
+
```bash
|
28 |
+
python -m mlx_vlm.generate --model mlx-community/Molmo-7B-D-0924-6bit --max-tokens 100 --temp 0.0
|
29 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<im_col>": 152067,
|
3 |
+
"<im_end>": 152065,
|
4 |
+
"<im_patch>": 152066,
|
5 |
+
"<im_start>": 152064,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|im_end|>": 151645,
|
8 |
+
"<|im_start|>": 151644,
|
9 |
+
"<|image|>": 152068,
|
10 |
+
"|<EXTRA_TOKENS_0>|": 151646,
|
11 |
+
"|<EXTRA_TOKENS_100>|": 151746,
|
12 |
+
"|<EXTRA_TOKENS_101>|": 151747,
|
13 |
+
"|<EXTRA_TOKENS_102>|": 151748,
|
14 |
+
"|<EXTRA_TOKENS_103>|": 151749,
|
15 |
+
"|<EXTRA_TOKENS_104>|": 151750,
|
16 |
+
"|<EXTRA_TOKENS_105>|": 151751,
|
17 |
+
"|<EXTRA_TOKENS_106>|": 151752,
|
18 |
+
"|<EXTRA_TOKENS_107>|": 151753,
|
19 |
+
"|<EXTRA_TOKENS_108>|": 151754,
|
20 |
+
"|<EXTRA_TOKENS_109>|": 151755,
|
21 |
+
"|<EXTRA_TOKENS_10>|": 151656,
|
22 |
+
"|<EXTRA_TOKENS_110>|": 151756,
|
23 |
+
"|<EXTRA_TOKENS_111>|": 151757,
|
24 |
+
"|<EXTRA_TOKENS_112>|": 151758,
|
25 |
+
"|<EXTRA_TOKENS_113>|": 151759,
|
26 |
+
"|<EXTRA_TOKENS_114>|": 151760,
|
27 |
+
"|<EXTRA_TOKENS_115>|": 151761,
|
28 |
+
"|<EXTRA_TOKENS_116>|": 151762,
|
29 |
+
"|<EXTRA_TOKENS_117>|": 151763,
|
30 |
+
"|<EXTRA_TOKENS_118>|": 151764,
|
31 |
+
"|<EXTRA_TOKENS_119>|": 151765,
|
32 |
+
"|<EXTRA_TOKENS_11>|": 151657,
|
33 |
+
"|<EXTRA_TOKENS_120>|": 151766,
|
34 |
+
"|<EXTRA_TOKENS_121>|": 151767,
|
35 |
+
"|<EXTRA_TOKENS_122>|": 151768,
|
36 |
+
"|<EXTRA_TOKENS_123>|": 151769,
|
37 |
+
"|<EXTRA_TOKENS_124>|": 151770,
|
38 |
+
"|<EXTRA_TOKENS_125>|": 151771,
|
39 |
+
"|<EXTRA_TOKENS_126>|": 151772,
|
40 |
+
"|<EXTRA_TOKENS_127>|": 151773,
|
41 |
+
"|<EXTRA_TOKENS_128>|": 151774,
|
42 |
+
"|<EXTRA_TOKENS_129>|": 151775,
|
43 |
+
"|<EXTRA_TOKENS_12>|": 151658,
|
44 |
+
"|<EXTRA_TOKENS_130>|": 151776,
|
45 |
+
"|<EXTRA_TOKENS_131>|": 151777,
|
46 |
+
"|<EXTRA_TOKENS_132>|": 151778,
|
47 |
+
"|<EXTRA_TOKENS_133>|": 151779,
|
48 |
+
"|<EXTRA_TOKENS_134>|": 151780,
|
49 |
+
"|<EXTRA_TOKENS_135>|": 151781,
|
50 |
+
"|<EXTRA_TOKENS_136>|": 151782,
|
51 |
+
"|<EXTRA_TOKENS_137>|": 151783,
|
52 |
+
"|<EXTRA_TOKENS_138>|": 151784,
|
53 |
+
"|<EXTRA_TOKENS_139>|": 151785,
|
54 |
+
"|<EXTRA_TOKENS_13>|": 151659,
|
55 |
+
"|<EXTRA_TOKENS_140>|": 151786,
|
56 |
+
"|<EXTRA_TOKENS_141>|": 151787,
|
57 |
+
"|<EXTRA_TOKENS_142>|": 151788,
|
58 |
+
"|<EXTRA_TOKENS_143>|": 151789,
|
59 |
+
"|<EXTRA_TOKENS_144>|": 151790,
|
60 |
+
"|<EXTRA_TOKENS_145>|": 151791,
|
61 |
+
"|<EXTRA_TOKENS_146>|": 151792,
|
62 |
+
"|<EXTRA_TOKENS_147>|": 151793,
|
63 |
+
"|<EXTRA_TOKENS_148>|": 151794,
|
64 |
+
"|<EXTRA_TOKENS_149>|": 151795,
|
65 |
+
"|<EXTRA_TOKENS_14>|": 151660,
|
66 |
+
"|<EXTRA_TOKENS_150>|": 151796,
|
67 |
+
"|<EXTRA_TOKENS_151>|": 151797,
|
68 |
+
"|<EXTRA_TOKENS_152>|": 151798,
|
69 |
+
"|<EXTRA_TOKENS_153>|": 151799,
|
70 |
+
"|<EXTRA_TOKENS_154>|": 151800,
|
71 |
+
"|<EXTRA_TOKENS_155>|": 151801,
|
72 |
+
"|<EXTRA_TOKENS_156>|": 151802,
|
73 |
+
"|<EXTRA_TOKENS_157>|": 151803,
|
74 |
+
"|<EXTRA_TOKENS_158>|": 151804,
|
75 |
+
"|<EXTRA_TOKENS_159>|": 151805,
|
76 |
+
"|<EXTRA_TOKENS_15>|": 151661,
|
77 |
+
"|<EXTRA_TOKENS_160>|": 151806,
|
78 |
+
"|<EXTRA_TOKENS_161>|": 151807,
|
79 |
+
"|<EXTRA_TOKENS_162>|": 151808,
|
80 |
+
"|<EXTRA_TOKENS_163>|": 151809,
|
81 |
+
"|<EXTRA_TOKENS_164>|": 151810,
|
82 |
+
"|<EXTRA_TOKENS_165>|": 151811,
|
83 |
+
"|<EXTRA_TOKENS_166>|": 151812,
|
84 |
+
"|<EXTRA_TOKENS_167>|": 151813,
|
85 |
+
"|<EXTRA_TOKENS_168>|": 151814,
|
86 |
+
"|<EXTRA_TOKENS_169>|": 151815,
|
87 |
+
"|<EXTRA_TOKENS_16>|": 151662,
|
88 |
+
"|<EXTRA_TOKENS_170>|": 151816,
|
89 |
+
"|<EXTRA_TOKENS_171>|": 151817,
|
90 |
+
"|<EXTRA_TOKENS_172>|": 151818,
|
91 |
+
"|<EXTRA_TOKENS_173>|": 151819,
|
92 |
+
"|<EXTRA_TOKENS_174>|": 151820,
|
93 |
+
"|<EXTRA_TOKENS_175>|": 151821,
|
94 |
+
"|<EXTRA_TOKENS_176>|": 151822,
|
95 |
+
"|<EXTRA_TOKENS_177>|": 151823,
|
96 |
+
"|<EXTRA_TOKENS_178>|": 151824,
|
97 |
+
"|<EXTRA_TOKENS_179>|": 151825,
|
98 |
+
"|<EXTRA_TOKENS_17>|": 151663,
|
99 |
+
"|<EXTRA_TOKENS_180>|": 151826,
|
100 |
+
"|<EXTRA_TOKENS_181>|": 151827,
|
101 |
+
"|<EXTRA_TOKENS_182>|": 151828,
|
102 |
+
"|<EXTRA_TOKENS_183>|": 151829,
|
103 |
+
"|<EXTRA_TOKENS_184>|": 151830,
|
104 |
+
"|<EXTRA_TOKENS_185>|": 151831,
|
105 |
+
"|<EXTRA_TOKENS_186>|": 151832,
|
106 |
+
"|<EXTRA_TOKENS_187>|": 151833,
|
107 |
+
"|<EXTRA_TOKENS_188>|": 151834,
|
108 |
+
"|<EXTRA_TOKENS_189>|": 151835,
|
109 |
+
"|<EXTRA_TOKENS_18>|": 151664,
|
110 |
+
"|<EXTRA_TOKENS_190>|": 151836,
|
111 |
+
"|<EXTRA_TOKENS_191>|": 151837,
|
112 |
+
"|<EXTRA_TOKENS_192>|": 151838,
|
113 |
+
"|<EXTRA_TOKENS_193>|": 151839,
|
114 |
+
"|<EXTRA_TOKENS_194>|": 151840,
|
115 |
+
"|<EXTRA_TOKENS_195>|": 151841,
|
116 |
+
"|<EXTRA_TOKENS_196>|": 151842,
|
117 |
+
"|<EXTRA_TOKENS_197>|": 151843,
|
118 |
+
"|<EXTRA_TOKENS_198>|": 151844,
|
119 |
+
"|<EXTRA_TOKENS_199>|": 151845,
|
120 |
+
"|<EXTRA_TOKENS_19>|": 151665,
|
121 |
+
"|<EXTRA_TOKENS_1>|": 151647,
|
122 |
+
"|<EXTRA_TOKENS_200>|": 151846,
|
123 |
+
"|<EXTRA_TOKENS_201>|": 151847,
|
124 |
+
"|<EXTRA_TOKENS_202>|": 151848,
|
125 |
+
"|<EXTRA_TOKENS_203>|": 151849,
|
126 |
+
"|<EXTRA_TOKENS_204>|": 151850,
|
127 |
+
"|<EXTRA_TOKENS_205>|": 151851,
|
128 |
+
"|<EXTRA_TOKENS_206>|": 151852,
|
129 |
+
"|<EXTRA_TOKENS_207>|": 151853,
|
130 |
+
"|<EXTRA_TOKENS_208>|": 151854,
|
131 |
+
"|<EXTRA_TOKENS_209>|": 151855,
|
132 |
+
"|<EXTRA_TOKENS_20>|": 151666,
|
133 |
+
"|<EXTRA_TOKENS_210>|": 151856,
|
134 |
+
"|<EXTRA_TOKENS_211>|": 151857,
|
135 |
+
"|<EXTRA_TOKENS_212>|": 151858,
|
136 |
+
"|<EXTRA_TOKENS_213>|": 151859,
|
137 |
+
"|<EXTRA_TOKENS_214>|": 151860,
|
138 |
+
"|<EXTRA_TOKENS_215>|": 151861,
|
139 |
+
"|<EXTRA_TOKENS_216>|": 151862,
|
140 |
+
"|<EXTRA_TOKENS_217>|": 151863,
|
141 |
+
"|<EXTRA_TOKENS_218>|": 151864,
|
142 |
+
"|<EXTRA_TOKENS_219>|": 151865,
|
143 |
+
"|<EXTRA_TOKENS_21>|": 151667,
|
144 |
+
"|<EXTRA_TOKENS_220>|": 151866,
|
145 |
+
"|<EXTRA_TOKENS_221>|": 151867,
|
146 |
+
"|<EXTRA_TOKENS_222>|": 151868,
|
147 |
+
"|<EXTRA_TOKENS_223>|": 151869,
|
148 |
+
"|<EXTRA_TOKENS_224>|": 151870,
|
149 |
+
"|<EXTRA_TOKENS_225>|": 151871,
|
150 |
+
"|<EXTRA_TOKENS_226>|": 151872,
|
151 |
+
"|<EXTRA_TOKENS_227>|": 151873,
|
152 |
+
"|<EXTRA_TOKENS_228>|": 151874,
|
153 |
+
"|<EXTRA_TOKENS_229>|": 151875,
|
154 |
+
"|<EXTRA_TOKENS_22>|": 151668,
|
155 |
+
"|<EXTRA_TOKENS_230>|": 151876,
|
156 |
+
"|<EXTRA_TOKENS_231>|": 151877,
|
157 |
+
"|<EXTRA_TOKENS_232>|": 151878,
|
158 |
+
"|<EXTRA_TOKENS_233>|": 151879,
|
159 |
+
"|<EXTRA_TOKENS_234>|": 151880,
|
160 |
+
"|<EXTRA_TOKENS_235>|": 151881,
|
161 |
+
"|<EXTRA_TOKENS_236>|": 151882,
|
162 |
+
"|<EXTRA_TOKENS_237>|": 151883,
|
163 |
+
"|<EXTRA_TOKENS_238>|": 151884,
|
164 |
+
"|<EXTRA_TOKENS_239>|": 151885,
|
165 |
+
"|<EXTRA_TOKENS_23>|": 151669,
|
166 |
+
"|<EXTRA_TOKENS_240>|": 151886,
|
167 |
+
"|<EXTRA_TOKENS_241>|": 151887,
|
168 |
+
"|<EXTRA_TOKENS_242>|": 151888,
|
169 |
+
"|<EXTRA_TOKENS_243>|": 151889,
|
170 |
+
"|<EXTRA_TOKENS_244>|": 151890,
|
171 |
+
"|<EXTRA_TOKENS_245>|": 151891,
|
172 |
+
"|<EXTRA_TOKENS_246>|": 151892,
|
173 |
+
"|<EXTRA_TOKENS_247>|": 151893,
|
174 |
+
"|<EXTRA_TOKENS_248>|": 151894,
|
175 |
+
"|<EXTRA_TOKENS_249>|": 151895,
|
176 |
+
"|<EXTRA_TOKENS_24>|": 151670,
|
177 |
+
"|<EXTRA_TOKENS_250>|": 151896,
|
178 |
+
"|<EXTRA_TOKENS_251>|": 151897,
|
179 |
+
"|<EXTRA_TOKENS_252>|": 151898,
|
180 |
+
"|<EXTRA_TOKENS_253>|": 151899,
|
181 |
+
"|<EXTRA_TOKENS_254>|": 151900,
|
182 |
+
"|<EXTRA_TOKENS_255>|": 151901,
|
183 |
+
"|<EXTRA_TOKENS_256>|": 151902,
|
184 |
+
"|<EXTRA_TOKENS_257>|": 151903,
|
185 |
+
"|<EXTRA_TOKENS_258>|": 151904,
|
186 |
+
"|<EXTRA_TOKENS_259>|": 151905,
|
187 |
+
"|<EXTRA_TOKENS_25>|": 151671,
|
188 |
+
"|<EXTRA_TOKENS_260>|": 151906,
|
189 |
+
"|<EXTRA_TOKENS_261>|": 151907,
|
190 |
+
"|<EXTRA_TOKENS_262>|": 151908,
|
191 |
+
"|<EXTRA_TOKENS_263>|": 151909,
|
192 |
+
"|<EXTRA_TOKENS_264>|": 151910,
|
193 |
+
"|<EXTRA_TOKENS_265>|": 151911,
|
194 |
+
"|<EXTRA_TOKENS_266>|": 151912,
|
195 |
+
"|<EXTRA_TOKENS_267>|": 151913,
|
196 |
+
"|<EXTRA_TOKENS_268>|": 151914,
|
197 |
+
"|<EXTRA_TOKENS_269>|": 151915,
|
198 |
+
"|<EXTRA_TOKENS_26>|": 151672,
|
199 |
+
"|<EXTRA_TOKENS_270>|": 151916,
|
200 |
+
"|<EXTRA_TOKENS_271>|": 151917,
|
201 |
+
"|<EXTRA_TOKENS_272>|": 151918,
|
202 |
+
"|<EXTRA_TOKENS_273>|": 151919,
|
203 |
+
"|<EXTRA_TOKENS_274>|": 151920,
|
204 |
+
"|<EXTRA_TOKENS_275>|": 151921,
|
205 |
+
"|<EXTRA_TOKENS_276>|": 151922,
|
206 |
+
"|<EXTRA_TOKENS_277>|": 151923,
|
207 |
+
"|<EXTRA_TOKENS_278>|": 151924,
|
208 |
+
"|<EXTRA_TOKENS_279>|": 151925,
|
209 |
+
"|<EXTRA_TOKENS_27>|": 151673,
|
210 |
+
"|<EXTRA_TOKENS_280>|": 151926,
|
211 |
+
"|<EXTRA_TOKENS_281>|": 151927,
|
212 |
+
"|<EXTRA_TOKENS_282>|": 151928,
|
213 |
+
"|<EXTRA_TOKENS_283>|": 151929,
|
214 |
+
"|<EXTRA_TOKENS_284>|": 151930,
|
215 |
+
"|<EXTRA_TOKENS_285>|": 151931,
|
216 |
+
"|<EXTRA_TOKENS_286>|": 151932,
|
217 |
+
"|<EXTRA_TOKENS_287>|": 151933,
|
218 |
+
"|<EXTRA_TOKENS_288>|": 151934,
|
219 |
+
"|<EXTRA_TOKENS_289>|": 151935,
|
220 |
+
"|<EXTRA_TOKENS_28>|": 151674,
|
221 |
+
"|<EXTRA_TOKENS_290>|": 151936,
|
222 |
+
"|<EXTRA_TOKENS_291>|": 151937,
|
223 |
+
"|<EXTRA_TOKENS_292>|": 151938,
|
224 |
+
"|<EXTRA_TOKENS_293>|": 151939,
|
225 |
+
"|<EXTRA_TOKENS_294>|": 151940,
|
226 |
+
"|<EXTRA_TOKENS_295>|": 151941,
|
227 |
+
"|<EXTRA_TOKENS_296>|": 151942,
|
228 |
+
"|<EXTRA_TOKENS_297>|": 151943,
|
229 |
+
"|<EXTRA_TOKENS_298>|": 151944,
|
230 |
+
"|<EXTRA_TOKENS_299>|": 151945,
|
231 |
+
"|<EXTRA_TOKENS_29>|": 151675,
|
232 |
+
"|<EXTRA_TOKENS_2>|": 151648,
|
233 |
+
"|<EXTRA_TOKENS_300>|": 151946,
|
234 |
+
"|<EXTRA_TOKENS_301>|": 151947,
|
235 |
+
"|<EXTRA_TOKENS_302>|": 151948,
|
236 |
+
"|<EXTRA_TOKENS_303>|": 151949,
|
237 |
+
"|<EXTRA_TOKENS_304>|": 151950,
|
238 |
+
"|<EXTRA_TOKENS_305>|": 151951,
|
239 |
+
"|<EXTRA_TOKENS_306>|": 151952,
|
240 |
+
"|<EXTRA_TOKENS_307>|": 151953,
|
241 |
+
"|<EXTRA_TOKENS_308>|": 151954,
|
242 |
+
"|<EXTRA_TOKENS_309>|": 151955,
|
243 |
+
"|<EXTRA_TOKENS_30>|": 151676,
|
244 |
+
"|<EXTRA_TOKENS_310>|": 151956,
|
245 |
+
"|<EXTRA_TOKENS_311>|": 151957,
|
246 |
+
"|<EXTRA_TOKENS_312>|": 151958,
|
247 |
+
"|<EXTRA_TOKENS_313>|": 151959,
|
248 |
+
"|<EXTRA_TOKENS_314>|": 151960,
|
249 |
+
"|<EXTRA_TOKENS_315>|": 151961,
|
250 |
+
"|<EXTRA_TOKENS_316>|": 151962,
|
251 |
+
"|<EXTRA_TOKENS_317>|": 151963,
|
252 |
+
"|<EXTRA_TOKENS_318>|": 151964,
|
253 |
+
"|<EXTRA_TOKENS_319>|": 151965,
|
254 |
+
"|<EXTRA_TOKENS_31>|": 151677,
|
255 |
+
"|<EXTRA_TOKENS_320>|": 151966,
|
256 |
+
"|<EXTRA_TOKENS_321>|": 151967,
|
257 |
+
"|<EXTRA_TOKENS_322>|": 151968,
|
258 |
+
"|<EXTRA_TOKENS_323>|": 151969,
|
259 |
+
"|<EXTRA_TOKENS_324>|": 151970,
|
260 |
+
"|<EXTRA_TOKENS_325>|": 151971,
|
261 |
+
"|<EXTRA_TOKENS_326>|": 151972,
|
262 |
+
"|<EXTRA_TOKENS_327>|": 151973,
|
263 |
+
"|<EXTRA_TOKENS_328>|": 151974,
|
264 |
+
"|<EXTRA_TOKENS_329>|": 151975,
|
265 |
+
"|<EXTRA_TOKENS_32>|": 151678,
|
266 |
+
"|<EXTRA_TOKENS_330>|": 151976,
|
267 |
+
"|<EXTRA_TOKENS_331>|": 151977,
|
268 |
+
"|<EXTRA_TOKENS_332>|": 151978,
|
269 |
+
"|<EXTRA_TOKENS_333>|": 151979,
|
270 |
+
"|<EXTRA_TOKENS_334>|": 151980,
|
271 |
+
"|<EXTRA_TOKENS_335>|": 151981,
|
272 |
+
"|<EXTRA_TOKENS_336>|": 151982,
|
273 |
+
"|<EXTRA_TOKENS_337>|": 151983,
|
274 |
+
"|<EXTRA_TOKENS_338>|": 151984,
|
275 |
+
"|<EXTRA_TOKENS_339>|": 151985,
|
276 |
+
"|<EXTRA_TOKENS_33>|": 151679,
|
277 |
+
"|<EXTRA_TOKENS_340>|": 151986,
|
278 |
+
"|<EXTRA_TOKENS_341>|": 151987,
|
279 |
+
"|<EXTRA_TOKENS_342>|": 151988,
|
280 |
+
"|<EXTRA_TOKENS_343>|": 151989,
|
281 |
+
"|<EXTRA_TOKENS_344>|": 151990,
|
282 |
+
"|<EXTRA_TOKENS_345>|": 151991,
|
283 |
+
"|<EXTRA_TOKENS_346>|": 151992,
|
284 |
+
"|<EXTRA_TOKENS_347>|": 151993,
|
285 |
+
"|<EXTRA_TOKENS_348>|": 151994,
|
286 |
+
"|<EXTRA_TOKENS_349>|": 151995,
|
287 |
+
"|<EXTRA_TOKENS_34>|": 151680,
|
288 |
+
"|<EXTRA_TOKENS_350>|": 151996,
|
289 |
+
"|<EXTRA_TOKENS_351>|": 151997,
|
290 |
+
"|<EXTRA_TOKENS_352>|": 151998,
|
291 |
+
"|<EXTRA_TOKENS_353>|": 151999,
|
292 |
+
"|<EXTRA_TOKENS_354>|": 152000,
|
293 |
+
"|<EXTRA_TOKENS_355>|": 152001,
|
294 |
+
"|<EXTRA_TOKENS_356>|": 152002,
|
295 |
+
"|<EXTRA_TOKENS_357>|": 152003,
|
296 |
+
"|<EXTRA_TOKENS_358>|": 152004,
|
297 |
+
"|<EXTRA_TOKENS_359>|": 152005,
|
298 |
+
"|<EXTRA_TOKENS_35>|": 151681,
|
299 |
+
"|<EXTRA_TOKENS_360>|": 152006,
|
300 |
+
"|<EXTRA_TOKENS_361>|": 152007,
|
301 |
+
"|<EXTRA_TOKENS_362>|": 152008,
|
302 |
+
"|<EXTRA_TOKENS_363>|": 152009,
|
303 |
+
"|<EXTRA_TOKENS_364>|": 152010,
|
304 |
+
"|<EXTRA_TOKENS_365>|": 152011,
|
305 |
+
"|<EXTRA_TOKENS_366>|": 152012,
|
306 |
+
"|<EXTRA_TOKENS_367>|": 152013,
|
307 |
+
"|<EXTRA_TOKENS_368>|": 152014,
|
308 |
+
"|<EXTRA_TOKENS_369>|": 152015,
|
309 |
+
"|<EXTRA_TOKENS_36>|": 151682,
|
310 |
+
"|<EXTRA_TOKENS_370>|": 152016,
|
311 |
+
"|<EXTRA_TOKENS_371>|": 152017,
|
312 |
+
"|<EXTRA_TOKENS_372>|": 152018,
|
313 |
+
"|<EXTRA_TOKENS_373>|": 152019,
|
314 |
+
"|<EXTRA_TOKENS_374>|": 152020,
|
315 |
+
"|<EXTRA_TOKENS_375>|": 152021,
|
316 |
+
"|<EXTRA_TOKENS_376>|": 152022,
|
317 |
+
"|<EXTRA_TOKENS_377>|": 152023,
|
318 |
+
"|<EXTRA_TOKENS_378>|": 152024,
|
319 |
+
"|<EXTRA_TOKENS_379>|": 152025,
|
320 |
+
"|<EXTRA_TOKENS_37>|": 151683,
|
321 |
+
"|<EXTRA_TOKENS_380>|": 152026,
|
322 |
+
"|<EXTRA_TOKENS_381>|": 152027,
|
323 |
+
"|<EXTRA_TOKENS_382>|": 152028,
|
324 |
+
"|<EXTRA_TOKENS_383>|": 152029,
|
325 |
+
"|<EXTRA_TOKENS_384>|": 152030,
|
326 |
+
"|<EXTRA_TOKENS_385>|": 152031,
|
327 |
+
"|<EXTRA_TOKENS_386>|": 152032,
|
328 |
+
"|<EXTRA_TOKENS_387>|": 152033,
|
329 |
+
"|<EXTRA_TOKENS_388>|": 152034,
|
330 |
+
"|<EXTRA_TOKENS_389>|": 152035,
|
331 |
+
"|<EXTRA_TOKENS_38>|": 151684,
|
332 |
+
"|<EXTRA_TOKENS_390>|": 152036,
|
333 |
+
"|<EXTRA_TOKENS_391>|": 152037,
|
334 |
+
"|<EXTRA_TOKENS_392>|": 152038,
|
335 |
+
"|<EXTRA_TOKENS_393>|": 152039,
|
336 |
+
"|<EXTRA_TOKENS_394>|": 152040,
|
337 |
+
"|<EXTRA_TOKENS_395>|": 152041,
|
338 |
+
"|<EXTRA_TOKENS_396>|": 152042,
|
339 |
+
"|<EXTRA_TOKENS_397>|": 152043,
|
340 |
+
"|<EXTRA_TOKENS_398>|": 152044,
|
341 |
+
"|<EXTRA_TOKENS_399>|": 152045,
|
342 |
+
"|<EXTRA_TOKENS_39>|": 151685,
|
343 |
+
"|<EXTRA_TOKENS_3>|": 151649,
|
344 |
+
"|<EXTRA_TOKENS_400>|": 152046,
|
345 |
+
"|<EXTRA_TOKENS_401>|": 152047,
|
346 |
+
"|<EXTRA_TOKENS_402>|": 152048,
|
347 |
+
"|<EXTRA_TOKENS_403>|": 152049,
|
348 |
+
"|<EXTRA_TOKENS_404>|": 152050,
|
349 |
+
"|<EXTRA_TOKENS_405>|": 152051,
|
350 |
+
"|<EXTRA_TOKENS_406>|": 152052,
|
351 |
+
"|<EXTRA_TOKENS_407>|": 152053,
|
352 |
+
"|<EXTRA_TOKENS_408>|": 152054,
|
353 |
+
"|<EXTRA_TOKENS_409>|": 152055,
|
354 |
+
"|<EXTRA_TOKENS_40>|": 151686,
|
355 |
+
"|<EXTRA_TOKENS_410>|": 152056,
|
356 |
+
"|<EXTRA_TOKENS_411>|": 152057,
|
357 |
+
"|<EXTRA_TOKENS_412>|": 152058,
|
358 |
+
"|<EXTRA_TOKENS_413>|": 152059,
|
359 |
+
"|<EXTRA_TOKENS_414>|": 152060,
|
360 |
+
"|<EXTRA_TOKENS_415>|": 152061,
|
361 |
+
"|<EXTRA_TOKENS_416>|": 152062,
|
362 |
+
"|<EXTRA_TOKENS_417>|": 152063,
|
363 |
+
"|<EXTRA_TOKENS_41>|": 151687,
|
364 |
+
"|<EXTRA_TOKENS_42>|": 151688,
|
365 |
+
"|<EXTRA_TOKENS_43>|": 151689,
|
366 |
+
"|<EXTRA_TOKENS_44>|": 151690,
|
367 |
+
"|<EXTRA_TOKENS_45>|": 151691,
|
368 |
+
"|<EXTRA_TOKENS_46>|": 151692,
|
369 |
+
"|<EXTRA_TOKENS_47>|": 151693,
|
370 |
+
"|<EXTRA_TOKENS_48>|": 151694,
|
371 |
+
"|<EXTRA_TOKENS_49>|": 151695,
|
372 |
+
"|<EXTRA_TOKENS_4>|": 151650,
|
373 |
+
"|<EXTRA_TOKENS_50>|": 151696,
|
374 |
+
"|<EXTRA_TOKENS_51>|": 151697,
|
375 |
+
"|<EXTRA_TOKENS_52>|": 151698,
|
376 |
+
"|<EXTRA_TOKENS_53>|": 151699,
|
377 |
+
"|<EXTRA_TOKENS_54>|": 151700,
|
378 |
+
"|<EXTRA_TOKENS_55>|": 151701,
|
379 |
+
"|<EXTRA_TOKENS_56>|": 151702,
|
380 |
+
"|<EXTRA_TOKENS_57>|": 151703,
|
381 |
+
"|<EXTRA_TOKENS_58>|": 151704,
|
382 |
+
"|<EXTRA_TOKENS_59>|": 151705,
|
383 |
+
"|<EXTRA_TOKENS_5>|": 151651,
|
384 |
+
"|<EXTRA_TOKENS_60>|": 151706,
|
385 |
+
"|<EXTRA_TOKENS_61>|": 151707,
|
386 |
+
"|<EXTRA_TOKENS_62>|": 151708,
|
387 |
+
"|<EXTRA_TOKENS_63>|": 151709,
|
388 |
+
"|<EXTRA_TOKENS_64>|": 151710,
|
389 |
+
"|<EXTRA_TOKENS_65>|": 151711,
|
390 |
+
"|<EXTRA_TOKENS_66>|": 151712,
|
391 |
+
"|<EXTRA_TOKENS_67>|": 151713,
|
392 |
+
"|<EXTRA_TOKENS_68>|": 151714,
|
393 |
+
"|<EXTRA_TOKENS_69>|": 151715,
|
394 |
+
"|<EXTRA_TOKENS_6>|": 151652,
|
395 |
+
"|<EXTRA_TOKENS_70>|": 151716,
|
396 |
+
"|<EXTRA_TOKENS_71>|": 151717,
|
397 |
+
"|<EXTRA_TOKENS_72>|": 151718,
|
398 |
+
"|<EXTRA_TOKENS_73>|": 151719,
|
399 |
+
"|<EXTRA_TOKENS_74>|": 151720,
|
400 |
+
"|<EXTRA_TOKENS_75>|": 151721,
|
401 |
+
"|<EXTRA_TOKENS_76>|": 151722,
|
402 |
+
"|<EXTRA_TOKENS_77>|": 151723,
|
403 |
+
"|<EXTRA_TOKENS_78>|": 151724,
|
404 |
+
"|<EXTRA_TOKENS_79>|": 151725,
|
405 |
+
"|<EXTRA_TOKENS_7>|": 151653,
|
406 |
+
"|<EXTRA_TOKENS_80>|": 151726,
|
407 |
+
"|<EXTRA_TOKENS_81>|": 151727,
|
408 |
+
"|<EXTRA_TOKENS_82>|": 151728,
|
409 |
+
"|<EXTRA_TOKENS_83>|": 151729,
|
410 |
+
"|<EXTRA_TOKENS_84>|": 151730,
|
411 |
+
"|<EXTRA_TOKENS_85>|": 151731,
|
412 |
+
"|<EXTRA_TOKENS_86>|": 151732,
|
413 |
+
"|<EXTRA_TOKENS_87>|": 151733,
|
414 |
+
"|<EXTRA_TOKENS_88>|": 151734,
|
415 |
+
"|<EXTRA_TOKENS_89>|": 151735,
|
416 |
+
"|<EXTRA_TOKENS_8>|": 151654,
|
417 |
+
"|<EXTRA_TOKENS_90>|": 151736,
|
418 |
+
"|<EXTRA_TOKENS_91>|": 151737,
|
419 |
+
"|<EXTRA_TOKENS_92>|": 151738,
|
420 |
+
"|<EXTRA_TOKENS_93>|": 151739,
|
421 |
+
"|<EXTRA_TOKENS_94>|": 151740,
|
422 |
+
"|<EXTRA_TOKENS_95>|": 151741,
|
423 |
+
"|<EXTRA_TOKENS_96>|": 151742,
|
424 |
+
"|<EXTRA_TOKENS_97>|": 151743,
|
425 |
+
"|<EXTRA_TOKENS_98>|": 151744,
|
426 |
+
"|<EXTRA_TOKENS_99>|": 151745,
|
427 |
+
"|<EXTRA_TOKENS_9>|": 151655
|
428 |
+
}
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MolmoForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_layer_norm": false,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "config_molmo.MolmoConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_molmo.MolmoForCausalLM"
|
9 |
+
},
|
10 |
+
"clip_qkv": null,
|
11 |
+
"embedding_size": 152064,
|
12 |
+
"hidden_size": 3584,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 37888,
|
15 |
+
"layer_norm_eps": 1e-06,
|
16 |
+
"layer_norm_type": "rms",
|
17 |
+
"max_position_embeddings": 4096,
|
18 |
+
"model_type": "molmo",
|
19 |
+
"norm_after": false,
|
20 |
+
"num_attention_heads": 28,
|
21 |
+
"num_hidden_layers": 28,
|
22 |
+
"num_key_value_heads": 4,
|
23 |
+
"qkv_bias": true,
|
24 |
+
"quantization": {
|
25 |
+
"group_size": 64,
|
26 |
+
"bits": 6
|
27 |
+
},
|
28 |
+
"rope_theta": 1000000.0,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.43.3",
|
32 |
+
"use_cache": true,
|
33 |
+
"use_position_ids": true,
|
34 |
+
"vision_config": {
|
35 |
+
"intermediate_size": 640
|
36 |
+
},
|
37 |
+
"vocab_size": 152064,
|
38 |
+
"weight_tying": false
|
39 |
+
}
|
config_molmo.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig, AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
class MolmoConfig(PretrainedConfig):
|
7 |
+
model_type = "molmo"
|
8 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
vocab_size=50304,
|
13 |
+
embedding_size=50304,
|
14 |
+
hidden_size=4096,
|
15 |
+
intermediate_size=11008,
|
16 |
+
num_hidden_layers=32,
|
17 |
+
num_attention_heads=32,
|
18 |
+
num_key_value_heads=None,
|
19 |
+
max_position_embeddings=2048,
|
20 |
+
initializer_range=0.02,
|
21 |
+
use_cache=True,
|
22 |
+
layer_norm_eps: float = 1e-5,
|
23 |
+
rope_theta=10000.0,
|
24 |
+
clip_qkv=None,
|
25 |
+
qkv_bias: bool = False,
|
26 |
+
weight_tying: bool = False,
|
27 |
+
use_position_ids: bool=True,
|
28 |
+
tie_word_embeddings: bool=True,
|
29 |
+
attention_layer_norm: bool=False,
|
30 |
+
norm_after: bool = False,
|
31 |
+
layer_norm_type: str="rms",
|
32 |
+
**kwargs,
|
33 |
+
):
|
34 |
+
self.vocab_size = vocab_size
|
35 |
+
self.embedding_size = embedding_size
|
36 |
+
self.max_position_embeddings = max_position_embeddings
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.intermediate_size = intermediate_size
|
39 |
+
self.num_hidden_layers = num_hidden_layers
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
self.layer_norm_eps = layer_norm_eps
|
42 |
+
self.weight_tying = weight_tying
|
43 |
+
self.use_position_ids = use_position_ids
|
44 |
+
self.attention_layer_norm = attention_layer_norm
|
45 |
+
self.num_key_value_heads = num_key_value_heads
|
46 |
+
self.initializer_range = initializer_range
|
47 |
+
self.use_cache = use_cache
|
48 |
+
self.rope_theta = rope_theta
|
49 |
+
self.clip_qkv = clip_qkv
|
50 |
+
self.qkv_bias = qkv_bias
|
51 |
+
self.norm_after = norm_after
|
52 |
+
self.tie_word_embeddings = tie_word_embeddings
|
53 |
+
self.layer_norm_type = layer_norm_type
|
54 |
+
|
55 |
+
super().__init__(
|
56 |
+
tie_word_embeddings=tie_word_embeddings,
|
57 |
+
**kwargs,
|
58 |
+
)
|
59 |
+
|
60 |
+
MolmoConfig.register_for_auto_class()
|
image_preprocessing_molmo.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Image processor class for Molmo"""
|
2 |
+
from typing import List, Optional, Union, Mapping
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import einops
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms
|
8 |
+
from torchvision.transforms import InterpolationMode
|
9 |
+
from torchvision.transforms.functional import convert_image_dtype
|
10 |
+
|
11 |
+
from transformers.image_utils import (
|
12 |
+
OPENAI_CLIP_MEAN,
|
13 |
+
OPENAI_CLIP_STD,
|
14 |
+
ImageInput,
|
15 |
+
is_valid_image,
|
16 |
+
)
|
17 |
+
from transformers.processing_utils import ImagesKwargs
|
18 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def pad_to_bounding_box(
|
26 |
+
image, offset_height, offset_width, target_height,
|
27 |
+
target_width, value=0
|
28 |
+
):
|
29 |
+
height, width = image.shape[:2]
|
30 |
+
after_padding_width = target_width - offset_width - width
|
31 |
+
after_padding_height = target_height - offset_height - height
|
32 |
+
return np.pad(image, [
|
33 |
+
[offset_height, after_padding_height],
|
34 |
+
[offset_width, after_padding_width],
|
35 |
+
[0, 0]
|
36 |
+
], constant_values=value)
|
37 |
+
|
38 |
+
|
39 |
+
def normalize_image(image, offset, scale):
|
40 |
+
image -= np.array(offset, dtype=np.float32)[None, None, :]
|
41 |
+
image /= np.array(scale, dtype=np.float32)[None, None, :]
|
42 |
+
return image
|
43 |
+
|
44 |
+
|
45 |
+
def resize_and_pad(
|
46 |
+
image,
|
47 |
+
desired_output_size,
|
48 |
+
resize_method="torch-bilinear",
|
49 |
+
pad_value=0,
|
50 |
+
normalize=True,
|
51 |
+
image_mean=OPENAI_CLIP_MEAN,
|
52 |
+
image_std=OPENAI_CLIP_STD,
|
53 |
+
):
|
54 |
+
desired_height, desired_width = desired_output_size
|
55 |
+
height, width = image.shape[:2]
|
56 |
+
|
57 |
+
# Cast into float32 since the training code did this in float32 and it (very rarely) effects
|
58 |
+
# the results after rounding.
|
59 |
+
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
|
60 |
+
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
|
61 |
+
image_scale = min(image_scale_x, image_scale_y)
|
62 |
+
scaled_height = int(np.array(height, np.float32) * image_scale)
|
63 |
+
scaled_width = int(np.array(width, np.float32) * image_scale)
|
64 |
+
|
65 |
+
if resize_method == "tensorflow":
|
66 |
+
# This how the original training code did resizing, it can produce slightly different
|
67 |
+
# results then using torch resize so we keep it just in case
|
68 |
+
import tensorflow as tf
|
69 |
+
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
|
70 |
+
image = tf.image.resize(
|
71 |
+
image,
|
72 |
+
[scaled_height, scaled_width],
|
73 |
+
method=tf.image.ResizeMethod.BILINEAR,
|
74 |
+
antialias=True,
|
75 |
+
)
|
76 |
+
image = tf.clip_by_value(image, 0.0, 1.0)
|
77 |
+
image = image.numpy()
|
78 |
+
elif resize_method == "torch-bilinear":
|
79 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
80 |
+
image = convert_image_dtype(image) # resize in float32 to match the training code
|
81 |
+
image = torchvision.transforms.Resize(
|
82 |
+
[scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
|
83 |
+
)(image)
|
84 |
+
image = torch.clip(image, 0.0, 1.0)
|
85 |
+
image = torch.permute(image, [1, 2, 0]).numpy()
|
86 |
+
else:
|
87 |
+
raise NotImplementedError(resize_method)
|
88 |
+
|
89 |
+
top_pad = (desired_height - scaled_height) // 2
|
90 |
+
left_pad = (desired_width - scaled_width) // 2
|
91 |
+
padding = [
|
92 |
+
[top_pad, desired_height - scaled_height - top_pad],
|
93 |
+
[left_pad, desired_width - scaled_width - left_pad],
|
94 |
+
[0, 0]
|
95 |
+
]
|
96 |
+
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
|
97 |
+
image = np.pad(image, padding, constant_values=pad_value)
|
98 |
+
if normalize:
|
99 |
+
image = normalize_image(image, offset=image_mean, scale=image_std)
|
100 |
+
return image, image_mask
|
101 |
+
|
102 |
+
|
103 |
+
def select_tiling(h, w, patch_size, max_num_patches):
|
104 |
+
"""Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
|
105 |
+
original_size = np.stack([h, w]) # [1, 2]
|
106 |
+
original_res = h * w
|
107 |
+
tilings = []
|
108 |
+
for i in range(1, max_num_patches+1):
|
109 |
+
for j in range(1, max_num_patches+1):
|
110 |
+
if i*j <= max_num_patches:
|
111 |
+
tilings.append((i, j))
|
112 |
+
# sort so argmin and argmax favour smaller tilings in the event of a tie
|
113 |
+
tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
|
114 |
+
candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
|
115 |
+
candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
|
116 |
+
|
117 |
+
# How much we would need to scale the image to fit exactly in each tiling
|
118 |
+
original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
|
119 |
+
required_scale_d = candidate_resolutions.astype(np.float32) / original_size
|
120 |
+
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
|
121 |
+
if np.all(required_scale < 1):
|
122 |
+
# We are forced to downscale, so try to minimize the amount of downscaling
|
123 |
+
ix = np.argmax(required_scale)
|
124 |
+
else:
|
125 |
+
# Pick the resolution that required the least upscaling so that it most closely fits the image
|
126 |
+
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
|
127 |
+
ix = np.argmin(required_scale)
|
128 |
+
return candidate_tilings[ix]
|
129 |
+
|
130 |
+
|
131 |
+
class MolmoImagesKwargs(ImagesKwargs, total=False):
|
132 |
+
max_crops: Optional[int]
|
133 |
+
overlap_margins: Optional[List[int]]
|
134 |
+
base_image_input_size: Optional[List[int]]
|
135 |
+
image_token_length_w: Optional[int]
|
136 |
+
image_token_length_h: Optional[int]
|
137 |
+
image_patch_size: Optional[int]
|
138 |
+
image_padding_mask: Optional[bool]
|
139 |
+
|
140 |
+
|
141 |
+
class MolmoImageProcessor(BaseImageProcessor):
|
142 |
+
"""Preprocess images and multi-model inputs"""
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
max_crops: int = 12,
|
147 |
+
overlap_margins: List[int] = (4, 4),
|
148 |
+
base_image_input_size: List[int] = (336, 336),
|
149 |
+
image_token_length_w: int = 12,
|
150 |
+
image_token_length_h: int = 12,
|
151 |
+
image_patch_size: int = 14,
|
152 |
+
image_padding_mask: bool = True,
|
153 |
+
do_normalize: bool = True,
|
154 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
155 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
156 |
+
**kwargs,
|
157 |
+
):
|
158 |
+
super().__init__(**kwargs)
|
159 |
+
self.max_crops = max_crops
|
160 |
+
self.overlap_margins = overlap_margins
|
161 |
+
self.base_image_input_size = base_image_input_size
|
162 |
+
self.image_token_length_w = image_token_length_w
|
163 |
+
self.image_token_length_h = image_token_length_h
|
164 |
+
self.image_patch_size = image_patch_size
|
165 |
+
self.image_padding_mask = image_padding_mask
|
166 |
+
self.do_normalize = do_normalize
|
167 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
168 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
169 |
+
|
170 |
+
def image_to_patches_and_tokens(
|
171 |
+
self,
|
172 |
+
image: ImageInput,
|
173 |
+
image_patch_token_id: int,
|
174 |
+
image_col_token_id: int,
|
175 |
+
image_start_token_id: int,
|
176 |
+
image_end_token_id: int,
|
177 |
+
max_crops: Optional[int] = None,
|
178 |
+
overlap_margins: Optional[List[int]] = None,
|
179 |
+
base_image_input_size: Optional[Union[int, List[int]]] = None,
|
180 |
+
image_token_length_w: Optional[int] = None,
|
181 |
+
image_token_length_h: Optional[int] = None,
|
182 |
+
image_patch_size: Optional[int] = None,
|
183 |
+
):
|
184 |
+
if isinstance(base_image_input_size, int):
|
185 |
+
base_image_input_size = (base_image_input_size, base_image_input_size)
|
186 |
+
|
187 |
+
base_image_input_d = image_patch_size
|
188 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
189 |
+
image_base_patch_w = base_image_input_size[1] // base_image_input_d
|
190 |
+
image_base_patch_h = base_image_input_size[0] // base_image_input_d
|
191 |
+
|
192 |
+
original_image_h, original_image_w = image.shape[:2]
|
193 |
+
crop_size = base_image_input_size[0]
|
194 |
+
|
195 |
+
# Discard this many patches from the (left/top, right/bottom) of crops
|
196 |
+
left_margin, right_margin = overlap_margins
|
197 |
+
# left_margin, right_margin = 2, 2
|
198 |
+
assert left_margin % 2 == 0 # Required for compatibility with 2x2 pooling
|
199 |
+
total_margin_pixels = base_image_input_d*(right_margin + left_margin) # pixels removed per dim
|
200 |
+
crop_patches = base_image_input_size[0] // base_image_input_d # patches per crop dim
|
201 |
+
crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
|
202 |
+
crop_window_size = crop_window_patches * base_image_input_d
|
203 |
+
tiling = select_tiling(
|
204 |
+
original_image_h - total_margin_pixels,
|
205 |
+
original_image_w - total_margin_pixels,
|
206 |
+
crop_window_size,
|
207 |
+
max_crops
|
208 |
+
)
|
209 |
+
src, img_mask = resize_and_pad(
|
210 |
+
image,
|
211 |
+
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels]
|
212 |
+
)
|
213 |
+
|
214 |
+
# Now we have to split the image into crops, while keeping track of how each patch in the
|
215 |
+
# each crop should be ordered in the global image, this require a lot of tricky booking
|
216 |
+
n_crops = tiling[0] * tiling[1]
|
217 |
+
patches_arr = []
|
218 |
+
mask_arr = []
|
219 |
+
patch_ordering_arr = []
|
220 |
+
|
221 |
+
# We assume 2x2 pooling, but can allow padding the right/bottom with extra
|
222 |
+
# patches if the number of patches per side is not even
|
223 |
+
assert (crop_patches+1)//2 == image_token_length_h
|
224 |
+
assert (crop_patches+1)//2 == image_token_length_w
|
225 |
+
on = 0
|
226 |
+
on_patch = 0
|
227 |
+
for i in range(tiling[0]):
|
228 |
+
y0 = i*crop_window_size
|
229 |
+
if i == 0:
|
230 |
+
crop_y0 = 0
|
231 |
+
else:
|
232 |
+
crop_y0 = left_margin // 2
|
233 |
+
|
234 |
+
crop_h = image_base_patch_h - (right_margin + left_margin)
|
235 |
+
if i == 0:
|
236 |
+
crop_h += left_margin
|
237 |
+
if i == (tiling[0]-1):
|
238 |
+
crop_h += right_margin
|
239 |
+
for j in range(tiling[1]):
|
240 |
+
x0 = j*crop_window_size
|
241 |
+
if j == 0:
|
242 |
+
crop_x0 = 0
|
243 |
+
else:
|
244 |
+
crop_x0 = left_margin // 2
|
245 |
+
|
246 |
+
crop_w = image_base_patch_w - (right_margin + left_margin)
|
247 |
+
if j == 0:
|
248 |
+
crop_w += left_margin
|
249 |
+
if j == (tiling[1]-1):
|
250 |
+
crop_w += right_margin
|
251 |
+
|
252 |
+
pooled_w = (crop_w + 1) // 2
|
253 |
+
pooled_h = (crop_h + 1) // 2
|
254 |
+
patch_ordering_arr.append(
|
255 |
+
pad_to_bounding_box(
|
256 |
+
np.reshape(np.arange(on, on+pooled_h*pooled_w, dtype=np.int32), (pooled_h, pooled_w, 1)),
|
257 |
+
crop_y0, crop_x0, image_token_length_h, image_token_length_w, value=-1
|
258 |
+
)[:, :, 0]
|
259 |
+
)
|
260 |
+
patches_arr.append(src[y0:y0+crop_size, x0:x0+crop_size])
|
261 |
+
mask_arr.append(img_mask[y0:y0+crop_size, x0:x0+crop_size])
|
262 |
+
|
263 |
+
on += pooled_h*pooled_w
|
264 |
+
on_patch += 1
|
265 |
+
patches = np.stack(patches_arr)
|
266 |
+
patch_ordering = np.stack(patch_ordering_arr)
|
267 |
+
img_mask = np.stack(mask_arr)
|
268 |
+
|
269 |
+
# Switch to [n_crops, n_patches, pixels_per_patch] format
|
270 |
+
image_layout_impatch_w, image_layout_impatch_h = tiling[0], tiling[1]
|
271 |
+
patches = einops.rearrange(
|
272 |
+
patches, 'p (h dh) (w dw) c -> p (h w) (dh dw c)',
|
273 |
+
dh=base_image_input_d,
|
274 |
+
dw=base_image_input_d,
|
275 |
+
h=image_base_patch_h,
|
276 |
+
w=image_base_patch_w
|
277 |
+
)
|
278 |
+
img_mask = einops.rearrange(
|
279 |
+
img_mask, 'p (h dh) (w dw) -> p (h w) (dh dw)',
|
280 |
+
dh=base_image_input_d,
|
281 |
+
dw=base_image_input_d,
|
282 |
+
h=image_base_patch_h,
|
283 |
+
w=image_base_patch_w
|
284 |
+
)
|
285 |
+
|
286 |
+
img_mask = img_mask.astype(np.float32).mean(axis=-1)
|
287 |
+
patch_ordering = np.reshape(patch_ordering, [-1])
|
288 |
+
valid = patch_ordering >= 0
|
289 |
+
|
290 |
+
# Transpose order, to get left-to-right order instead of crop-by-crop order
|
291 |
+
patch_ordering_rh = np.reshape(
|
292 |
+
patch_ordering,
|
293 |
+
[tiling[0], tiling[1], image_token_length_h, image_token_length_w]
|
294 |
+
)
|
295 |
+
patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
|
296 |
+
patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])
|
297 |
+
|
298 |
+
# The transpose will screw up which patches are masked, project the
|
299 |
+
# new order into sparse structure of `patch_ordering` to fix this
|
300 |
+
patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]
|
301 |
+
|
302 |
+
# Now build the output tokens
|
303 |
+
h = tiling[0] * crop_window_patches + (right_margin+left_margin)
|
304 |
+
w = tiling[1] * crop_window_patches + (right_margin+left_margin)
|
305 |
+
per_row = np.full(
|
306 |
+
((w+1)//2,),
|
307 |
+
image_patch_token_id,
|
308 |
+
)
|
309 |
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
310 |
+
|
311 |
+
joint = np.tile(per_row, [(h+1)//2])
|
312 |
+
joint = [
|
313 |
+
[image_start_token_id],
|
314 |
+
joint,
|
315 |
+
[image_end_token_id]
|
316 |
+
]
|
317 |
+
|
318 |
+
# Finally do the same for the global image
|
319 |
+
resized, _ = resize_and_pad(image, base_image_input_size)
|
320 |
+
resized = einops.rearrange(
|
321 |
+
resized, '(h dh) (w dw) c -> (h w) (dh dw c)',
|
322 |
+
dh=base_image_input_d,
|
323 |
+
dw=base_image_input_d,
|
324 |
+
h=image_base_patch_h,
|
325 |
+
w=image_base_patch_w
|
326 |
+
)
|
327 |
+
patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)
|
328 |
+
|
329 |
+
# Global image goes first, so the order of patches in previous crops gets increased
|
330 |
+
patch_ordering = np.where(
|
331 |
+
patch_ordering >= 0,
|
332 |
+
patch_ordering + tokens_per_image,
|
333 |
+
-1
|
334 |
+
)
|
335 |
+
patch_ordering = np.concatenate([np.arange(0, tokens_per_image), patch_ordering], 0)
|
336 |
+
per_row = np.full(
|
337 |
+
(image_token_length_w,),
|
338 |
+
image_patch_token_id,
|
339 |
+
)
|
340 |
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
341 |
+
extra_tokens = np.tile(per_row, [image_token_length_h])
|
342 |
+
joint = [
|
343 |
+
[image_start_token_id],
|
344 |
+
extra_tokens,
|
345 |
+
[image_end_token_id],
|
346 |
+
] + joint
|
347 |
+
|
348 |
+
joint = np.concatenate(joint, 0)
|
349 |
+
img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)
|
350 |
+
return patches, joint, patch_ordering, img_mask
|
351 |
+
|
352 |
+
def build_image_input_idx(
|
353 |
+
self,
|
354 |
+
image_tokens: np.ndarray,
|
355 |
+
patch_order: np.ndarray,
|
356 |
+
image_patch_token_id: int,
|
357 |
+
no_image: Optional[bool] = None,
|
358 |
+
image_token_length_w: Optional[int] = None,
|
359 |
+
image_token_length_h: Optional[int] = None,
|
360 |
+
):
|
361 |
+
"""Converts `patch_order` into a mapping of token_id -> patch_id"""
|
362 |
+
|
363 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
364 |
+
if no_image is not None and no_image:
|
365 |
+
return np.zeros((0, tokens_per_image), np.int32)
|
366 |
+
|
367 |
+
# Indices to insert the patches
|
368 |
+
image_input_idx = image_tokens == image_patch_token_id
|
369 |
+
image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)
|
370 |
+
|
371 |
+
if patch_order is not None:
|
372 |
+
n_tokens = image_input_idx.shape[0]
|
373 |
+
patch_order = np.reshape(patch_order, [-1])
|
374 |
+
n_patches = patch_order.shape[0]
|
375 |
+
|
376 |
+
valid = patch_order >= 0
|
377 |
+
n_valid_patches = valid.sum()
|
378 |
+
assert len(image_input_idx) == n_valid_patches
|
379 |
+
|
380 |
+
sorted_patch_ixs = np.zeros([n_tokens], np.int32)
|
381 |
+
sorted_patch_ixs[patch_order[valid]] = np.arange(n_valid_patches, dtype=np.int32)
|
382 |
+
|
383 |
+
# Project the inverted mapping into same sparse structure
|
384 |
+
sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
|
385 |
+
sorted_patch_ixs_ex[valid] = sorted_patch_ixs
|
386 |
+
|
387 |
+
# Do the gather and then re-masked outputs that were masked in `sorted_patch_ixs`
|
388 |
+
valid = (sorted_patch_ixs_ex >= 0).astype(np.int32)
|
389 |
+
image_input_idx = image_input_idx[sorted_patch_ixs_ex*valid]
|
390 |
+
image_input_idx = image_input_idx*valid - 100*(1 - valid)
|
391 |
+
image_input_idx = np.reshape(image_input_idx, [-1, tokens_per_image])
|
392 |
+
return image_input_idx
|
393 |
+
|
394 |
+
def preprocess(
|
395 |
+
self,
|
396 |
+
image: np.ndarray,
|
397 |
+
image_patch_token_id: int,
|
398 |
+
image_col_token_id: int,
|
399 |
+
image_start_token_id: int,
|
400 |
+
image_end_token_id: int,
|
401 |
+
max_crops: Optional[int] = None,
|
402 |
+
overlap_margins: Optional[List[int]] = None,
|
403 |
+
base_image_input_size: Optional[Union[int, List[int]]] = None,
|
404 |
+
image_token_length_w: Optional[int] = None,
|
405 |
+
image_token_length_h: Optional[int] = None,
|
406 |
+
image_patch_size: Optional[int] = None,
|
407 |
+
**kwargs,
|
408 |
+
):
|
409 |
+
"""Preprocesses an image
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
|
413 |
+
change between images but the other dimension are fixed
|
414 |
+
tokens: (n_tokens,) int32 tokens, pad tokens indicate where to insert the
|
415 |
+
patch features, might include other special tokens as well
|
416 |
+
image_idx: (n_crops, n_patches) index in `tokens` to put the patch features from the
|
417 |
+
crops after pooling, negative values indicates patches features to exclude
|
418 |
+
padding_mask: (n_crops, n_patches) what percent of each crop is padding, can be None
|
419 |
+
if the image mask is not being used.
|
420 |
+
"""
|
421 |
+
|
422 |
+
max_crops = max_crops or self.max_crops
|
423 |
+
overlap_margins = overlap_margins or self.overlap_margins
|
424 |
+
base_image_input_size = base_image_input_size or self.base_image_input_size
|
425 |
+
image_token_length_w = image_token_length_w or self.image_token_length_w
|
426 |
+
image_token_length_h = image_token_length_h or self.image_token_length_h
|
427 |
+
image_patch_size = image_patch_size or self.image_patch_size
|
428 |
+
|
429 |
+
crops, image_tokens, patch_ordering, img_mask = self.image_to_patches_and_tokens(
|
430 |
+
image,
|
431 |
+
image_patch_token_id,
|
432 |
+
image_col_token_id,
|
433 |
+
image_start_token_id,
|
434 |
+
image_end_token_id,
|
435 |
+
max_crops,
|
436 |
+
overlap_margins,
|
437 |
+
base_image_input_size,
|
438 |
+
image_token_length_w,
|
439 |
+
image_token_length_h,
|
440 |
+
image_patch_size,
|
441 |
+
)
|
442 |
+
patch_idx = self.build_image_input_idx(
|
443 |
+
image_tokens,
|
444 |
+
patch_ordering,
|
445 |
+
image_patch_token_id,
|
446 |
+
image_token_length_w=image_token_length_w,
|
447 |
+
image_token_length_h=image_token_length_h,
|
448 |
+
)
|
449 |
+
return crops, image_tokens, patch_idx, img_mask
|
450 |
+
|
451 |
+
def multimodal_preprocess(
|
452 |
+
self,
|
453 |
+
images: np.ndarray,
|
454 |
+
tokens: List[int],
|
455 |
+
image_idx: np.ndarray,
|
456 |
+
sequence_length: int,
|
457 |
+
image_patch_token_id: int,
|
458 |
+
image_col_token_id: int,
|
459 |
+
image_start_token_id: int,
|
460 |
+
image_end_token_id: int,
|
461 |
+
**kwargs,
|
462 |
+
):
|
463 |
+
"""Merge images and text tokens into multi-modal features for the model
|
464 |
+
|
465 |
+
:param images: images to use as input
|
466 |
+
:param tokens: input text tokens
|
467 |
+
:param image_idx: where to insert the images into `tokens`
|
468 |
+
:params image_patch_token_id: id to use of tokens that will contain image features
|
469 |
+
:params image_col_token_id: token id for image column special tokens
|
470 |
+
:params image_start_token_id: token id for image start special tokens
|
471 |
+
:params image_end_token_id: token id for image end special tokens
|
472 |
+
:params kwargs: override preprocessor default args
|
473 |
+
"""
|
474 |
+
max_total_crops = kwargs.get("max_crops") or self.max_crops
|
475 |
+
image_token_length_w = kwargs.get("image_token_length_w") or self.image_token_length_w
|
476 |
+
image_token_length_h = kwargs.get("image_token_length_h") or self.image_token_length_h
|
477 |
+
image_patch_size = kwargs.get("image_patch_size") or self.image_patch_size
|
478 |
+
base_image_input_size = kwargs.get("base_image_input_size") or self.base_image_input_size
|
479 |
+
image_num_patch = (
|
480 |
+
base_image_input_size[0] // image_patch_size,
|
481 |
+
base_image_input_size[1] // image_patch_size,
|
482 |
+
)
|
483 |
+
image_padding_mask = kwargs.get("image_padding_mask") or self.image_padding_mask
|
484 |
+
|
485 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
486 |
+
n_pixels = image_patch_size * image_patch_size * 3
|
487 |
+
n_patches = image_num_patch[0] * image_num_patch[1]
|
488 |
+
|
489 |
+
if images is None:
|
490 |
+
return {
|
491 |
+
"input_ids": tokens,
|
492 |
+
}
|
493 |
+
else:
|
494 |
+
n = len(images)
|
495 |
+
all_crops = []
|
496 |
+
all_image_idx = []
|
497 |
+
out_tokens = []
|
498 |
+
all_crop_masks = []
|
499 |
+
|
500 |
+
for ix in range(n):
|
501 |
+
token_ix = image_idx[ix]
|
502 |
+
crops, image_tokens, patch_idx, img_mask = self.preprocess(
|
503 |
+
images[ix],
|
504 |
+
image_patch_token_id,
|
505 |
+
image_col_token_id,
|
506 |
+
image_start_token_id,
|
507 |
+
image_end_token_id,
|
508 |
+
**kwargs,
|
509 |
+
)
|
510 |
+
|
511 |
+
if token_ix == -1: # -1 is an image inserted at the very start
|
512 |
+
start = 0
|
513 |
+
token_ix = 0
|
514 |
+
end = 0
|
515 |
+
else:
|
516 |
+
start = 0 if ix == 0 else image_idx[ix-1] + 1
|
517 |
+
end = token_ix + 1
|
518 |
+
|
519 |
+
all_image_idx.append(patch_idx + token_ix)
|
520 |
+
all_crops.append(crops)
|
521 |
+
out_tokens.append(tokens[start:token_ix])
|
522 |
+
out_tokens.append(image_tokens)
|
523 |
+
if ix == (n - 1):
|
524 |
+
out_tokens.append(tokens[end:])
|
525 |
+
if image_padding_mask:
|
526 |
+
all_crop_masks.append(img_mask)
|
527 |
+
|
528 |
+
input_ids = np.concatenate(out_tokens, 0)
|
529 |
+
images = np.concatenate(all_crops, 0)
|
530 |
+
image_input_idx = np.concatenate(all_image_idx, 0)
|
531 |
+
if image_padding_mask:
|
532 |
+
image_masks = np.concatenate(all_crop_masks, 0)
|
533 |
+
else:
|
534 |
+
image_masks = None
|
535 |
+
|
536 |
+
out = {
|
537 |
+
"input_ids": input_ids,
|
538 |
+
"images": images,
|
539 |
+
"image_input_idx": image_input_idx
|
540 |
+
}
|
541 |
+
if image_masks is not None:
|
542 |
+
out["image_masks"] = image_masks
|
543 |
+
return out
|
544 |
+
|
545 |
+
|
546 |
+
MolmoImageProcessor.register_for_auto_class()
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e696f353a480bd4d233642ca79eff2b259149452decf30c65a6b91b4080d8f9
|
3 |
+
size 5322784718
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35666a6b26463fd28c4ae2c083680b13f248a45ef664f71ef81eabbbd611aad4
|
3 |
+
size 1843731045
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_molmo.py
ADDED
@@ -0,0 +1,2367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
from copy import deepcopy
|
4 |
+
from dataclasses import fields, dataclass, replace
|
5 |
+
from enum import Enum
|
6 |
+
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable, cast, MutableMapping
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from einops import einsum, einops
|
10 |
+
from transformers import PreTrainedModel, GenerationConfig
|
11 |
+
from transformers.cache_utils import Cache
|
12 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
|
13 |
+
from transformers.models.auto import AutoModelForCausalLM
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
from .config_molmo import MolmoConfig
|
17 |
+
from torch.nn import functional as F
|
18 |
+
|
19 |
+
|
20 |
+
log = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
|
24 |
+
"""
|
25 |
+
Cache for attention biases and other things that would normally be stored as buffers.
|
26 |
+
We avoid using buffers because we've run into various issues doing so with FSDP.
|
27 |
+
In general it appears the way FSDP handles buffers is not well-defined.
|
28 |
+
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
|
29 |
+
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
|
30 |
+
NaNs when they're synchronized due to casting or some other issue.
|
31 |
+
"""
|
32 |
+
|
33 |
+
|
34 |
+
class StrEnum(str, Enum):
|
35 |
+
def __str__(self) -> str:
|
36 |
+
return self.value
|
37 |
+
|
38 |
+
def __repr__(self) -> str:
|
39 |
+
return f"'{str(self)}'"
|
40 |
+
|
41 |
+
|
42 |
+
class ImageProjectType(StrEnum):
|
43 |
+
mlp = "mlp"
|
44 |
+
mlpx2 = "2mlp"
|
45 |
+
linear = "linear"
|
46 |
+
|
47 |
+
|
48 |
+
class ImagePooling2DType(StrEnum):
|
49 |
+
attention = "attention"
|
50 |
+
attention_meanq = "attention-meanq"
|
51 |
+
attention_2wide = "attention_2wide"
|
52 |
+
attention_v2 = "attention-v2"
|
53 |
+
none = "none"
|
54 |
+
stack = "stack"
|
55 |
+
|
56 |
+
|
57 |
+
class ActivationType(StrEnum):
|
58 |
+
quick_gelu = "quick_gelu"
|
59 |
+
gelu = "gelu"
|
60 |
+
gelu_tanh = "gelu_tanh"
|
61 |
+
relu = "relu"
|
62 |
+
silu = "silu"
|
63 |
+
llama_geglu = "llama_geglu"
|
64 |
+
llama_geglu_tanh = "llama_geglu_tanh"
|
65 |
+
llama_swiglu = "llama_swiglu"
|
66 |
+
swiglu = "swiglu"
|
67 |
+
|
68 |
+
|
69 |
+
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
|
70 |
+
"""
|
71 |
+
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
|
72 |
+
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
|
73 |
+
"""
|
74 |
+
if check_neg_inf:
|
75 |
+
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
|
76 |
+
if check_pos_inf:
|
77 |
+
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
|
78 |
+
|
79 |
+
|
80 |
+
class MolmoConfigurationError(Exception):
|
81 |
+
pass
|
82 |
+
|
83 |
+
|
84 |
+
def _non_meta_init_device(config) -> torch.device:
|
85 |
+
if config.init_device is not None and config.init_device != "meta":
|
86 |
+
return torch.device(config.init_device)
|
87 |
+
else:
|
88 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
89 |
+
|
90 |
+
|
91 |
+
class RotaryEmbedding(nn.Module):
|
92 |
+
"""
|
93 |
+
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, config: MolmoConfig, cache: BufferCache):
|
97 |
+
super().__init__()
|
98 |
+
self.config = config
|
99 |
+
self.__cache = cache
|
100 |
+
# Warm up cache.
|
101 |
+
self.get_rotary_embedding(
|
102 |
+
config.max_position_embeddings or config.max_sequence_length,
|
103 |
+
_non_meta_init_device(config)
|
104 |
+
)
|
105 |
+
|
106 |
+
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
|
107 |
+
if (
|
108 |
+
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
|
109 |
+
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
|
110 |
+
and pos_sin.shape[-2] >= seq_len
|
111 |
+
and pos_cos.shape[-2] >= seq_len
|
112 |
+
):
|
113 |
+
if pos_sin.device != device:
|
114 |
+
pos_sin = pos_sin.to(device)
|
115 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
116 |
+
if pos_cos.device != device:
|
117 |
+
pos_cos = pos_cos.to(device)
|
118 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
119 |
+
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
|
120 |
+
|
121 |
+
with torch.autocast(device.type, enabled=False):
|
122 |
+
dim = self.config.d_model // self.config.n_heads
|
123 |
+
inv_freq = 1.0 / (self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
|
124 |
+
seq = torch.arange(seq_len, device=device, dtype=torch.float)
|
125 |
+
freqs = torch.einsum("i , j -> i j", seq, inv_freq)
|
126 |
+
if self.config.rope_impl == "interleave":
|
127 |
+
positions = freqs.repeat_interleave(2, dim=-1)
|
128 |
+
else:
|
129 |
+
positions = torch.cat((freqs, freqs), dim=-1)
|
130 |
+
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
|
131 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
132 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
133 |
+
return pos_sin, pos_cos
|
134 |
+
|
135 |
+
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
136 |
+
B, nh, T, hs = x.size()
|
137 |
+
x = x.view(B, nh, T, 2, hs // 2)
|
138 |
+
x1, x2 = x.unbind(dim=-2)
|
139 |
+
return torch.cat((-x2, x1), dim=-1)
|
140 |
+
|
141 |
+
def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor:
|
142 |
+
B, nh, T, hs = x.size()
|
143 |
+
x = x.view(B, nh, T, hs // 2, 2)
|
144 |
+
x1, x2 = x.unbind(dim=-1)
|
145 |
+
x = torch.stack((-x2, x1), dim=-1)
|
146 |
+
return x.view(B, nh, T, hs)
|
147 |
+
|
148 |
+
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
149 |
+
if self.config.rope_impl == "interleave":
|
150 |
+
return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype)
|
151 |
+
else:
|
152 |
+
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
q: torch.Tensor,
|
157 |
+
k: torch.Tensor,
|
158 |
+
position_ids: Optional[torch.Tensor] = None
|
159 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
160 |
+
if self.config.rope_full_precision:
|
161 |
+
q_, k_ = q.float(), k.float()
|
162 |
+
else:
|
163 |
+
q_, k_ = q, k
|
164 |
+
|
165 |
+
with torch.autocast(q.device.type, enabled=False):
|
166 |
+
batch_size = q_.shape[0]
|
167 |
+
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
|
168 |
+
if position_ids is not None:
|
169 |
+
freqs_cis_len = (self.config.max_position_embeddings or self.config.max_sequence_length)
|
170 |
+
else:
|
171 |
+
freqs_cis_len = key_len
|
172 |
+
pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device)
|
173 |
+
pos_sin = pos_sin.type_as(q_)
|
174 |
+
pos_cos = pos_cos.type_as(q_)
|
175 |
+
if position_ids is not None:
|
176 |
+
assert query_len == key_len, "Query and key lengths must be equal when using position IDs."
|
177 |
+
pos_sin = pos_sin[0, 0][position_ids].view(
|
178 |
+
(batch_size, 1, key_len, pos_sin.shape[-1])
|
179 |
+
)
|
180 |
+
pos_cos = pos_cos[0, 0][position_ids].view(
|
181 |
+
(batch_size, 1, key_len, pos_cos.shape[-1])
|
182 |
+
)
|
183 |
+
q_ = self.apply_rotary_pos_emb(
|
184 |
+
pos_sin[:, :, key_len - query_len : key_len, :],
|
185 |
+
pos_cos[:, :, key_len - query_len : key_len, :],
|
186 |
+
q_,
|
187 |
+
)
|
188 |
+
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
|
189 |
+
return q_.type_as(q), k_.type_as(k)
|
190 |
+
|
191 |
+
|
192 |
+
class MolmoBlock(nn.Module):
|
193 |
+
"""
|
194 |
+
A base class for transformer block implementations.
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
198 |
+
super().__init__()
|
199 |
+
self.layer_id = layer_id
|
200 |
+
self.config = config
|
201 |
+
self.hidden_size = (
|
202 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
203 |
+
)
|
204 |
+
self.__cache = cache
|
205 |
+
self._activation_checkpoint_fn = None
|
206 |
+
|
207 |
+
# Dropout.
|
208 |
+
self.dropout = Dropout(config.residual_dropout)
|
209 |
+
|
210 |
+
# Layer norms.
|
211 |
+
self.k_norm: Optional[LayerNormBase] = None
|
212 |
+
self.q_norm: Optional[LayerNormBase] = None
|
213 |
+
if config.attention_layer_norm:
|
214 |
+
assert config.effective_n_kv_heads is not None
|
215 |
+
self.k_norm = LayerNormBase.build(
|
216 |
+
config,
|
217 |
+
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
|
218 |
+
elementwise_affine=config.attention_layer_norm_with_affine,
|
219 |
+
)
|
220 |
+
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
|
221 |
+
|
222 |
+
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
|
223 |
+
if config.clip_qkv is not None:
|
224 |
+
assert config.clip_qkv > 0
|
225 |
+
|
226 |
+
# Activation function.
|
227 |
+
self.act = Activation.build(config)
|
228 |
+
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
229 |
+
|
230 |
+
# Attention output projection.
|
231 |
+
input_dim = config.d_model
|
232 |
+
self.attn_out = nn.Linear(
|
233 |
+
input_dim, config.d_model,
|
234 |
+
bias=config.include_bias,
|
235 |
+
device=config.init_device
|
236 |
+
)
|
237 |
+
|
238 |
+
# Feed-forward output projection.
|
239 |
+
self.ff_out = nn.Linear(
|
240 |
+
int(self.act.output_multiplier * self.hidden_size),
|
241 |
+
config.d_model,
|
242 |
+
bias=config.include_bias,
|
243 |
+
device=config.init_device,
|
244 |
+
)
|
245 |
+
self.ff_out._is_residual = True # type: ignore
|
246 |
+
|
247 |
+
# Rotary embeddings.
|
248 |
+
if self.config.rope:
|
249 |
+
self.rotary_emb = RotaryEmbedding(config, self.__cache)
|
250 |
+
|
251 |
+
self.flash_attn_func = None
|
252 |
+
if config.attention_type == "flash":
|
253 |
+
try:
|
254 |
+
from flash_attn import flash_attn_func # type: ignore
|
255 |
+
|
256 |
+
self.flash_attn_func = flash_attn_func
|
257 |
+
except ModuleNotFoundError:
|
258 |
+
pass
|
259 |
+
|
260 |
+
def reset_parameters(self):
|
261 |
+
if self.k_norm is not None:
|
262 |
+
self.k_norm.reset_parameters()
|
263 |
+
if self.q_norm is not None:
|
264 |
+
self.q_norm.reset_parameters()
|
265 |
+
init_weights(
|
266 |
+
self.config,
|
267 |
+
self.attn_out,
|
268 |
+
d=self.config.d_model,
|
269 |
+
layer_id=self.layer_id,
|
270 |
+
type_of_module=ModuleType.out_module,
|
271 |
+
)
|
272 |
+
init_weights(
|
273 |
+
self.config,
|
274 |
+
self.ff_out,
|
275 |
+
d=self.ff_out.in_features,
|
276 |
+
layer_id=self.layer_id,
|
277 |
+
type_of_module=ModuleType.out_module,
|
278 |
+
)
|
279 |
+
|
280 |
+
@classmethod
|
281 |
+
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
|
282 |
+
target_dtype = input_dtype
|
283 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
284 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
285 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
286 |
+
if bias.device.type == "cuda" and torch.is_autocast_enabled():
|
287 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
288 |
+
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
289 |
+
target_dtype = torch.get_autocast_cpu_dtype()
|
290 |
+
if bias.dtype != target_dtype:
|
291 |
+
bias = bias.to(target_dtype)
|
292 |
+
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
|
293 |
+
return bias
|
294 |
+
|
295 |
+
def _scaled_dot_product_attention(
|
296 |
+
self,
|
297 |
+
q: torch.Tensor,
|
298 |
+
k: torch.Tensor,
|
299 |
+
v: torch.Tensor,
|
300 |
+
attn_mask: Optional[torch.Tensor] = None,
|
301 |
+
dropout_p: float = 0.0,
|
302 |
+
response_dropout_p: float = 0.0,
|
303 |
+
is_causal: bool = False,
|
304 |
+
) -> torch.Tensor:
|
305 |
+
"""
|
306 |
+
Computes scaled dot product attention on query, key and value tensors, using an optional
|
307 |
+
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
|
308 |
+
"""
|
309 |
+
if attn_mask is not None:
|
310 |
+
attn_mask = attn_mask.to(q.device)
|
311 |
+
|
312 |
+
if self.flash_attn_func is not None and attn_mask is None:
|
313 |
+
r = self.flash_attn_func(
|
314 |
+
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
|
315 |
+
)
|
316 |
+
return r.transpose(1, 2)
|
317 |
+
else:
|
318 |
+
# torch's sdpa doesn't support GQA, so we're doing this
|
319 |
+
assert k.size(1) == v.size(1)
|
320 |
+
num_kv_heads = k.size(1)
|
321 |
+
num_q_heads = q.size(1)
|
322 |
+
if num_q_heads != num_kv_heads:
|
323 |
+
assert num_q_heads % num_kv_heads == 0
|
324 |
+
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
325 |
+
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
326 |
+
|
327 |
+
return F.scaled_dot_product_attention(
|
328 |
+
q,
|
329 |
+
k,
|
330 |
+
v,
|
331 |
+
attn_mask=attn_mask,
|
332 |
+
dropout_p=dropout_p,
|
333 |
+
is_causal=is_causal,
|
334 |
+
)
|
335 |
+
|
336 |
+
def attention(
|
337 |
+
self,
|
338 |
+
q: torch.Tensor,
|
339 |
+
k: torch.Tensor,
|
340 |
+
v: torch.Tensor,
|
341 |
+
attention_bias: Optional[torch.Tensor] = None,
|
342 |
+
position_ids: Optional[torch.Tensor] = None,
|
343 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
344 |
+
use_cache: bool = False,
|
345 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
346 |
+
B, T, C = q.size() # batch size, sequence length, d_model
|
347 |
+
dtype = k.dtype
|
348 |
+
|
349 |
+
# Optionally apply layer norm to keys and queries.
|
350 |
+
if self.q_norm is not None and self.k_norm is not None:
|
351 |
+
q = self.q_norm(q).to(dtype=dtype)
|
352 |
+
k = self.k_norm(k).to(dtype=dtype)
|
353 |
+
|
354 |
+
# Move head forward to be next to the batch dim.
|
355 |
+
# shape: (B, nh, T, hs)
|
356 |
+
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
357 |
+
# shape: (B, n_kv_h, T, hs)
|
358 |
+
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
359 |
+
# shape: (B, n_kv_h, T, hs)
|
360 |
+
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
361 |
+
|
362 |
+
if self.config.use_position_ids and self.config.rope:
|
363 |
+
# Apply rotary embeddings
|
364 |
+
q, k = self.rotary_emb(q, k, position_ids=position_ids)
|
365 |
+
|
366 |
+
if layer_past is not None:
|
367 |
+
past_key, past_value = layer_past
|
368 |
+
k = torch.cat((past_key.to(k.device), k), dim=-2)
|
369 |
+
v = torch.cat((past_value.to(v.device), v), dim=-2)
|
370 |
+
|
371 |
+
present = (k, v) if use_cache else None
|
372 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
373 |
+
|
374 |
+
if not self.config.use_position_ids and self.config.rope:
|
375 |
+
# Apply rotary embeddings
|
376 |
+
q, k = self.rotary_emb(q, k)
|
377 |
+
|
378 |
+
if attention_bias is not None:
|
379 |
+
# Resize and cast attention bias.
|
380 |
+
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
|
381 |
+
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
|
382 |
+
# as down-casting the attention bias to the autocast precision will result in -infs, which will
|
383 |
+
# cause the SDP attn function to produce NaNs.
|
384 |
+
attention_bias = self._cast_attn_bias(
|
385 |
+
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
|
386 |
+
)
|
387 |
+
|
388 |
+
# Get the attention scores.
|
389 |
+
# shape: (B, nh, T, hs)
|
390 |
+
att = self._scaled_dot_product_attention(
|
391 |
+
q,
|
392 |
+
k,
|
393 |
+
v,
|
394 |
+
attn_mask=attention_bias,
|
395 |
+
dropout_p=0.0 if not self.training else self.config.attention_dropout,
|
396 |
+
response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout,
|
397 |
+
is_causal=attention_bias is None,
|
398 |
+
)
|
399 |
+
|
400 |
+
# Re-assemble all head outputs side-by-side.
|
401 |
+
att = att.transpose(1, 2).contiguous().view(B, T, C)
|
402 |
+
|
403 |
+
# Apply output projection.
|
404 |
+
return self.attn_out(att), present
|
405 |
+
|
406 |
+
def forward(
|
407 |
+
self,
|
408 |
+
x: torch.Tensor,
|
409 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
410 |
+
position_ids: Optional[torch.Tensor] = None,
|
411 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
412 |
+
use_cache: bool = False,
|
413 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
414 |
+
raise NotImplementedError
|
415 |
+
|
416 |
+
@classmethod
|
417 |
+
def build(cls, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
418 |
+
return MolmoSequentialBlock(layer_id, config, cache)
|
419 |
+
|
420 |
+
|
421 |
+
class MolmoSequentialBlock(MolmoBlock):
|
422 |
+
"""
|
423 |
+
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
424 |
+
(plus another skip connection).
|
425 |
+
"""
|
426 |
+
|
427 |
+
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
428 |
+
super().__init__(layer_id, config, cache)
|
429 |
+
# Layer norms.
|
430 |
+
self.attn_norm = LayerNorm.build(config)
|
431 |
+
self.ff_norm = LayerNorm.build(config)
|
432 |
+
# Attention input projection. Projects x -> (q, k, v)
|
433 |
+
|
434 |
+
head_dim = config.d_model // config.n_heads
|
435 |
+
self.fused_dims = (
|
436 |
+
config.d_model,
|
437 |
+
config.effective_n_kv_heads * head_dim,
|
438 |
+
config.effective_n_kv_heads * head_dim,
|
439 |
+
)
|
440 |
+
self.att_proj = nn.Linear(
|
441 |
+
config.d_model, sum(self.fused_dims),
|
442 |
+
bias=config.include_bias or config.qkv_bias,
|
443 |
+
device=config.init_device
|
444 |
+
)
|
445 |
+
# Feed-forward input projection.
|
446 |
+
self.ff_proj = nn.Linear(
|
447 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
448 |
+
)
|
449 |
+
|
450 |
+
def reset_parameters(self):
|
451 |
+
super().reset_parameters()
|
452 |
+
self.attn_norm.reset_parameters()
|
453 |
+
self.ff_norm.reset_parameters()
|
454 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
455 |
+
init_weights(
|
456 |
+
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
457 |
+
)
|
458 |
+
init_weights(
|
459 |
+
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
460 |
+
)
|
461 |
+
|
462 |
+
def forward(
|
463 |
+
self,
|
464 |
+
x: torch.Tensor,
|
465 |
+
attention_bias: Optional[torch.Tensor] = None,
|
466 |
+
position_ids: Optional[torch.Tensor] = None,
|
467 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
468 |
+
use_cache: bool = False,
|
469 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
470 |
+
# Get query, key, value projections.
|
471 |
+
# shape:
|
472 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
473 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
474 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
475 |
+
# - for group query attn q: (batch_size, seq_len, d_model)
|
476 |
+
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
477 |
+
|
478 |
+
if not self.config.norm_after:
|
479 |
+
if self._activation_checkpoint_fn is not None:
|
480 |
+
atten_in = self._activation_checkpoint_fn(self.attn_norm, x)
|
481 |
+
else:
|
482 |
+
atten_in = self.attn_norm(x)
|
483 |
+
else:
|
484 |
+
atten_in = x
|
485 |
+
qkv = self.att_proj(atten_in)
|
486 |
+
|
487 |
+
if self.config.clip_qkv is not None:
|
488 |
+
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
489 |
+
|
490 |
+
q, k, v = qkv.split(self.fused_dims, dim=-1)
|
491 |
+
|
492 |
+
# Get attention scores.
|
493 |
+
if self._activation_checkpoint_fn is not None:
|
494 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
495 |
+
self.attention, q, k, v, attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
|
499 |
+
|
500 |
+
if self.config.norm_after:
|
501 |
+
if self._activation_checkpoint_fn is not None:
|
502 |
+
att = self._activation_checkpoint_fn(self.attn_norm, att)
|
503 |
+
else:
|
504 |
+
att = self.attn_norm(att)
|
505 |
+
|
506 |
+
# Add attention scores.
|
507 |
+
# shape: (B, T, C)
|
508 |
+
x = x + self.dropout(att)
|
509 |
+
|
510 |
+
# Add feed-forward projection.
|
511 |
+
# shape: (batch_size, seq_len, d_model)
|
512 |
+
og_x = x
|
513 |
+
|
514 |
+
if not self.config.norm_after:
|
515 |
+
if self._activation_checkpoint_fn is not None:
|
516 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
517 |
+
else:
|
518 |
+
x = self.ff_norm(x)
|
519 |
+
|
520 |
+
x = self.ff_proj(x)
|
521 |
+
if self._activation_checkpoint_fn is not None:
|
522 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
523 |
+
else:
|
524 |
+
x = self.act(x)
|
525 |
+
x = self.ff_out(x)
|
526 |
+
|
527 |
+
if self.config.norm_after:
|
528 |
+
if self._activation_checkpoint_fn is not None:
|
529 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
530 |
+
else:
|
531 |
+
x = self.ff_norm(x)
|
532 |
+
|
533 |
+
x = self.dropout(x)
|
534 |
+
x = og_x + x
|
535 |
+
|
536 |
+
return x, cache
|
537 |
+
|
538 |
+
|
539 |
+
class Embedding(nn.Module):
|
540 |
+
def __init__(
|
541 |
+
self,
|
542 |
+
num_embeddings: int,
|
543 |
+
num_new_embeddings: int,
|
544 |
+
features: int,
|
545 |
+
device: Union[str, torch.device],
|
546 |
+
initializer_range: float = 0.02,
|
547 |
+
new_embed_initializer_range: float = 0.02,
|
548 |
+
):
|
549 |
+
super().__init__()
|
550 |
+
self.initializer_range = initializer_range
|
551 |
+
self.new_embed_initializer_range = new_embed_initializer_range
|
552 |
+
self.embedding = nn.Parameter(
|
553 |
+
torch.zeros(num_embeddings, features, device=device),
|
554 |
+
)
|
555 |
+
self.new_embedding = nn.Parameter(
|
556 |
+
torch.zeros(num_new_embeddings, features, device=device),
|
557 |
+
)
|
558 |
+
|
559 |
+
def reset_parameters(self):
|
560 |
+
nn.init.normal_(self.embedding, std=self.initializer_range)
|
561 |
+
nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range)
|
562 |
+
|
563 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
564 |
+
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))
|
565 |
+
|
566 |
+
|
567 |
+
class Dropout(nn.Dropout):
|
568 |
+
def __init__(
|
569 |
+
self,
|
570 |
+
p: float = 0.5,
|
571 |
+
inplace: bool = False,
|
572 |
+
mask_p: float = 0,
|
573 |
+
broadcast_dims: Sequence[int] = (),
|
574 |
+
):
|
575 |
+
super().__init__(p, inplace)
|
576 |
+
self.mask_p = mask_p
|
577 |
+
self.broadcast_dims = broadcast_dims
|
578 |
+
|
579 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
580 |
+
"""
|
581 |
+
:param input: A tensor of shape `(batch_size, seq_len, embed_dim)`
|
582 |
+
"""
|
583 |
+
if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0):
|
584 |
+
return input
|
585 |
+
else:
|
586 |
+
if self.p > 0. and len(self.broadcast_dims) > 0 and self.training:
|
587 |
+
keep_prob = 1.0 - self.p
|
588 |
+
dropout_shape = list(input.shape)
|
589 |
+
for dim in self.broadcast_dims:
|
590 |
+
dropout_shape[dim] = 1
|
591 |
+
keep = input.new_empty(dropout_shape).bernoulli_(keep_prob)
|
592 |
+
multiplier = keep.broadcast_to(input.shape)
|
593 |
+
multiplier.div_(keep_prob)
|
594 |
+
input = input * multiplier
|
595 |
+
else:
|
596 |
+
return F.dropout(input, self.p, self.training, self.inplace)
|
597 |
+
|
598 |
+
|
599 |
+
@dataclass
|
600 |
+
class VisionBackboneConfig:
|
601 |
+
image_default_input_size: Tuple[int, int] = (336, 336)
|
602 |
+
image_patch_size: int = 14
|
603 |
+
image_pos_patch_size: int = 14
|
604 |
+
image_emb_dim: int = 1024
|
605 |
+
image_num_heads: int = 16
|
606 |
+
image_num_key_value_heads: int = 16
|
607 |
+
image_num_layers: int = 24
|
608 |
+
image_head_dim: int = 64
|
609 |
+
image_mlp_dim: int = 4096
|
610 |
+
image_mlp_activations: str = "gelu"
|
611 |
+
image_dropout_rate: float = 0.0
|
612 |
+
image_num_pos: int = 577
|
613 |
+
image_norm_eps: float = 1e-5
|
614 |
+
attention_dropout: float = 0.0
|
615 |
+
residual_dropout: float = 0.0
|
616 |
+
initializer_range: float = 0.02
|
617 |
+
fsdp_wrap: bool = False
|
618 |
+
resize_mode: str = "default"
|
619 |
+
|
620 |
+
def __post_init__(self):
|
621 |
+
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
|
622 |
+
|
623 |
+
@property
|
624 |
+
def image_num_patch(self):
|
625 |
+
h, w = self.image_default_input_size
|
626 |
+
return h // self.image_patch_size, w // self.image_patch_size
|
627 |
+
|
628 |
+
|
629 |
+
@dataclass
|
630 |
+
class FullMolmoConfig:
|
631 |
+
d_model: int = 768
|
632 |
+
n_heads: int = 12
|
633 |
+
n_kv_heads: Optional[int] = None
|
634 |
+
qkv_bias: bool = False
|
635 |
+
clip_qkv: Optional[float] = None
|
636 |
+
n_layers: int = 12
|
637 |
+
mlp_ratio: int = 4
|
638 |
+
mlp_hidden_size: Optional[int] = None
|
639 |
+
activation_type: str = "swiglu"
|
640 |
+
block_group_size: int = 1
|
641 |
+
rope: bool = True
|
642 |
+
rope_full_precision: bool = True
|
643 |
+
rope_theta: float = 10000.
|
644 |
+
rope_impl: str = "interleave"
|
645 |
+
vision_backbone: Optional[VisionBackboneConfig] = None
|
646 |
+
attention_type: str = "sdpa"
|
647 |
+
float32_attention: bool = True
|
648 |
+
attention_dropout: float = 0.1
|
649 |
+
response_attention_dropout: float = 0.0
|
650 |
+
multi_query_attention: Optional[bool] = None
|
651 |
+
attention_layer_norm: bool = False
|
652 |
+
residual_dropout: float = 0.1
|
653 |
+
embedding_dropout: float = 0.1
|
654 |
+
layer_norm_type: str = "default"
|
655 |
+
layer_norm_with_affine: bool = True
|
656 |
+
layer_norm_eps: Optional[float] = None
|
657 |
+
attention_layer_norm_with_affine: bool = True
|
658 |
+
max_sequence_length: int = 1024
|
659 |
+
max_position_embeddings: Optional[int] = None
|
660 |
+
include_bias: bool = True
|
661 |
+
bias_for_layer_norm: Optional[bool] = None
|
662 |
+
scale_logits: bool = False
|
663 |
+
vocab_size: int = 50257
|
664 |
+
embedding_size: Optional[int] = 50304
|
665 |
+
additional_vocab_size: Optional[int] = None
|
666 |
+
new_embedding_init_range: float = 0.02
|
667 |
+
weight_tying: bool = True
|
668 |
+
pad_token_id: int = -1
|
669 |
+
init_device: Optional[str] = None
|
670 |
+
init_std: float = 0.02
|
671 |
+
init_cutoff_factor: Optional[float] = None
|
672 |
+
norm_after: bool = False
|
673 |
+
precision: Optional[str] = None
|
674 |
+
image_padding_embed: Optional[str] = None
|
675 |
+
vit_layers: Tuple = (-1,)
|
676 |
+
image_pooling_h: int = 2
|
677 |
+
image_pooling_w: int = 2
|
678 |
+
image_pooling_2d: str = "attention"
|
679 |
+
image_projector: str = "mlp"
|
680 |
+
image_feature_dropout: float = 0.0
|
681 |
+
initializer_range: float = 0.02
|
682 |
+
normalize_input_embeds: bool = False
|
683 |
+
use_position_ids: bool = True
|
684 |
+
|
685 |
+
@property
|
686 |
+
def effective_n_kv_heads(self) -> int:
|
687 |
+
if self.n_kv_heads is None:
|
688 |
+
if self.multi_query_attention is True:
|
689 |
+
return 1
|
690 |
+
else:
|
691 |
+
return self.n_heads
|
692 |
+
else:
|
693 |
+
if self.multi_query_attention is None:
|
694 |
+
return self.n_kv_heads
|
695 |
+
if self.multi_query_attention:
|
696 |
+
n_kv_heads_should_be = 1
|
697 |
+
else:
|
698 |
+
n_kv_heads_should_be = self.n_heads
|
699 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
700 |
+
return n_kv_heads_should_be
|
701 |
+
else:
|
702 |
+
raise MolmoConfigurationError(
|
703 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
704 |
+
)
|
705 |
+
|
706 |
+
@property
|
707 |
+
def image_num_patch(self):
|
708 |
+
assert self.vision_backbone is not None
|
709 |
+
return self.vision_backbone.image_num_patch
|
710 |
+
|
711 |
+
@property
|
712 |
+
def image_patch_size(self):
|
713 |
+
assert self.vision_backbone is not None
|
714 |
+
return self.visoin_backbone.image_patch_size
|
715 |
+
|
716 |
+
def llm_patches_per_crop(self):
|
717 |
+
h, w = self.image_num_patch
|
718 |
+
# Round up in case we need to pad the image features for pooling
|
719 |
+
h = (h + self.image_pooling_h - 1) // self.image_pooling_h
|
720 |
+
w = (w + self.image_pooling_w - 1) // self.image_pooling_w
|
721 |
+
return h, w
|
722 |
+
|
723 |
+
|
724 |
+
def _expand_token(token, batch_size: int):
|
725 |
+
return token.view(1, 1, -1).expand(batch_size, -1, -1)
|
726 |
+
|
727 |
+
|
728 |
+
class ViTMLP(nn.Module):
|
729 |
+
def __init__(self, config: FullMolmoConfig):
|
730 |
+
super().__init__()
|
731 |
+
self.config = config
|
732 |
+
v_cfg = config.vision_backbone
|
733 |
+
|
734 |
+
self.w1 = nn.Linear(
|
735 |
+
v_cfg.image_emb_dim,
|
736 |
+
v_cfg.image_mlp_dim,
|
737 |
+
bias=True,
|
738 |
+
device=config.init_device,
|
739 |
+
)
|
740 |
+
# Activation function.
|
741 |
+
cfg = deepcopy(config)
|
742 |
+
cfg.activation_type = v_cfg.image_mlp_activations
|
743 |
+
self.act = Activation.build(cfg)
|
744 |
+
self.w2 = nn.Linear(
|
745 |
+
v_cfg.image_mlp_dim,
|
746 |
+
v_cfg.image_emb_dim,
|
747 |
+
bias=True,
|
748 |
+
device=config.init_device,
|
749 |
+
)
|
750 |
+
|
751 |
+
def reset_parameters(self):
|
752 |
+
v_cfg = self.config.vision_backbone
|
753 |
+
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
|
754 |
+
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
|
755 |
+
nn.init.zeros_(self.w1.bias)
|
756 |
+
nn.init.zeros_(self.w2.bias)
|
757 |
+
|
758 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
759 |
+
x = self.w1(x)
|
760 |
+
x = self.act(x)
|
761 |
+
x = self.w2(x)
|
762 |
+
return x
|
763 |
+
|
764 |
+
|
765 |
+
class ResidualAttentionBlock(nn.Module):
|
766 |
+
|
767 |
+
def __init__(self, config: FullMolmoConfig):
|
768 |
+
super().__init__()
|
769 |
+
self.config = config
|
770 |
+
|
771 |
+
v_cfg = config.vision_backbone
|
772 |
+
self.attention = MultiHeadDotProductAttention(config)
|
773 |
+
self.feed_forward = ViTMLP(config)
|
774 |
+
self.attention_norm = nn.LayerNorm(
|
775 |
+
v_cfg.image_emb_dim,
|
776 |
+
eps=v_cfg.image_norm_eps,
|
777 |
+
device=config.init_device,
|
778 |
+
)
|
779 |
+
self.ffn_norm = nn.LayerNorm(
|
780 |
+
v_cfg.image_emb_dim,
|
781 |
+
eps=v_cfg.image_norm_eps,
|
782 |
+
device=config.init_device,
|
783 |
+
)
|
784 |
+
|
785 |
+
def reset_parameters(self):
|
786 |
+
self.attention.reset_parameters()
|
787 |
+
self.feed_forward.reset_parameters()
|
788 |
+
self.attention_norm.reset_parameters()
|
789 |
+
self.ffn_norm.reset_parameters()
|
790 |
+
|
791 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
792 |
+
x = x + self.attention(self.attention_norm(x))
|
793 |
+
x = x + self.feed_forward(self.ffn_norm(x))
|
794 |
+
return x
|
795 |
+
|
796 |
+
|
797 |
+
class BlockCollection(nn.Module):
|
798 |
+
|
799 |
+
def __init__(self, config: FullMolmoConfig):
|
800 |
+
super().__init__()
|
801 |
+
self.config = config
|
802 |
+
self.grad_checkpointing: bool = False
|
803 |
+
|
804 |
+
v_cfg = config.vision_backbone
|
805 |
+
self.resblocks = nn.ModuleList([
|
806 |
+
ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)
|
807 |
+
])
|
808 |
+
|
809 |
+
def reset_parameters(self):
|
810 |
+
for r in self.resblocks:
|
811 |
+
r.reset_parameters()
|
812 |
+
|
813 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
814 |
+
hidden_states = []
|
815 |
+
for r in self.resblocks:
|
816 |
+
x = r(x)
|
817 |
+
hidden_states.append(x)
|
818 |
+
return hidden_states
|
819 |
+
|
820 |
+
|
821 |
+
class LayerNormFp32(nn.LayerNorm):
|
822 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
823 |
+
orig_type = x.dtype
|
824 |
+
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight.to(torch.float32),
|
825 |
+
self.bias.to(torch.float32), self.eps)
|
826 |
+
return x.to(orig_type)
|
827 |
+
|
828 |
+
|
829 |
+
class VisionTransformer(nn.Module):
|
830 |
+
|
831 |
+
def __init__(self, config: FullMolmoConfig):
|
832 |
+
super().__init__()
|
833 |
+
self.config = config
|
834 |
+
|
835 |
+
v_cfg = config.vision_backbone
|
836 |
+
# class embeddings and positional embeddings
|
837 |
+
self.scale = v_cfg.image_emb_dim ** -0.5
|
838 |
+
self.class_embedding = nn.Parameter(
|
839 |
+
torch.zeros(v_cfg.image_emb_dim, device=config.init_device),
|
840 |
+
)
|
841 |
+
self.num_prefix_tokens: int = 1
|
842 |
+
self.positional_embedding = nn.Parameter(
|
843 |
+
torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device),
|
844 |
+
)
|
845 |
+
|
846 |
+
image_patch_size = v_cfg.image_patch_size
|
847 |
+
self.patch_embedding = nn.Linear(
|
848 |
+
image_patch_size * image_patch_size * 3,
|
849 |
+
v_cfg.image_emb_dim,
|
850 |
+
bias=False,
|
851 |
+
device=config.init_device,
|
852 |
+
)
|
853 |
+
|
854 |
+
self.pre_ln = LayerNormFp32(
|
855 |
+
v_cfg.image_emb_dim,
|
856 |
+
eps=v_cfg.image_norm_eps,
|
857 |
+
)
|
858 |
+
|
859 |
+
self.transformer = BlockCollection(config)
|
860 |
+
|
861 |
+
@torch.jit.ignore
|
862 |
+
def set_grad_checkpointing(self, enable=True):
|
863 |
+
self.transformer.grad_checkpointing = enable
|
864 |
+
|
865 |
+
def reset_parameters(self):
|
866 |
+
nn.init.normal_(self.class_embedding, std=self.scale)
|
867 |
+
nn.init.normal_(self.positional_embedding, std=self.scale)
|
868 |
+
nn.init.normal_(self.patch_embedding.weight, std=0.02)
|
869 |
+
self.pre_ln.reset_parameters()
|
870 |
+
self.transformer.reset_parameters()
|
871 |
+
|
872 |
+
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
|
873 |
+
cls_emb = self.positional_embedding[0:1]
|
874 |
+
pos_emb = self.positional_embedding[1:]
|
875 |
+
|
876 |
+
pos_emb = pos_emb.reshape(
|
877 |
+
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
|
878 |
+
)
|
879 |
+
|
880 |
+
(patch_num_0, patch_num_1) = patch_num
|
881 |
+
|
882 |
+
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
|
883 |
+
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
884 |
+
# antialias: default True in jax.image.resize
|
885 |
+
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
|
886 |
+
pos_emb = F.interpolate(
|
887 |
+
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True,
|
888 |
+
)
|
889 |
+
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
|
890 |
+
|
891 |
+
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
|
892 |
+
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
|
893 |
+
return x
|
894 |
+
|
895 |
+
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
|
896 |
+
"""
|
897 |
+
: param x: (batch_size, num_patch, n_pixels)
|
898 |
+
"""
|
899 |
+
if patch_num is None:
|
900 |
+
patch_num = self.config.vision_backbone.image_num_patch
|
901 |
+
B, N, D = x.shape
|
902 |
+
|
903 |
+
x = self.patch_embedding(x)
|
904 |
+
|
905 |
+
# class embeddings and positional embeddings
|
906 |
+
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
|
907 |
+
x = self.add_pos_emb(x, patch_num)
|
908 |
+
|
909 |
+
x = self.pre_ln(x)
|
910 |
+
|
911 |
+
hidden_states = self.transformer(x)
|
912 |
+
return hidden_states
|
913 |
+
|
914 |
+
|
915 |
+
class MultiHeadDotProductAttention(nn.Module):
|
916 |
+
def __init__(self, config: FullMolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True):
|
917 |
+
super().__init__()
|
918 |
+
self.config = config
|
919 |
+
self.use_bias = use_bias
|
920 |
+
|
921 |
+
v_cfg = config.vision_backbone
|
922 |
+
self.embed_dim = v_cfg.image_emb_dim
|
923 |
+
self.num_heads = v_cfg.image_num_heads
|
924 |
+
self.head_dim = v_cfg.image_head_dim
|
925 |
+
self.num_key_value_heads = v_cfg.image_num_key_value_heads
|
926 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
927 |
+
self.initializer_range = v_cfg.initializer_range
|
928 |
+
self.is_vit_layer = is_vit_layer
|
929 |
+
|
930 |
+
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
|
931 |
+
|
932 |
+
self.wq = nn.Linear(
|
933 |
+
nlayers * self.embed_dim,
|
934 |
+
self.num_heads * self.head_dim,
|
935 |
+
bias=use_bias,
|
936 |
+
device=config.init_device,
|
937 |
+
)
|
938 |
+
self.wk = nn.Linear(
|
939 |
+
nlayers * self.embed_dim,
|
940 |
+
self.num_key_value_heads * self.head_dim,
|
941 |
+
bias=use_bias,
|
942 |
+
device=config.init_device,
|
943 |
+
)
|
944 |
+
self.wv = nn.Linear(
|
945 |
+
nlayers * self.embed_dim,
|
946 |
+
self.num_key_value_heads * self.head_dim,
|
947 |
+
bias=use_bias,
|
948 |
+
device=config.init_device,
|
949 |
+
)
|
950 |
+
self.wo = nn.Linear(
|
951 |
+
self.num_heads * self.head_dim,
|
952 |
+
self.embed_dim,
|
953 |
+
bias=use_bias,
|
954 |
+
device=config.init_device,
|
955 |
+
)
|
956 |
+
self.attention_dropout: Optional[Dropout] = None
|
957 |
+
if v_cfg.attention_dropout > 0:
|
958 |
+
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
|
959 |
+
self.residual_dropout = Dropout(v_cfg.residual_dropout)
|
960 |
+
|
961 |
+
def reset_parameters(self):
|
962 |
+
nn.init.normal_(self.wq.weight, std=self.initializer_range)
|
963 |
+
nn.init.normal_(self.wk.weight, std=self.initializer_range)
|
964 |
+
nn.init.normal_(self.wv.weight, std=self.initializer_range)
|
965 |
+
nn.init.normal_(self.wo.weight, std=self.initializer_range)
|
966 |
+
if self.use_bias:
|
967 |
+
nn.init.constant_(self.wq.bias, 0)
|
968 |
+
nn.init.constant_(self.wk.bias, 0)
|
969 |
+
nn.init.constant_(self.wv.bias, 0)
|
970 |
+
nn.init.constant_(self.wo.bias, 0)
|
971 |
+
|
972 |
+
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
|
973 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
|
974 |
+
|
975 |
+
def _merge_heads(self, hidden_states) -> torch.Tensor:
|
976 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
977 |
+
|
978 |
+
def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
|
979 |
+
|
980 |
+
if inputs_kv is not None:
|
981 |
+
inputs_k = inputs_kv
|
982 |
+
inputs_v = inputs_kv
|
983 |
+
else:
|
984 |
+
inputs_k = inputs_q
|
985 |
+
inputs_v = inputs_q
|
986 |
+
|
987 |
+
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)
|
988 |
+
|
989 |
+
xq = self._split_heads(xq, self.num_heads)
|
990 |
+
xk = self._split_heads(xk, self.num_key_value_heads)
|
991 |
+
xv = self._split_heads(xv, self.num_key_value_heads)
|
992 |
+
|
993 |
+
if self.num_heads != self.num_key_value_heads:
|
994 |
+
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
995 |
+
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
996 |
+
|
997 |
+
og_dtype = xq.dtype
|
998 |
+
|
999 |
+
if self.config.float32_attention:
|
1000 |
+
xq = xq.to(torch.float)
|
1001 |
+
xk = xk.to(torch.float)
|
1002 |
+
|
1003 |
+
if self.config.attention_type == "direct":
|
1004 |
+
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
|
1005 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype)
|
1006 |
+
if self.attention_dropout is not None:
|
1007 |
+
attn_weights = self.attention_dropout(attn_weights)
|
1008 |
+
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)
|
1009 |
+
|
1010 |
+
elif self.config.attention_type == "sdpa":
|
1011 |
+
if self.config.float32_attention and not torch.is_autocast_enabled():
|
1012 |
+
xv = xv.to(torch.float32)
|
1013 |
+
attn_output = F.scaled_dot_product_attention(
|
1014 |
+
xq.transpose(1, 2).contiguous(),
|
1015 |
+
xk.transpose(1, 2).contiguous(),
|
1016 |
+
xv.transpose(1, 2).contiguous(),
|
1017 |
+
is_causal=False,
|
1018 |
+
dropout_p=self.config.vision_backbone.attention_dropout
|
1019 |
+
).transpose(1, 2)
|
1020 |
+
else:
|
1021 |
+
raise NotImplementedError(self.config.attention_type)
|
1022 |
+
attn_output = attn_output.to(og_dtype)
|
1023 |
+
attn_output = self._merge_heads(attn_output)
|
1024 |
+
attn_output = self.wo(attn_output)
|
1025 |
+
attn_output = self.residual_dropout(attn_output)
|
1026 |
+
|
1027 |
+
return attn_output
|
1028 |
+
|
1029 |
+
|
1030 |
+
class MultiHeadAttentionPool(nn.Module):
|
1031 |
+
def __init__(
|
1032 |
+
self,
|
1033 |
+
config: FullMolmoConfig,
|
1034 |
+
factor: int = 1,
|
1035 |
+
use_bias: bool = True,
|
1036 |
+
dropout: bool = True,
|
1037 |
+
output_layer: bool = True,
|
1038 |
+
mean_residual: bool = False,
|
1039 |
+
query: str = "mean",
|
1040 |
+
is_vit_layer: Optional[bool] = True
|
1041 |
+
):
|
1042 |
+
super().__init__()
|
1043 |
+
self.config = config
|
1044 |
+
self.factor = factor
|
1045 |
+
self.use_bias = use_bias
|
1046 |
+
self.dropout = dropout
|
1047 |
+
self.output_layer = output_layer
|
1048 |
+
self.mean_residual = mean_residual
|
1049 |
+
self.query = query
|
1050 |
+
|
1051 |
+
v_cfg = config.vision_backbone
|
1052 |
+
input_dim = v_cfg.image_emb_dim
|
1053 |
+
self.embed_dim = v_cfg.image_emb_dim * factor
|
1054 |
+
self.num_heads = v_cfg.image_num_heads
|
1055 |
+
self.head_dim = v_cfg.image_head_dim * factor
|
1056 |
+
self.num_key_value_heads = v_cfg.image_num_key_value_heads
|
1057 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
1058 |
+
self.initializer_range = v_cfg.initializer_range
|
1059 |
+
|
1060 |
+
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
|
1061 |
+
|
1062 |
+
if query != "vector":
|
1063 |
+
self.wq = nn.Linear(
|
1064 |
+
nlayers * input_dim,
|
1065 |
+
self.num_heads * self.head_dim,
|
1066 |
+
bias=use_bias,
|
1067 |
+
device=config.init_device,
|
1068 |
+
)
|
1069 |
+
self.wk = nn.Linear(
|
1070 |
+
nlayers * input_dim,
|
1071 |
+
self.num_key_value_heads * self.head_dim,
|
1072 |
+
bias=use_bias,
|
1073 |
+
device=config.init_device,
|
1074 |
+
)
|
1075 |
+
self.wv = nn.Linear(
|
1076 |
+
nlayers * input_dim,
|
1077 |
+
self.num_key_value_heads * self.head_dim,
|
1078 |
+
bias=use_bias,
|
1079 |
+
device=config.init_device,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
if query == "vector":
|
1083 |
+
self.attention_query = nn.Parameter(
|
1084 |
+
torch.zeros(
|
1085 |
+
1, self.num_key_value_heads * self.head_dim, device=config.init_device,
|
1086 |
+
),
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
if output_layer:
|
1090 |
+
self.wo = nn.Linear(
|
1091 |
+
self.num_heads * self.head_dim,
|
1092 |
+
self.embed_dim,
|
1093 |
+
bias=use_bias,
|
1094 |
+
device=config.init_device,
|
1095 |
+
)
|
1096 |
+
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
|
1097 |
+
if dropout:
|
1098 |
+
self.residual_dropout = Dropout(v_cfg.residual_dropout)
|
1099 |
+
|
1100 |
+
def reset_parameters(self):
|
1101 |
+
if self.query != "vector":
|
1102 |
+
nn.init.normal_(self.wq.weight, std=self.initializer_range)
|
1103 |
+
nn.init.normal_(self.wk.weight, std=self.initializer_range)
|
1104 |
+
nn.init.normal_(self.wv.weight, std=self.initializer_range)
|
1105 |
+
if self.output_layer:
|
1106 |
+
nn.init.normal_(self.wo.weight, std=self.initializer_range)
|
1107 |
+
if self.use_bias:
|
1108 |
+
if self.query != "vector":
|
1109 |
+
nn.init.constant_(self.wq.bias, 0)
|
1110 |
+
nn.init.constant_(self.wk.bias, 0)
|
1111 |
+
nn.init.constant_(self.wv.bias, 0)
|
1112 |
+
if self.output_layer:
|
1113 |
+
nn.init.constant_(self.wo.bias, 0)
|
1114 |
+
if self.query == "vector":
|
1115 |
+
nn.init.normal_(self.attention_query, std=self.initializer_range)
|
1116 |
+
|
1117 |
+
def _split_heads(self, hidden_states, num_heads):
|
1118 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
|
1119 |
+
|
1120 |
+
def _merge_heads(self, hidden_states):
|
1121 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
1122 |
+
|
1123 |
+
def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor:
|
1124 |
+
|
1125 |
+
xk, xv = self.wk(inputs_kv), self.wv(inputs_kv)
|
1126 |
+
|
1127 |
+
if self.query == "mean":
|
1128 |
+
inputs_q = inputs_kv.mean(dim=1, keepdim=True)
|
1129 |
+
xq = self.wq(inputs_q)
|
1130 |
+
elif self.query == "first":
|
1131 |
+
inputs_q = inputs_kv[:, :1]
|
1132 |
+
xq = self.wq(inputs_q)
|
1133 |
+
elif self.query == "vector":
|
1134 |
+
xq = self.attention_query.expand(inputs_kv.size(0), -1, -1)
|
1135 |
+
elif self.query == "constant":
|
1136 |
+
inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1])
|
1137 |
+
xq = self.wq(inputs_q)
|
1138 |
+
else:
|
1139 |
+
raise ValueError(f"Unknown query type: {self.query}")
|
1140 |
+
|
1141 |
+
xq = self._split_heads(xq, self.num_heads)
|
1142 |
+
xk = self._split_heads(xk, self.num_key_value_heads)
|
1143 |
+
xv = self._split_heads(xv, self.num_key_value_heads)
|
1144 |
+
|
1145 |
+
if self.num_heads != self.num_key_value_heads:
|
1146 |
+
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
1147 |
+
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
1148 |
+
|
1149 |
+
xq = xq.to(torch.float)
|
1150 |
+
xk = xk.to(torch.float)
|
1151 |
+
|
1152 |
+
xq = xq / math.sqrt(xq.size(-1))
|
1153 |
+
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk)
|
1154 |
+
|
1155 |
+
attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype)
|
1156 |
+
|
1157 |
+
attn_weights = self.attention_dropout(attn_weights).to(xv.dtype)
|
1158 |
+
|
1159 |
+
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv)
|
1160 |
+
attn_output = self._merge_heads(attn_output)
|
1161 |
+
if self.output_layer:
|
1162 |
+
attn_output = self.wo(attn_output)
|
1163 |
+
if self.dropout:
|
1164 |
+
attn_output = self.residual_dropout(attn_output)
|
1165 |
+
if self.mean_residual:
|
1166 |
+
attn_output += inputs_kv.mean(dim=1, keepdim=True)
|
1167 |
+
|
1168 |
+
return attn_output
|
1169 |
+
|
1170 |
+
|
1171 |
+
class MLP(nn.Module):
|
1172 |
+
def __init__(self, config: FullMolmoConfig, input_dim: int, dropout: float = 0.0):
|
1173 |
+
super().__init__()
|
1174 |
+
self.config = config
|
1175 |
+
self.hidden_size = (
|
1176 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
1177 |
+
)
|
1178 |
+
self.initializer_range = config.initializer_range
|
1179 |
+
|
1180 |
+
self.w1 = nn.Linear(
|
1181 |
+
input_dim,
|
1182 |
+
self.hidden_size // 2,
|
1183 |
+
bias=False,
|
1184 |
+
device=config.init_device,
|
1185 |
+
)
|
1186 |
+
self.w2 = nn.Linear(
|
1187 |
+
self.hidden_size // 2,
|
1188 |
+
config.d_model,
|
1189 |
+
bias=False,
|
1190 |
+
device=config.init_device,
|
1191 |
+
)
|
1192 |
+
self.w3 = nn.Linear(
|
1193 |
+
input_dim,
|
1194 |
+
self.hidden_size // 2,
|
1195 |
+
bias=False,
|
1196 |
+
device=config.init_device,
|
1197 |
+
)
|
1198 |
+
# Activation function.
|
1199 |
+
self.act = Activation.build(config)
|
1200 |
+
self.dropout = Dropout(dropout)
|
1201 |
+
|
1202 |
+
def reset_parameters(self):
|
1203 |
+
nn.init.normal_(self.w1.weight, std=self.initializer_range)
|
1204 |
+
nn.init.normal_(self.w2.weight, std=self.initializer_range)
|
1205 |
+
nn.init.normal_(self.w3.weight, std=self.initializer_range)
|
1206 |
+
|
1207 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1208 |
+
x = self.w2(self.act(self.w1(x), self.w3(x)))
|
1209 |
+
x = self.dropout(x)
|
1210 |
+
return x
|
1211 |
+
|
1212 |
+
|
1213 |
+
class Residual(nn.Module):
|
1214 |
+
def __init__(self, submodule: nn.Module):
|
1215 |
+
super().__init__()
|
1216 |
+
self.submodule = submodule
|
1217 |
+
|
1218 |
+
def reset_parameters(self):
|
1219 |
+
self.submodule.reset_parameters()
|
1220 |
+
|
1221 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1222 |
+
return x + self.submodule(x)
|
1223 |
+
|
1224 |
+
|
1225 |
+
class OLMoVisionBackbone(nn.Module):
|
1226 |
+
def __init__(self, config: FullMolmoConfig):
|
1227 |
+
super().__init__()
|
1228 |
+
self.config = config
|
1229 |
+
self.image_vit = VisionTransformer(config)
|
1230 |
+
|
1231 |
+
input_dim: int = None
|
1232 |
+
self.image_pooling_2d: nn.Module = None
|
1233 |
+
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
|
1234 |
+
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
|
1235 |
+
input_dim = config.vision_backbone.image_emb_dim
|
1236 |
+
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
|
1237 |
+
cfg = deepcopy(config)
|
1238 |
+
cfg.vision_backbone.image_emb_dim *= 2
|
1239 |
+
cfg.vision_backbone.image_head_dim *= 2
|
1240 |
+
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
|
1241 |
+
input_dim = cfg.vision_backbone.image_emb_dim
|
1242 |
+
elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
|
1243 |
+
assert config.vit_layers is not None
|
1244 |
+
use_bias = True
|
1245 |
+
dropout = True
|
1246 |
+
output_layer = True
|
1247 |
+
query = "mean"
|
1248 |
+
mean_residual = False
|
1249 |
+
factor = len(config.vit_layers)
|
1250 |
+
self.image_pooling_2d = MultiHeadAttentionPool(
|
1251 |
+
config,
|
1252 |
+
factor=factor,
|
1253 |
+
use_bias=use_bias,
|
1254 |
+
dropout=dropout,
|
1255 |
+
output_layer=output_layer,
|
1256 |
+
mean_residual=mean_residual,
|
1257 |
+
query=query,
|
1258 |
+
is_vit_layer=False,
|
1259 |
+
)
|
1260 |
+
input_dim = config.vision_backbone.image_emb_dim * factor
|
1261 |
+
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
|
1262 |
+
self.image_pooling_2d = None
|
1263 |
+
nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
|
1264 |
+
input_dim = nlayers * config.vision_backbone.image_emb_dim
|
1265 |
+
else:
|
1266 |
+
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")
|
1267 |
+
|
1268 |
+
self.input_dim = input_dim
|
1269 |
+
|
1270 |
+
# `MLP` assume the activation takes two inputs, so it must be a 'llama' version
|
1271 |
+
if config.activation_type == ActivationType.swiglu:
|
1272 |
+
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu)
|
1273 |
+
elif config.activation_type == ActivationType.gelu:
|
1274 |
+
mlp_config = replace(config, activation_type=ActivationType.llama_geglu)
|
1275 |
+
else:
|
1276 |
+
mlp_config = config
|
1277 |
+
if config.image_projector == ImageProjectType.mlpx2:
|
1278 |
+
self.image_projector = nn.ModuleList(
|
1279 |
+
[MLP(mlp_config, input_dim), Residual(MLP(config, input_dim))]
|
1280 |
+
)
|
1281 |
+
elif config.image_projector == ImageProjectType.mlp:
|
1282 |
+
self.image_projector = MLP(mlp_config, input_dim)
|
1283 |
+
elif config.image_projector == ImageProjectType.linear:
|
1284 |
+
self.image_projector = nn.Linear(
|
1285 |
+
input_dim,
|
1286 |
+
config.d_model,
|
1287 |
+
bias=False,
|
1288 |
+
device=config.init_device,
|
1289 |
+
)
|
1290 |
+
else:
|
1291 |
+
raise NotImplementedError(f"Unknown image projector: {config.image_projector}")
|
1292 |
+
|
1293 |
+
self.image_feature_dropout = Dropout(config.image_feature_dropout)
|
1294 |
+
|
1295 |
+
def reset_parameters(self):
|
1296 |
+
if self.image_pooling_2d is not None:
|
1297 |
+
self.image_pooling_2d.reset_parameters()
|
1298 |
+
if self.config.image_projector == "2mlp":
|
1299 |
+
for module in self.image_projector:
|
1300 |
+
module.reset_parameters()
|
1301 |
+
elif self.config.image_projector == "linear":
|
1302 |
+
nn.init.xavier_uniform_(self.image_projector.weight)
|
1303 |
+
else:
|
1304 |
+
self.image_projector.reset_parameters()
|
1305 |
+
|
1306 |
+
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
1307 |
+
raise NotImplementedError
|
1308 |
+
|
1309 |
+
|
1310 |
+
class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
|
1311 |
+
def __init__(self, config: FullMolmoConfig):
|
1312 |
+
super().__init__(config)
|
1313 |
+
v_cfg = self.config.vision_backbone
|
1314 |
+
self.grad_checkpointing = False
|
1315 |
+
|
1316 |
+
self.num_prefix_tokens = self.image_vit.num_prefix_tokens
|
1317 |
+
assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported"
|
1318 |
+
|
1319 |
+
self.pad_embed = None
|
1320 |
+
if config.image_padding_embed:
|
1321 |
+
image_dim = v_cfg.image_emb_dim*len(self.config.vit_layers)
|
1322 |
+
if config.image_padding_embed in ["pad_embed", "regress"]:
|
1323 |
+
self.pad_embed = nn.Parameter(
|
1324 |
+
torch.zeros((image_dim,), device=config.init_device))
|
1325 |
+
elif config.image_padding_embed == "pad_and_partial_pad":
|
1326 |
+
self.pad_embed = nn.Parameter(
|
1327 |
+
torch.zeros((2, image_dim), device=config.init_device))
|
1328 |
+
else:
|
1329 |
+
raise ValueError(config.image_padding_embed)
|
1330 |
+
|
1331 |
+
def reset_parameters(self):
|
1332 |
+
super().reset_parameters()
|
1333 |
+
self.image_vit.reset_parameters()
|
1334 |
+
|
1335 |
+
def encode_image(self, images: torch.Tensor) -> torch.Tensor:
|
1336 |
+
"""
|
1337 |
+
: param images: (batch_size, num_crops, num_patch, n_pixels)
|
1338 |
+
"""
|
1339 |
+
cfg = self.config
|
1340 |
+
v_cfg = self.config.vision_backbone
|
1341 |
+
B, T, N, D = images.shape
|
1342 |
+
|
1343 |
+
mask = ~torch.all(images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True)
|
1344 |
+
|
1345 |
+
# Output all hidden states
|
1346 |
+
# n_layers x (batch_num_crops, (1+)n_tokens, image_emb_dim)
|
1347 |
+
images = images.view(B * T, N, D)
|
1348 |
+
image_features = self.image_vit(images)
|
1349 |
+
|
1350 |
+
if cfg.vit_layers is not None:
|
1351 |
+
features = []
|
1352 |
+
for layer in cfg.vit_layers:
|
1353 |
+
features.append(image_features[layer])
|
1354 |
+
image_features = torch.cat(features, dim=-1)
|
1355 |
+
else:
|
1356 |
+
image_features = image_features[-1]
|
1357 |
+
|
1358 |
+
cls_embed: torch.Tensor = None
|
1359 |
+
if self.num_prefix_tokens > 0:
|
1360 |
+
cls_embed = image_features[:, 0]
|
1361 |
+
image_features = image_features[:, 1:]
|
1362 |
+
|
1363 |
+
image_features = image_features * mask
|
1364 |
+
image_features = image_features.view(B, T, N, -1)
|
1365 |
+
|
1366 |
+
cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None
|
1367 |
+
|
1368 |
+
return image_features, cls_embed
|
1369 |
+
|
1370 |
+
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
1371 |
+
cfg = self.config
|
1372 |
+
|
1373 |
+
# image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
|
1374 |
+
batch_size, num_image = images.shape[:2]
|
1375 |
+
image_features, cls_embed = self.encode_image(images)
|
1376 |
+
|
1377 |
+
if cfg.image_padding_embed:
|
1378 |
+
assert image_masks is not None
|
1379 |
+
if cfg.image_padding_embed == "pad_embed":
|
1380 |
+
all_pad = (image_masks == 0).to(dtype=torch.float32)
|
1381 |
+
pad_embed = self.pad_embed[None, None, None, :]
|
1382 |
+
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
|
1383 |
+
elif cfg.image_padding_embed == "regress":
|
1384 |
+
pad_embed = self.pad_embed[None, None, None, :]
|
1385 |
+
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
|
1386 |
+
elif cfg.image_padding_embed == "pad_and_partial_pad":
|
1387 |
+
pad_embed = self.pad_embed[:, None, None, None, :]
|
1388 |
+
all_pad = image_masks == 0
|
1389 |
+
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=image_features.dtype)
|
1390 |
+
all_pad = all_pad.to(dtype=image_features.dtype)
|
1391 |
+
image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1)
|
1392 |
+
image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1)
|
1393 |
+
else:
|
1394 |
+
raise ValueError(cfg.image_padding_embed)
|
1395 |
+
|
1396 |
+
image_features = self.image_feature_dropout(image_features)
|
1397 |
+
if cls_embed is not None:
|
1398 |
+
cls_embed = self.image_feature_dropout(cls_embed)
|
1399 |
+
|
1400 |
+
image_features = image_features.reshape(
|
1401 |
+
(batch_size, num_image) + cfg.image_num_patch + (-1,),
|
1402 |
+
)
|
1403 |
+
|
1404 |
+
if cfg.image_num_patch[0] % cfg.image_pooling_h == 1:
|
1405 |
+
# Pad so we can still pool 2x2 patches
|
1406 |
+
image_features = F.pad(
|
1407 |
+
image_features,
|
1408 |
+
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
|
1409 |
+
)
|
1410 |
+
|
1411 |
+
# image pooling
|
1412 |
+
image_features = einops.rearrange(
|
1413 |
+
image_features,
|
1414 |
+
'b n (h dh) (w dw) c -> (b n h w) (dh dw) c',
|
1415 |
+
dh=cfg.image_pooling_h,
|
1416 |
+
dw=cfg.image_pooling_w,
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq:
|
1420 |
+
query = image_features.mean(-2, keepdim=True)
|
1421 |
+
image_features = self.image_pooling_2d(query, image_features)
|
1422 |
+
elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}:
|
1423 |
+
if self.grad_checkpointing:
|
1424 |
+
from torch.utils.checkpoint import checkpoint
|
1425 |
+
image_features = checkpoint(self.image_pooling_2d, image_features[:, :1, :], image_features, use_reentrant=False)
|
1426 |
+
else:
|
1427 |
+
image_features = self.image_pooling_2d(image_features[:, :1, :], image_features)
|
1428 |
+
|
1429 |
+
h, w = cfg.llm_patches_per_crop()
|
1430 |
+
image_features = image_features.reshape(batch_size, num_image, h * w, -1)
|
1431 |
+
|
1432 |
+
# MLP layer to map the feature.
|
1433 |
+
if self.grad_checkpointing:
|
1434 |
+
from torch.utils.checkpoint import checkpoint
|
1435 |
+
image_features = checkpoint(self.image_projector, image_features, use_reentrant=False)
|
1436 |
+
else:
|
1437 |
+
image_features = self.image_projector(image_features)
|
1438 |
+
|
1439 |
+
# image_features: (batch_size, num_image, num_patch, d_model)
|
1440 |
+
# cls_embed: (batch_size, num_image, d_model)
|
1441 |
+
return image_features, cls_embed
|
1442 |
+
|
1443 |
+
|
1444 |
+
class ModuleType(str, Enum):
|
1445 |
+
in_module = "in"
|
1446 |
+
out_module = "out"
|
1447 |
+
emb = "emb"
|
1448 |
+
final_out = "final_out"
|
1449 |
+
|
1450 |
+
|
1451 |
+
def init_weights(
|
1452 |
+
config: FullMolmoConfig,
|
1453 |
+
module: Union[nn.Linear, nn.Embedding],
|
1454 |
+
d: Optional[int] = None,
|
1455 |
+
layer_id: Optional[int] = None,
|
1456 |
+
std_factor: float = 1.0,
|
1457 |
+
type_of_module: Optional[ModuleType] = None,
|
1458 |
+
) -> None:
|
1459 |
+
d = d if d is not None else config.d_model
|
1460 |
+
std = config.init_std * std_factor
|
1461 |
+
if config.init_cutoff_factor is not None:
|
1462 |
+
cutoff_value = config.init_cutoff_factor * std
|
1463 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
1464 |
+
else:
|
1465 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
1466 |
+
|
1467 |
+
|
1468 |
+
class LlamaSwiGLU(nn.Module):
|
1469 |
+
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
|
1470 |
+
return F.silu(x1) * x2
|
1471 |
+
|
1472 |
+
@property
|
1473 |
+
def output_multiplier(self) -> float:
|
1474 |
+
return 0.5
|
1475 |
+
|
1476 |
+
|
1477 |
+
class SwiGLU(nn.Module):
|
1478 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1479 |
+
x, gate = x.chunk(2, dim=-1)
|
1480 |
+
return F.silu(gate) * x
|
1481 |
+
|
1482 |
+
@property
|
1483 |
+
def output_multiplier(self) -> float:
|
1484 |
+
return 0.5
|
1485 |
+
|
1486 |
+
|
1487 |
+
class Activation(nn.Module):
|
1488 |
+
def __init__(self, config: FullMolmoConfig):
|
1489 |
+
super().__init__()
|
1490 |
+
self.config = config
|
1491 |
+
|
1492 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1493 |
+
raise NotImplementedError
|
1494 |
+
|
1495 |
+
@property
|
1496 |
+
def output_multiplier(self) -> float:
|
1497 |
+
raise NotImplementedError
|
1498 |
+
|
1499 |
+
@classmethod
|
1500 |
+
def build(cls, config: FullMolmoConfig) -> 'Activation':
|
1501 |
+
if config.activation_type == "quick_gelu":
|
1502 |
+
return QuickGELU(config)
|
1503 |
+
elif config.activation_type == "gelu":
|
1504 |
+
return cast(Activation, GELU(approximate="none"))
|
1505 |
+
elif config.activation_type == "gelu_tanh":
|
1506 |
+
return cast(Activation, GELU(approximate="tanh"))
|
1507 |
+
elif config.activation_type == "relu":
|
1508 |
+
return cast(Activation, ReLU(inplace=False))
|
1509 |
+
elif config.activation_type == "silu":
|
1510 |
+
return cast(Activation, SiLU(inplace=False))
|
1511 |
+
# elif config.activation_type == "llama_geglu":
|
1512 |
+
# return LlamaGEGLU(config)
|
1513 |
+
# elif config.activation_type == "llama_geglu_tanh":
|
1514 |
+
# return LlamaGEGLUTanh(config)
|
1515 |
+
elif config.activation_type == "llama_swiglu":
|
1516 |
+
return LlamaSwiGLU()
|
1517 |
+
elif config.activation_type == "swiglu":
|
1518 |
+
return SwiGLU()
|
1519 |
+
else:
|
1520 |
+
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
|
1521 |
+
|
1522 |
+
|
1523 |
+
class QuickGELU(Activation):
|
1524 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1525 |
+
return x * torch.sigmoid(1.702 * x)
|
1526 |
+
|
1527 |
+
@property
|
1528 |
+
def output_multiplier(self) -> float:
|
1529 |
+
return 1.0
|
1530 |
+
|
1531 |
+
|
1532 |
+
class GELU(nn.GELU):
|
1533 |
+
@property
|
1534 |
+
def output_multiplier(self) -> float:
|
1535 |
+
return 1.0
|
1536 |
+
|
1537 |
+
|
1538 |
+
class ReLU(nn.ReLU):
|
1539 |
+
@property
|
1540 |
+
def output_multiplier(self) -> float:
|
1541 |
+
return 1.0
|
1542 |
+
|
1543 |
+
|
1544 |
+
class SiLU(nn.SiLU):
|
1545 |
+
@property
|
1546 |
+
def output_multiplier(self) -> float:
|
1547 |
+
return 1.0
|
1548 |
+
|
1549 |
+
|
1550 |
+
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
|
1551 |
+
att_bias = torch.triu(
|
1552 |
+
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
|
1553 |
+
diagonal=1,
|
1554 |
+
)
|
1555 |
+
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
|
1556 |
+
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
|
1557 |
+
|
1558 |
+
|
1559 |
+
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
|
1560 |
+
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
|
1561 |
+
if causal_bias.device != device:
|
1562 |
+
causal_bias = causal_bias.to(device)
|
1563 |
+
cache["causal_attention_bias"] = causal_bias
|
1564 |
+
return causal_bias
|
1565 |
+
with torch.autocast(device.type, enabled=False):
|
1566 |
+
causal_bias = causal_attention_bias(seq_len, device)
|
1567 |
+
cache["causal_attention_bias"] = causal_bias
|
1568 |
+
return causal_bias
|
1569 |
+
|
1570 |
+
|
1571 |
+
class LayerNormBase(nn.Module):
|
1572 |
+
def __init__(
|
1573 |
+
self,
|
1574 |
+
config: MolmoConfig,
|
1575 |
+
*,
|
1576 |
+
size: Optional[int] = None,
|
1577 |
+
elementwise_affine: Optional[bool] = True,
|
1578 |
+
eps: float = 1e-05,
|
1579 |
+
weight_initializer: Optional[Callable] = torch.ones,
|
1580 |
+
bias_initializer: Optional[Callable] = torch.zeros,
|
1581 |
+
):
|
1582 |
+
super().__init__()
|
1583 |
+
self.config = config
|
1584 |
+
self.eps = self.config.layer_norm_eps or eps
|
1585 |
+
self.normalized_shape = (size or config.d_model,)
|
1586 |
+
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
|
1587 |
+
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
|
1588 |
+
use_bias = self.config.bias_for_layer_norm
|
1589 |
+
if use_bias is None:
|
1590 |
+
use_bias = self.config.include_bias
|
1591 |
+
if use_bias:
|
1592 |
+
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
|
1593 |
+
else:
|
1594 |
+
self.register_parameter("bias", None)
|
1595 |
+
else:
|
1596 |
+
self.register_parameter("bias", None)
|
1597 |
+
self.register_parameter("weight", None)
|
1598 |
+
|
1599 |
+
@classmethod
|
1600 |
+
def build(cls, config: FullMolmoConfig, size: Optional[int] = None, **kwargs):
|
1601 |
+
if config.layer_norm_type == "default":
|
1602 |
+
return LayerNorm(config, size=size, low_precision=False, **kwargs)
|
1603 |
+
elif config.layer_norm_type == "low_precision":
|
1604 |
+
return LayerNorm(config, size=size, low_precision=True, **kwargs)
|
1605 |
+
elif config.layer_norm_type == "rms":
|
1606 |
+
return RMSLayerNorm(config, size=size, **kwargs)
|
1607 |
+
else:
|
1608 |
+
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
|
1609 |
+
|
1610 |
+
|
1611 |
+
class RMSLayerNorm(LayerNormBase):
|
1612 |
+
"""
|
1613 |
+
RMS layer norm, a simplified :class:`LayerNorm` implementation
|
1614 |
+
"""
|
1615 |
+
|
1616 |
+
def __init__(
|
1617 |
+
self,
|
1618 |
+
config: FullMolmoConfig,
|
1619 |
+
size: Optional[int] = None,
|
1620 |
+
elementwise_affine: Optional[bool] = None,
|
1621 |
+
eps: float = 1e-5,
|
1622 |
+
):
|
1623 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
1624 |
+
|
1625 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1626 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
1627 |
+
og_dtype = x.dtype
|
1628 |
+
x = x.to(torch.float32)
|
1629 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
1630 |
+
x = x * torch.rsqrt(variance + self.eps)
|
1631 |
+
x = x.to(og_dtype)
|
1632 |
+
|
1633 |
+
if self.weight is not None:
|
1634 |
+
if self.bias is not None:
|
1635 |
+
return self.weight * x + self.bias
|
1636 |
+
else:
|
1637 |
+
return self.weight * x
|
1638 |
+
else:
|
1639 |
+
return x
|
1640 |
+
|
1641 |
+
|
1642 |
+
class LayerNorm(LayerNormBase):
|
1643 |
+
"""
|
1644 |
+
The default :class:`LayerNorm` implementation which can optionally run in low precision.
|
1645 |
+
"""
|
1646 |
+
|
1647 |
+
def __init__(
|
1648 |
+
self,
|
1649 |
+
config: FullMolmoConfig,
|
1650 |
+
size: Optional[int] = None,
|
1651 |
+
low_precision: bool = False,
|
1652 |
+
elementwise_affine: Optional[bool] = None,
|
1653 |
+
eps: float = 1e-05,
|
1654 |
+
):
|
1655 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
1656 |
+
self.low_precision = low_precision
|
1657 |
+
|
1658 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1659 |
+
if self.low_precision:
|
1660 |
+
module_device = x.device
|
1661 |
+
downcast_x = self._cast_if_autocast_enabled(x)
|
1662 |
+
downcast_weight = (
|
1663 |
+
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
1664 |
+
)
|
1665 |
+
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
1666 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
1667 |
+
return F.layer_norm(
|
1668 |
+
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
|
1669 |
+
)
|
1670 |
+
else:
|
1671 |
+
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
|
1672 |
+
|
1673 |
+
|
1674 |
+
class Molmo(nn.Module):
|
1675 |
+
def __init__(self, config: FullMolmoConfig, init_params: bool = True):
|
1676 |
+
super().__init__()
|
1677 |
+
self.config = config
|
1678 |
+
self.__cache = BufferCache()
|
1679 |
+
|
1680 |
+
# Validate config.
|
1681 |
+
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
|
1682 |
+
if self.config.embedding_size < self.config.vocab_size:
|
1683 |
+
raise MolmoConfigurationError("embedding size should be at least as big as vocab size")
|
1684 |
+
elif self.config.embedding_size % 128 != 0:
|
1685 |
+
import warnings
|
1686 |
+
|
1687 |
+
warnings.warn(
|
1688 |
+
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
|
1689 |
+
)
|
1690 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
1691 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
|
1692 |
+
|
1693 |
+
wte = None
|
1694 |
+
if self.config.additional_vocab_size is not None:
|
1695 |
+
wte = Embedding(
|
1696 |
+
config.embedding_size or config.vocab_size,
|
1697 |
+
config.additional_vocab_size,
|
1698 |
+
config.d_model,
|
1699 |
+
device=config.init_device,
|
1700 |
+
initializer_range=config.initializer_range,
|
1701 |
+
new_embed_initializer_range=config.new_embedding_init_range
|
1702 |
+
)
|
1703 |
+
else:
|
1704 |
+
wte=nn.Embedding(
|
1705 |
+
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
|
1706 |
+
)
|
1707 |
+
|
1708 |
+
self.transformer = nn.ModuleDict(
|
1709 |
+
dict(
|
1710 |
+
wte=wte,
|
1711 |
+
emb_drop=Dropout(config.embedding_dropout),
|
1712 |
+
ln_f=LayerNorm.build(config),
|
1713 |
+
)
|
1714 |
+
)
|
1715 |
+
|
1716 |
+
blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
|
1717 |
+
if self.config.block_group_size > 1:
|
1718 |
+
raise NotImplementedError()
|
1719 |
+
else:
|
1720 |
+
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
1721 |
+
|
1722 |
+
if not self.config.rope:
|
1723 |
+
self.transformer.update(
|
1724 |
+
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
|
1725 |
+
)
|
1726 |
+
if not config.weight_tying:
|
1727 |
+
self.transformer.update(
|
1728 |
+
{
|
1729 |
+
"ff_out": nn.Linear(
|
1730 |
+
config.d_model,
|
1731 |
+
config.embedding_size or config.vocab_size,
|
1732 |
+
bias=config.include_bias,
|
1733 |
+
device=config.init_device,
|
1734 |
+
)
|
1735 |
+
}
|
1736 |
+
)
|
1737 |
+
|
1738 |
+
self.vision_backbone: Optional[OLMoVisionBackbone] = None
|
1739 |
+
if config.vision_backbone is not None:
|
1740 |
+
self.vision_backbone = OLMoPretrainedVisionBackbone(config)
|
1741 |
+
|
1742 |
+
self.__num_fwd_flops: Optional[int] = None
|
1743 |
+
|
1744 |
+
def reset_parameters(self):
|
1745 |
+
if self.vision_backbone is not None:
|
1746 |
+
self.vision_backbone.reset_parameters()
|
1747 |
+
self.reset_non_vision_parameters()
|
1748 |
+
|
1749 |
+
def reset_non_vision_parameters(self):
|
1750 |
+
self.transformer.wte.reset_parameters()
|
1751 |
+
if hasattr(self.transformer.wte, "new_embedding"):
|
1752 |
+
nn.init.normal_(self.transformer.wte.new_embedding, std=self.config.new_embedding_init_range)
|
1753 |
+
|
1754 |
+
if hasattr(self.transformer, "wpe"):
|
1755 |
+
nn.init.normal_(self.transformer.wpe, mean=0.0, std=1.0)
|
1756 |
+
|
1757 |
+
self.transformer.ln_f.reset_parameters() # type: ignore
|
1758 |
+
|
1759 |
+
if hasattr(self.transformer, "ff_out"):
|
1760 |
+
nn.init.normal_(self.transformer.ff_out, mean=0.0, std=0.02)
|
1761 |
+
|
1762 |
+
if self.config.block_group_size == 1:
|
1763 |
+
for block in self.transformer.blocks:
|
1764 |
+
block.reset_parameters()
|
1765 |
+
else:
|
1766 |
+
for block_group in self.transformer.block_groups:
|
1767 |
+
block_group.reset_parameters()
|
1768 |
+
|
1769 |
+
|
1770 |
+
def forward(
|
1771 |
+
self,
|
1772 |
+
input_ids: torch.LongTensor,
|
1773 |
+
input_embeddings: Optional[torch.FloatTensor] = None,
|
1774 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1775 |
+
attention_bias: Optional[torch.Tensor] = None,
|
1776 |
+
response_mask: Optional[torch.Tensor] = None,
|
1777 |
+
images: Optional[torch.Tensor] = None,
|
1778 |
+
image_masks: Optional[torch.Tensor] = None,
|
1779 |
+
image_input_idx: Optional[torch.Tensor] = None,
|
1780 |
+
subsegment_ids: Optional[torch.Tensor] = None,
|
1781 |
+
position_ids: Optional[torch.Tensor] = None,
|
1782 |
+
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
1783 |
+
use_cache: bool = False,
|
1784 |
+
last_logits_only: bool = False,
|
1785 |
+
output_hidden_states: Optional[bool] = None,
|
1786 |
+
append_last_valid_logits: Optional[torch.Tensor] = None,
|
1787 |
+
) -> ModelOutput:
|
1788 |
+
"""
|
1789 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
1790 |
+
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
|
1791 |
+
embeddings. When provided, it is treated as the output of the input embedding layer.
|
1792 |
+
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
1793 |
+
which input IDs are masked. A `1` value in the mask means that
|
1794 |
+
the corresponding input ID should *not* be ignored. A `0` means
|
1795 |
+
that the corresponding input ID is masked.
|
1796 |
+
|
1797 |
+
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
|
1798 |
+
library.
|
1799 |
+
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
|
1800 |
+
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
|
1801 |
+
to introduce causal or other biases.
|
1802 |
+
|
1803 |
+
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
|
1804 |
+
indicates that the i-th element in the sequence is allowed to attend to the j-th
|
1805 |
+
element in the sequence.
|
1806 |
+
|
1807 |
+
If the tensor is a float tensor, it will just be added to the attention
|
1808 |
+
scores before the softmax.
|
1809 |
+
|
1810 |
+
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
|
1811 |
+
:param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
1812 |
+
the response mask. A `1` value in the mask means that the corresponding token
|
1813 |
+
is a response token. A `0` means that the corresponding token is not
|
1814 |
+
a response token.
|
1815 |
+
:param past_key_values: Pre-computed keys and values for each attention block.
|
1816 |
+
Can be used to speed up sequential decoding. The `input_ids` which have
|
1817 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
1818 |
+
:param use_cache: If `True`, return key and value tensors for each block.
|
1819 |
+
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
|
1820 |
+
This can speed up decoding when you only care about the next token.
|
1821 |
+
"""
|
1822 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
|
1823 |
+
|
1824 |
+
if past_key_values:
|
1825 |
+
assert len(past_key_values) == self.config.n_layers
|
1826 |
+
|
1827 |
+
has_image = images is not None
|
1828 |
+
|
1829 |
+
assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings."
|
1830 |
+
assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images."
|
1831 |
+
|
1832 |
+
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
|
1833 |
+
if past_key_values is None:
|
1834 |
+
past_length = 0
|
1835 |
+
else:
|
1836 |
+
past_length = past_key_values[0][0].size(-2)
|
1837 |
+
|
1838 |
+
if self.config.use_position_ids and attention_mask is None:
|
1839 |
+
attention_mask = input_ids != -1
|
1840 |
+
|
1841 |
+
if subsegment_ids is not None:
|
1842 |
+
assert not use_cache, "Subsegment_ids cannot be used with cache."
|
1843 |
+
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
|
1844 |
+
attention_mask = (
|
1845 |
+
subsegment_mask.to(attention_mask.dtype) *
|
1846 |
+
attention_mask.unsqueeze(2) *
|
1847 |
+
attention_mask.unsqueeze(1))
|
1848 |
+
if position_ids is None:
|
1849 |
+
raise ValueError(f"Positioned ids must be given if using subsegment_ids")
|
1850 |
+
else:
|
1851 |
+
if self.config.use_position_ids and position_ids is None:
|
1852 |
+
position_ids = torch.clamp(
|
1853 |
+
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
|
1854 |
+
min=0,
|
1855 |
+
).broadcast_to((batch_size, attention_mask.shape[-1]))
|
1856 |
+
|
1857 |
+
# Get embeddings of input.
|
1858 |
+
# shape: (batch_size, seq_len, d_model)
|
1859 |
+
if input_ids is not None:
|
1860 |
+
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
|
1861 |
+
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
|
1862 |
+
|
1863 |
+
num_image: Optional[int] = None
|
1864 |
+
if images is not None:
|
1865 |
+
# shape: (batch_size, num_image, num_patch, d_model)
|
1866 |
+
# cls_embed: (batch_size, num_image, d_model)
|
1867 |
+
image_features, cls_embed = self.vision_backbone(images, image_masks)
|
1868 |
+
num_image, num_patch = image_features.shape[1:3]
|
1869 |
+
assert image_input_idx.shape == (batch_size, num_image, num_patch)
|
1870 |
+
|
1871 |
+
# inster the image feature into the embedding.
|
1872 |
+
image_features = image_features.view(batch_size, num_image * num_patch, -1)
|
1873 |
+
image_input_idx = image_input_idx.view(batch_size, num_image * num_patch)
|
1874 |
+
|
1875 |
+
valid = image_input_idx >= 0
|
1876 |
+
batch_idx = torch.arange(batch_size, device=x.device)
|
1877 |
+
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
|
1878 |
+
|
1879 |
+
# For hf demo/endpoint
|
1880 |
+
image_features = image_features.to(x.device)
|
1881 |
+
|
1882 |
+
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
|
1883 |
+
|
1884 |
+
if not self.config.rope:
|
1885 |
+
# Get positional embeddings.
|
1886 |
+
# shape: (1, seq_len)
|
1887 |
+
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
|
1888 |
+
# shape: (1, seq_len, d_model)
|
1889 |
+
pos_emb = self.transformer.wpe(pos) # type: ignore
|
1890 |
+
x = pos_emb + x
|
1891 |
+
|
1892 |
+
# Add input + positional embeddings and apply dropout.
|
1893 |
+
# shape: (batch_size, seq_len, d_model)
|
1894 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
1895 |
+
|
1896 |
+
# normalized
|
1897 |
+
if self.config.normalize_input_embeds:
|
1898 |
+
x = x * (self.config.d_model ** 0.5)
|
1899 |
+
|
1900 |
+
# Transform the attention mask into what the blocks expect.
|
1901 |
+
if attention_mask is not None:
|
1902 |
+
# shape: (batch_size, 1, 1, seq_len)
|
1903 |
+
if len(attention_mask.shape) == 2:
|
1904 |
+
attention_mask = attention_mask[:, :past_length + seq_len]
|
1905 |
+
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
|
1906 |
+
else:
|
1907 |
+
attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float)
|
1908 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
|
1909 |
+
|
1910 |
+
# Merge attention mask with attention bias.
|
1911 |
+
if (
|
1912 |
+
attention_bias is not None
|
1913 |
+
or attention_mask is not None
|
1914 |
+
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
|
1915 |
+
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
|
1916 |
+
# scores correctly.
|
1917 |
+
or past_key_values is not None
|
1918 |
+
):
|
1919 |
+
if attention_bias is None:
|
1920 |
+
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
|
1921 |
+
elif attention_bias.dtype in (torch.int8, torch.bool):
|
1922 |
+
attention_bias = attention_bias.to(dtype=torch.float)
|
1923 |
+
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
|
1924 |
+
|
1925 |
+
# Transform to the right shape and data type.
|
1926 |
+
mask_len = seq_len
|
1927 |
+
if attention_mask is not None:
|
1928 |
+
mask_len = attention_mask.shape[-1]
|
1929 |
+
elif past_key_values is not None:
|
1930 |
+
mask_len = past_key_values[0][0].shape[-2] + seq_len
|
1931 |
+
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
|
1932 |
+
|
1933 |
+
# Add in the masking bias.
|
1934 |
+
if attention_mask is not None:
|
1935 |
+
attention_bias = attention_bias + attention_mask
|
1936 |
+
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
|
1937 |
+
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
|
1938 |
+
# it can produce NaNs.
|
1939 |
+
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
|
1940 |
+
|
1941 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
1942 |
+
|
1943 |
+
# decoder layers
|
1944 |
+
all_hidden_states = []
|
1945 |
+
|
1946 |
+
# Apply blocks one-by-one.
|
1947 |
+
if self.config.block_group_size == 1:
|
1948 |
+
for block_idx, block in enumerate(self.transformer.blocks):
|
1949 |
+
if output_hidden_states:
|
1950 |
+
# add hidden states
|
1951 |
+
all_hidden_states.append(x)
|
1952 |
+
|
1953 |
+
layer_past = None if past_key_values is None else past_key_values[block_idx]
|
1954 |
+
x, cache = block(x, attention_bias=attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
|
1955 |
+
|
1956 |
+
if attn_key_values is not None:
|
1957 |
+
assert cache is not None
|
1958 |
+
attn_key_values.append(cache)
|
1959 |
+
else:
|
1960 |
+
for group_idx, block_group in enumerate(self.transformer.block_groups):
|
1961 |
+
if output_hidden_states:
|
1962 |
+
# add hidden states
|
1963 |
+
all_hidden_states.append(x)
|
1964 |
+
|
1965 |
+
layers_past = (
|
1966 |
+
None
|
1967 |
+
if past_key_values is None
|
1968 |
+
else past_key_values[
|
1969 |
+
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
|
1970 |
+
]
|
1971 |
+
)
|
1972 |
+
x, cache = block_group(
|
1973 |
+
x, attention_bias=attention_bias, position_ids=position_ids, layers_past=layers_past, use_cache=use_cache
|
1974 |
+
)
|
1975 |
+
if attn_key_values is not None:
|
1976 |
+
assert cache is not None
|
1977 |
+
attn_key_values.extend(cache)
|
1978 |
+
|
1979 |
+
if last_logits_only:
|
1980 |
+
# shape: (batch_size, 1, d_model)
|
1981 |
+
if append_last_valid_logits is not None:
|
1982 |
+
last_valid_output = x[
|
1983 |
+
torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)]
|
1984 |
+
x = last_valid_output.unsqueeze(1)
|
1985 |
+
else:
|
1986 |
+
x = x[:, -1, :].unsqueeze(1)
|
1987 |
+
|
1988 |
+
# Apply final layer norm.
|
1989 |
+
# shape: (batch_size, seq_len or 1, d_model)
|
1990 |
+
x = self.transformer.ln_f(x) # type: ignore
|
1991 |
+
if output_hidden_states:
|
1992 |
+
# add final hidden state post-final-layernorm, following HuggingFace's convention
|
1993 |
+
all_hidden_states.append(x)
|
1994 |
+
|
1995 |
+
# Get logits.
|
1996 |
+
# shape: (batch_size, seq_len or 1, vocab_size)
|
1997 |
+
if self.config.weight_tying:
|
1998 |
+
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
|
1999 |
+
else:
|
2000 |
+
logits = self.transformer.ff_out(x) # type: ignore
|
2001 |
+
if self.config.scale_logits:
|
2002 |
+
logits.mul_(1 / math.sqrt(self.config.d_model))
|
2003 |
+
|
2004 |
+
if not last_logits_only and append_last_valid_logits is not None:
|
2005 |
+
last_valid_logit = logits[
|
2006 |
+
torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits]
|
2007 |
+
logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1)
|
2008 |
+
|
2009 |
+
return ModelOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
|
2010 |
+
|
2011 |
+
|
2012 |
+
class MolmoForCausalLM(PreTrainedModel):
|
2013 |
+
config_class = MolmoConfig
|
2014 |
+
base_model_prefix = "model"
|
2015 |
+
_no_split_modules = ["MolmoBlock"]
|
2016 |
+
|
2017 |
+
def __init__(self, config: MolmoConfig, model: Optional[Molmo] = None, init_params: bool = False):
|
2018 |
+
super().__init__(config)
|
2019 |
+
|
2020 |
+
if not model:
|
2021 |
+
full_config = FullMolmoConfig(
|
2022 |
+
image_padding_embed="pad_and_partial_pad",
|
2023 |
+
image_pooling_2d="attention-meanq",
|
2024 |
+
attention_layer_norm=config.attention_layer_norm,
|
2025 |
+
rope_impl="llama",
|
2026 |
+
vocab_size=config.vocab_size,
|
2027 |
+
max_sequence_length=config.max_position_embeddings,
|
2028 |
+
qkv_bias=config.qkv_bias,
|
2029 |
+
norm_after=config.norm_after,
|
2030 |
+
embedding_size=config.embedding_size,
|
2031 |
+
attention_type="sdpa",
|
2032 |
+
embedding_dropout=0,
|
2033 |
+
attention_dropout=0,
|
2034 |
+
residual_dropout=0,
|
2035 |
+
rope=True,
|
2036 |
+
weight_tying=False,
|
2037 |
+
include_bias=False,
|
2038 |
+
d_model=config.hidden_size,
|
2039 |
+
mlp_hidden_size=config.intermediate_size,
|
2040 |
+
n_layers=config.num_hidden_layers,
|
2041 |
+
additional_vocab_size=128,
|
2042 |
+
n_heads=config.num_attention_heads,
|
2043 |
+
n_kv_heads=config.num_key_value_heads,
|
2044 |
+
rope_theta=config.rope_theta,
|
2045 |
+
layer_norm_eps=config.layer_norm_eps,
|
2046 |
+
layer_norm_type=config.layer_norm_type,
|
2047 |
+
vit_layers=[-2, -9],
|
2048 |
+
vision_backbone=VisionBackboneConfig(
|
2049 |
+
image_default_input_size=(336, 336),
|
2050 |
+
image_patch_size=14,
|
2051 |
+
image_pos_patch_size=14,
|
2052 |
+
image_emb_dim=1024,
|
2053 |
+
image_num_heads=16,
|
2054 |
+
image_num_key_value_heads=16,
|
2055 |
+
image_num_layers=23,
|
2056 |
+
image_head_dim=64,
|
2057 |
+
image_mlp_dim=4096,
|
2058 |
+
image_mlp_activations="quick_gelu",
|
2059 |
+
image_dropout_rate=0.0,
|
2060 |
+
image_num_pos=577,
|
2061 |
+
image_norm_eps=1e-5,
|
2062 |
+
attention_dropout=0.0,
|
2063 |
+
residual_dropout=0.0,
|
2064 |
+
initializer_range=0.02,
|
2065 |
+
)
|
2066 |
+
)
|
2067 |
+
self.model = Molmo(full_config, init_params=init_params)
|
2068 |
+
else:
|
2069 |
+
self.model = model
|
2070 |
+
|
2071 |
+
|
2072 |
+
def forward(
|
2073 |
+
self,
|
2074 |
+
input_ids: torch.LongTensor = None,
|
2075 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2076 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2077 |
+
attention_bias: Optional[torch.Tensor] = None,
|
2078 |
+
response_mask: Optional[torch.Tensor] = None,
|
2079 |
+
images: Optional[torch.Tensor] = None,
|
2080 |
+
image_masks: Optional[torch.Tensor] = None,
|
2081 |
+
image_input_idx: Optional[torch.Tensor] = None,
|
2082 |
+
subsegment_ids: Optional[torch.Tensor] = None,
|
2083 |
+
position_ids: Optional[torch.Tensor] = None,
|
2084 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
2085 |
+
labels: Optional[torch.LongTensor] = None,
|
2086 |
+
loss_masks: Optional[torch.Tensor] = None,
|
2087 |
+
use_cache: Optional[bool] = None,
|
2088 |
+
last_logits_only: Optional[bool] = None,
|
2089 |
+
output_attentions: Optional[bool] = None,
|
2090 |
+
output_hidden_states: Optional[bool] = None,
|
2091 |
+
append_last_valid_logits: Optional[torch.Tensor] = None,
|
2092 |
+
return_dict: Optional[bool] = None,
|
2093 |
+
cache_position: Optional[
|
2094 |
+
Cache
|
2095 |
+
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
|
2096 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
2097 |
+
if use_cache is None:
|
2098 |
+
use_cache = self.config.use_cache
|
2099 |
+
|
2100 |
+
if output_attentions:
|
2101 |
+
raise ValueError("output_attentions is not yet supported in Molmo")
|
2102 |
+
|
2103 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2104 |
+
|
2105 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
2106 |
+
outputs = self.model.forward(
|
2107 |
+
input_ids=input_ids,
|
2108 |
+
input_embeddings=inputs_embeds,
|
2109 |
+
attention_mask=attention_mask,
|
2110 |
+
attention_bias=attention_bias,
|
2111 |
+
response_mask=response_mask,
|
2112 |
+
images=images,
|
2113 |
+
image_masks=image_masks,
|
2114 |
+
image_input_idx=image_input_idx,
|
2115 |
+
subsegment_ids=subsegment_ids,
|
2116 |
+
position_ids=position_ids,
|
2117 |
+
past_key_values=past_key_values,
|
2118 |
+
use_cache=use_cache,
|
2119 |
+
last_logits_only=last_logits_only,
|
2120 |
+
output_hidden_states=output_hidden_states,
|
2121 |
+
append_last_valid_logits=append_last_valid_logits,
|
2122 |
+
)
|
2123 |
+
|
2124 |
+
logits = outputs.logits
|
2125 |
+
hidden_states = outputs.hidden_states
|
2126 |
+
|
2127 |
+
loss = None
|
2128 |
+
if labels is not None:
|
2129 |
+
if loss_masks is not None:
|
2130 |
+
loss_masks = loss_masks * (loss_masks > 0)
|
2131 |
+
batch_size_in_tokens = max(loss_masks.sum().item(), 1)
|
2132 |
+
labels = labels.long()
|
2133 |
+
labels.masked_fill_(~(loss_masks > 0), -100)
|
2134 |
+
labels = labels.view(-1)
|
2135 |
+
logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1))
|
2136 |
+
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
|
2137 |
+
loss = loss_fct(logits_for_loss, labels)
|
2138 |
+
loss = loss.view(input_ids.shape[0], -1)
|
2139 |
+
loss = loss * loss_masks
|
2140 |
+
loss = loss.sum() / batch_size_in_tokens
|
2141 |
+
use_zloss = getattr(self.config, "softmax_auxiliary_loss", False)
|
2142 |
+
if use_zloss:
|
2143 |
+
z_squared = logits_for_loss.logsumexp(-1).pow(2)
|
2144 |
+
z_loss = self.config.softmax_auxiliary_loss_scale * z_squared
|
2145 |
+
z_loss = z_loss.view(input_ids.shape[0], -1)
|
2146 |
+
z_loss = z_loss * loss_masks
|
2147 |
+
z_loss = z_loss.sum() / batch_size_in_tokens
|
2148 |
+
loss += z_loss
|
2149 |
+
else:
|
2150 |
+
# Shift so that tokens < n predict n
|
2151 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
2152 |
+
shift_labels = labels[..., 1:].contiguous()
|
2153 |
+
# Flatten the tokens
|
2154 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
2155 |
+
shift_logits = shift_logits.view(-1, self.config.embedding_size)
|
2156 |
+
shift_labels = shift_labels.view(-1)
|
2157 |
+
# Enable model parallelism
|
2158 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
2159 |
+
loss = loss_fct(shift_logits, shift_labels)
|
2160 |
+
|
2161 |
+
if not return_dict:
|
2162 |
+
output = (logits,) + outputs[1:]
|
2163 |
+
return (loss,) + output if loss is not None else output
|
2164 |
+
|
2165 |
+
return CausalLMOutputWithPast(
|
2166 |
+
loss=loss,
|
2167 |
+
logits=logits,
|
2168 |
+
past_key_values=outputs.attn_key_values,
|
2169 |
+
hidden_states=hidden_states,
|
2170 |
+
)
|
2171 |
+
|
2172 |
+
def can_generate(self) -> bool:
|
2173 |
+
return True
|
2174 |
+
|
2175 |
+
@torch.no_grad()
|
2176 |
+
def generate_from_batch(
|
2177 |
+
self,
|
2178 |
+
batch: Dict[str, Any],
|
2179 |
+
generation_config: Optional[GenerationConfig] = None,
|
2180 |
+
**kwargs,
|
2181 |
+
):
|
2182 |
+
if generation_config is not None:
|
2183 |
+
assert generation_config.use_cache
|
2184 |
+
|
2185 |
+
images = batch.get("images")
|
2186 |
+
image_masks = batch.get("image_masks")
|
2187 |
+
image_input_idx = batch.get("image_input_idx")
|
2188 |
+
|
2189 |
+
# Validate inputs.
|
2190 |
+
input_ids = batch["input_ids"]
|
2191 |
+
batch_size, seq_len = input_ids.shape
|
2192 |
+
attention_mask = batch.get("attention_mask", None)
|
2193 |
+
max_new_tokens = generation_config.max_new_tokens
|
2194 |
+
assert max_new_tokens is not None
|
2195 |
+
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
|
2196 |
+
position_ids: Optional[torch.Tensor] = None
|
2197 |
+
append_last_valid_logits: Optional[torch.Tensor] = None
|
2198 |
+
if self.config.use_position_ids and attention_mask is None:
|
2199 |
+
attention_mask = input_ids != -1
|
2200 |
+
position_ids = torch.clamp(
|
2201 |
+
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
|
2202 |
+
min=0
|
2203 |
+
)
|
2204 |
+
append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1
|
2205 |
+
attention_mask = torch.cat(
|
2206 |
+
[attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))],
|
2207 |
+
dim=1,
|
2208 |
+
)
|
2209 |
+
if attention_mask is not None:
|
2210 |
+
assert attention_mask.shape == (batch_size, mask_len)
|
2211 |
+
|
2212 |
+
out = super().generate(
|
2213 |
+
batch["input_ids"],
|
2214 |
+
generation_config,
|
2215 |
+
attention_mask=attention_mask,
|
2216 |
+
images=images,
|
2217 |
+
image_masks=image_masks,
|
2218 |
+
image_input_idx=image_input_idx,
|
2219 |
+
position_ids=position_ids,
|
2220 |
+
append_last_valid_logits=append_last_valid_logits,
|
2221 |
+
**kwargs,
|
2222 |
+
)
|
2223 |
+
|
2224 |
+
return out
|
2225 |
+
|
2226 |
+
def prepare_inputs_for_generation(
|
2227 |
+
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
2228 |
+
):
|
2229 |
+
if past_key_values:
|
2230 |
+
# This is because we want the model to only process the last generated token.
|
2231 |
+
input_ids = input_ids[:, -1:]
|
2232 |
+
|
2233 |
+
if self.config.use_position_ids:
|
2234 |
+
attention_mask = kwargs.get("attention_mask")
|
2235 |
+
images = kwargs.get("images")
|
2236 |
+
image_masks = kwargs.get("image_masks")
|
2237 |
+
image_input_idx = kwargs.get("image_input_idx")
|
2238 |
+
position_ids = kwargs.get("position_ids")
|
2239 |
+
append_last_valid_logits = kwargs.get("append_last_valid_logits")
|
2240 |
+
model_inputs = {
|
2241 |
+
"input_ids": input_ids,
|
2242 |
+
"attention_mask": attention_mask,
|
2243 |
+
"position_ids": position_ids,
|
2244 |
+
"past_key_values": past_key_values,
|
2245 |
+
"use_cache": True,
|
2246 |
+
"last_logits_only": True,
|
2247 |
+
}
|
2248 |
+
if past_key_values is None:
|
2249 |
+
model_inputs["images"] = images
|
2250 |
+
model_inputs["image_masks"] = image_masks
|
2251 |
+
model_inputs["image_input_idx"] = image_input_idx
|
2252 |
+
model_inputs["append_last_valid_logits"] = append_last_valid_logits
|
2253 |
+
else:
|
2254 |
+
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
2255 |
+
|
2256 |
+
model_inputs.update(kwargs)
|
2257 |
+
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
2258 |
+
return model_inputs
|
2259 |
+
|
2260 |
+
def _update_model_kwargs_for_generation(
|
2261 |
+
self,
|
2262 |
+
outputs: ModelOutput,
|
2263 |
+
model_kwargs: Dict[str, Any],
|
2264 |
+
is_encoder_decoder: bool = False,
|
2265 |
+
num_new_tokens: int = 1,
|
2266 |
+
) -> Dict[str, Any]:
|
2267 |
+
if self.config.use_position_ids:
|
2268 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
2269 |
+
if "append_last_valid_logits" in model_kwargs:
|
2270 |
+
del model_kwargs["append_last_valid_logits"]
|
2271 |
+
if "images" in model_kwargs:
|
2272 |
+
del model_kwargs["images"]
|
2273 |
+
del model_kwargs["image_masks"]
|
2274 |
+
del model_kwargs["image_input_idx"]
|
2275 |
+
cache_name, cache = super()._extract_past_from_model_output(outputs)
|
2276 |
+
model_kwargs[cache_name] = cache
|
2277 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
|
2278 |
+
return model_kwargs
|
2279 |
+
|
2280 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
2281 |
+
return self.model.transformer.wte
|
2282 |
+
|
2283 |
+
def set_input_embeddings(self, value: torch.nn.Module):
|
2284 |
+
self.model.transformer.wte = value
|
2285 |
+
|
2286 |
+
def get_output_embeddings(self):
|
2287 |
+
if self.config.weight_tying:
|
2288 |
+
return self.model.transformer.wte
|
2289 |
+
else:
|
2290 |
+
return self.model.transformer.ff_out
|
2291 |
+
|
2292 |
+
def set_output_embeddings(self, value: torch.nn.Module):
|
2293 |
+
if self.config.weight_tying:
|
2294 |
+
self.model.transformer.wte = value
|
2295 |
+
else:
|
2296 |
+
self.model.transformer.ff_out = value
|
2297 |
+
|
2298 |
+
def tie_weights(self):
|
2299 |
+
"""
|
2300 |
+
This function is intentionally left as a no-op.
|
2301 |
+
|
2302 |
+
Weight tying is handled as follows:
|
2303 |
+
- When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
|
2304 |
+
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
|
2305 |
+
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
|
2306 |
+
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.
|
2307 |
+
|
2308 |
+
Therefore, there is no need to explicitly tie the weights in this function.
|
2309 |
+
"""
|
2310 |
+
pass
|
2311 |
+
|
2312 |
+
def resize_token_embeddings(
|
2313 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
2314 |
+
) -> torch.nn.Embedding:
|
2315 |
+
"""
|
2316 |
+
Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.
|
2317 |
+
|
2318 |
+
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
|
2319 |
+
|
2320 |
+
Arguments:
|
2321 |
+
new_num_tokens (`int`, *optional*):
|
2322 |
+
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
|
2323 |
+
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
|
2324 |
+
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
|
2325 |
+
pad_to_multiple_of (`int`, *optional*):
|
2326 |
+
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
|
2327 |
+
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
|
2328 |
+
|
2329 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
2330 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
|
2331 |
+
details about this, or help on choosing the correct value for resizing, refer to this guide:
|
2332 |
+
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
2333 |
+
|
2334 |
+
Return:
|
2335 |
+
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
|
2336 |
+
|
2337 |
+
Note:
|
2338 |
+
This method differs from the base class implementation by resizing the `embedding_size` attribute of the
|
2339 |
+
model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
|
2340 |
+
is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
|
2341 |
+
embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
|
2342 |
+
"""
|
2343 |
+
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
2344 |
+
if new_num_tokens is None and pad_to_multiple_of is None:
|
2345 |
+
return model_embeds
|
2346 |
+
|
2347 |
+
# Update base model and current model config
|
2348 |
+
self.config.embedding_size = model_embeds.weight.shape[0]
|
2349 |
+
self.model.config.embedding_size = model_embeds.weight.shape[0]
|
2350 |
+
|
2351 |
+
# Check if the embedding size is less than the vocab size
|
2352 |
+
if self.config.embedding_size < self.config.vocab_size:
|
2353 |
+
warning_message = (
|
2354 |
+
f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
|
2355 |
+
f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
|
2356 |
+
"size is less than or equal to the new token embedding size."
|
2357 |
+
)
|
2358 |
+
log.warning(warning_message)
|
2359 |
+
|
2360 |
+
# Tie weights again if needed
|
2361 |
+
self.tie_weights()
|
2362 |
+
|
2363 |
+
return model_embeds
|
2364 |
+
|
2365 |
+
|
2366 |
+
# Always register for multi-modal features
|
2367 |
+
AutoModelForCausalLM.register(MolmoConfig, MolmoForCausalLM)
|
preprocessing_molmo.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Processor class for Molmo.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import PIL
|
8 |
+
from PIL import ImageOps
|
9 |
+
from PIL.Image import Image
|
10 |
+
|
11 |
+
try:
|
12 |
+
from typing import Unpack
|
13 |
+
except ImportError:
|
14 |
+
from typing_extensions import Unpack
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from transformers.image_utils import ImageInput
|
20 |
+
from transformers.processing_utils import (
|
21 |
+
TextKwargs,
|
22 |
+
ProcessingKwargs,
|
23 |
+
ProcessorMixin,
|
24 |
+
)
|
25 |
+
|
26 |
+
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
from transformers import AutoTokenizer
|
30 |
+
from .image_preprocessing_molmo import MolmoImagesKwargs, MolmoImageProcessor
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
DEFAULT_IMAGE_PATCH_TOKEN = f"<im_patch>"
|
37 |
+
DEFAULT_IM_START_TOKEN = f"<im_start>"
|
38 |
+
DEFAULT_IM_END_TOKEN = f"<im_end>"
|
39 |
+
DEFAULT_IM_COL_TOKEN = f"<im_col>"
|
40 |
+
IMAGE_PROMPT = "<|image|>"
|
41 |
+
|
42 |
+
EXTRA_TOKENS = (DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_COL_TOKEN, IMAGE_PROMPT)
|
43 |
+
|
44 |
+
|
45 |
+
def get_special_token_ids(tokenizer):
|
46 |
+
ids = tokenizer.encode("".join(EXTRA_TOKENS), add_special_tokens=False)
|
47 |
+
assert len(ids) == len(EXTRA_TOKENS)
|
48 |
+
return {k: i for k, i in zip(EXTRA_TOKENS, ids)}
|
49 |
+
|
50 |
+
|
51 |
+
class MolmoTextKwargs(TextKwargs, total=False):
|
52 |
+
style: Optional[str]
|
53 |
+
system_prompt: Optional[str]
|
54 |
+
message_format: Optional[str]
|
55 |
+
always_start_with_space: Optional[bool]
|
56 |
+
sequence_length: Optional[int]
|
57 |
+
|
58 |
+
|
59 |
+
class MolmoProcessorKwargs(ProcessingKwargs, total=False):
|
60 |
+
text_kwargs: MolmoTextKwargs
|
61 |
+
images_kwargs: MolmoImagesKwargs
|
62 |
+
_defaults = {
|
63 |
+
"images_kwargs": {
|
64 |
+
"max_crops": 12,
|
65 |
+
"overlap_margins": [4, 4],
|
66 |
+
"base_image_input_size": [336, 336],
|
67 |
+
"image_token_length_w": 12,
|
68 |
+
"image_token_length_h": 12,
|
69 |
+
"image_patch_size": 14,
|
70 |
+
"image_padding_mask": True,
|
71 |
+
},
|
72 |
+
"text_kwargs": {
|
73 |
+
"style": "long_caption",
|
74 |
+
"system_prompt": "none",
|
75 |
+
"message_format": "role",
|
76 |
+
"always_start_with_space": True,
|
77 |
+
"sequence_length": 1536,
|
78 |
+
"padding": False,
|
79 |
+
},
|
80 |
+
}
|
81 |
+
|
82 |
+
|
83 |
+
class MolmoProcessor(ProcessorMixin):
|
84 |
+
attributes = ["image_processor", "tokenizer"]
|
85 |
+
image_processor_class = "AutoImageProcessor"
|
86 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
87 |
+
|
88 |
+
def __init__(self, image_processor: MolmoImageProcessor = None, tokenizer : AutoTokenizer = None, **kwargs):
|
89 |
+
# self.image_processor = image_processor
|
90 |
+
# self.tokenizer = tokenizer
|
91 |
+
super().__init__(image_processor, tokenizer)
|
92 |
+
self._special_tokens = None
|
93 |
+
|
94 |
+
@property
|
95 |
+
def special_token_ids(self):
|
96 |
+
if self._special_tokens is None:
|
97 |
+
self._special_tokens = get_special_token_ids(self.tokenizer)
|
98 |
+
return self._special_tokens
|
99 |
+
|
100 |
+
def get_tokens_input(self, prompt, message_format, always_start_with_space):
|
101 |
+
if message_format == "none" or message_format is None:
|
102 |
+
pass
|
103 |
+
elif message_format == "role":
|
104 |
+
prompt = "User: " + prompt + " Assistant:"
|
105 |
+
else:
|
106 |
+
raise NotImplementedError(f"Message format {message_format} not implemented")
|
107 |
+
|
108 |
+
if always_start_with_space:
|
109 |
+
prompt = " " + prompt
|
110 |
+
|
111 |
+
tokens = self.tokenizer.encode(prompt, add_special_tokens=False)
|
112 |
+
|
113 |
+
return tokens
|
114 |
+
|
115 |
+
def process(
|
116 |
+
self,
|
117 |
+
text: TextInput = None,
|
118 |
+
images: ImageInput = None,
|
119 |
+
*,
|
120 |
+
tokens: Optional[PreTokenizedInput] = None,
|
121 |
+
**kwargs: Unpack[MolmoProcessorKwargs],
|
122 |
+
):
|
123 |
+
output_kwargs = self._merge_kwargs(
|
124 |
+
MolmoProcessorKwargs,
|
125 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
|
129 |
+
if tokens is None:
|
130 |
+
tokens = self.get_tokens_input(
|
131 |
+
text,
|
132 |
+
output_kwargs["text_kwargs"]["message_format"],
|
133 |
+
output_kwargs["text_kwargs"]["always_start_with_space"],
|
134 |
+
)
|
135 |
+
|
136 |
+
image_token_id = self.special_token_ids[IMAGE_PROMPT]
|
137 |
+
|
138 |
+
if images is not None:
|
139 |
+
if not isinstance(images, (list, tuple)):
|
140 |
+
images = [images]
|
141 |
+
image_arrays = []
|
142 |
+
for image in images:
|
143 |
+
if isinstance(image, Image):
|
144 |
+
image = image.convert("RGB")
|
145 |
+
# Handle images with EXIF orientation tags, which PIL will ignore by default
|
146 |
+
# https://github.com/python-pillow/Pillow/issues/4703
|
147 |
+
img = ImageOps.exif_transpose(image)
|
148 |
+
image_arrays.append(np.array(image))
|
149 |
+
else:
|
150 |
+
assert len(image.shape) == 3 and image.shape[-1] == 3
|
151 |
+
image_arrays.append(image.astype(np.uint8))
|
152 |
+
images = image_arrays
|
153 |
+
# For now only support inserting images at the start
|
154 |
+
image_idx = [-1]*len(images)
|
155 |
+
else:
|
156 |
+
image_idx = None
|
157 |
+
|
158 |
+
sequence_length = output_kwargs["text_kwargs"]["sequence_length"]
|
159 |
+
|
160 |
+
image_patch_token_id = self.special_token_ids[DEFAULT_IMAGE_PATCH_TOKEN]
|
161 |
+
image_col_token_id = self.special_token_ids[DEFAULT_IM_COL_TOKEN]
|
162 |
+
image_start_token_id = self.special_token_ids[DEFAULT_IM_START_TOKEN]
|
163 |
+
image_end_token_id = self.special_token_ids[DEFAULT_IM_END_TOKEN]
|
164 |
+
out = self.image_processor.multimodal_preprocess(
|
165 |
+
images=images,
|
166 |
+
image_idx=image_idx,
|
167 |
+
tokens=np.asarray(tokens).astype(np.int32),
|
168 |
+
sequence_length=sequence_length,
|
169 |
+
image_patch_token_id=image_patch_token_id,
|
170 |
+
image_col_token_id=image_col_token_id,
|
171 |
+
image_start_token_id=image_start_token_id,
|
172 |
+
image_end_token_id=image_end_token_id,
|
173 |
+
**output_kwargs["images_kwargs"]
|
174 |
+
)
|
175 |
+
|
176 |
+
# Prepend BOS
|
177 |
+
# qwen2 and olmo do not have a BOS, and instead use EOS as a generic seperator token.
|
178 |
+
bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
|
179 |
+
decoder_input_tokens = np.pad(out["input_ids"], [[1, 0]], constant_values=bos)
|
180 |
+
out["input_ids"] = decoder_input_tokens
|
181 |
+
if "image_input_idx" in out:
|
182 |
+
# Shift patch mapping up by one since we added BOS
|
183 |
+
image_input_idx = out["image_input_idx"]
|
184 |
+
out["image_input_idx"] = np.where(image_input_idx < 0, image_input_idx, image_input_idx + 1)
|
185 |
+
|
186 |
+
for k, v in out.items():
|
187 |
+
out[k] = torch.from_numpy(v)
|
188 |
+
|
189 |
+
return out
|
190 |
+
|
191 |
+
|
192 |
+
MolmoProcessor.register_for_auto_class()
|
preprocessor_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_preprocessing_molmo.MolmoImageProcessor",
|
4 |
+
"AutoProcessor": "preprocessing_molmo.MolmoProcessor"
|
5 |
+
},
|
6 |
+
"base_image_input_size": [
|
7 |
+
336,
|
8 |
+
336
|
9 |
+
],
|
10 |
+
"do_normalize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_padding_mask": true,
|
17 |
+
"image_patch_size": 14,
|
18 |
+
"image_processor_type": "MolmoImageProcessor",
|
19 |
+
"image_std": [
|
20 |
+
0.26862954,
|
21 |
+
0.26130258,
|
22 |
+
0.27577711
|
23 |
+
],
|
24 |
+
"image_token_length_h": 12,
|
25 |
+
"image_token_length_w": 12,
|
26 |
+
"max_crops": 12,
|
27 |
+
"overlap_margins": [
|
28 |
+
4,
|
29 |
+
4
|
30 |
+
],
|
31 |
+
"processor_class": "MolmoProcessor"
|
32 |
+
}
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "preprocessing_molmo.MolmoProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "MolmoProcessor"
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"|<EXTRA_TOKENS_0>|",
|
4 |
+
"|<EXTRA_TOKENS_1>|",
|
5 |
+
"|<EXTRA_TOKENS_2>|",
|
6 |
+
"|<EXTRA_TOKENS_3>|",
|
7 |
+
"|<EXTRA_TOKENS_4>|",
|
8 |
+
"|<EXTRA_TOKENS_5>|",
|
9 |
+
"|<EXTRA_TOKENS_6>|",
|
10 |
+
"|<EXTRA_TOKENS_7>|",
|
11 |
+
"|<EXTRA_TOKENS_8>|",
|
12 |
+
"|<EXTRA_TOKENS_9>|",
|
13 |
+
"|<EXTRA_TOKENS_10>|",
|
14 |
+
"|<EXTRA_TOKENS_11>|",
|
15 |
+
"|<EXTRA_TOKENS_12>|",
|
16 |
+
"|<EXTRA_TOKENS_13>|",
|
17 |
+
"|<EXTRA_TOKENS_14>|",
|
18 |
+
"|<EXTRA_TOKENS_15>|",
|
19 |
+
"|<EXTRA_TOKENS_16>|",
|
20 |
+
"|<EXTRA_TOKENS_17>|",
|
21 |
+
"|<EXTRA_TOKENS_18>|",
|
22 |
+
"|<EXTRA_TOKENS_19>|",
|
23 |
+
"|<EXTRA_TOKENS_20>|",
|
24 |
+
"|<EXTRA_TOKENS_21>|",
|
25 |
+
"|<EXTRA_TOKENS_22>|",
|
26 |
+
"|<EXTRA_TOKENS_23>|",
|
27 |
+
"|<EXTRA_TOKENS_24>|",
|
28 |
+
"|<EXTRA_TOKENS_25>|",
|
29 |
+
"|<EXTRA_TOKENS_26>|",
|
30 |
+
"|<EXTRA_TOKENS_27>|",
|
31 |
+
"|<EXTRA_TOKENS_28>|",
|
32 |
+
"|<EXTRA_TOKENS_29>|",
|
33 |
+
"|<EXTRA_TOKENS_30>|",
|
34 |
+
"|<EXTRA_TOKENS_31>|",
|
35 |
+
"|<EXTRA_TOKENS_32>|",
|
36 |
+
"|<EXTRA_TOKENS_33>|",
|
37 |
+
"|<EXTRA_TOKENS_34>|",
|
38 |
+
"|<EXTRA_TOKENS_35>|",
|
39 |
+
"|<EXTRA_TOKENS_36>|",
|
40 |
+
"|<EXTRA_TOKENS_37>|",
|
41 |
+
"|<EXTRA_TOKENS_38>|",
|
42 |
+
"|<EXTRA_TOKENS_39>|",
|
43 |
+
"|<EXTRA_TOKENS_40>|",
|
44 |
+
"|<EXTRA_TOKENS_41>|",
|
45 |
+
"|<EXTRA_TOKENS_42>|",
|
46 |
+
"|<EXTRA_TOKENS_43>|",
|
47 |
+
"|<EXTRA_TOKENS_44>|",
|
48 |
+
"|<EXTRA_TOKENS_45>|",
|
49 |
+
"|<EXTRA_TOKENS_46>|",
|
50 |
+
"|<EXTRA_TOKENS_47>|",
|
51 |
+
"|<EXTRA_TOKENS_48>|",
|
52 |
+
"|<EXTRA_TOKENS_49>|",
|
53 |
+
"|<EXTRA_TOKENS_50>|",
|
54 |
+
"|<EXTRA_TOKENS_51>|",
|
55 |
+
"|<EXTRA_TOKENS_52>|",
|
56 |
+
"|<EXTRA_TOKENS_53>|",
|
57 |
+
"|<EXTRA_TOKENS_54>|",
|
58 |
+
"|<EXTRA_TOKENS_55>|",
|
59 |
+
"|<EXTRA_TOKENS_56>|",
|
60 |
+
"|<EXTRA_TOKENS_57>|",
|
61 |
+
"|<EXTRA_TOKENS_58>|",
|
62 |
+
"|<EXTRA_TOKENS_59>|",
|
63 |
+
"|<EXTRA_TOKENS_60>|",
|
64 |
+
"|<EXTRA_TOKENS_61>|",
|
65 |
+
"|<EXTRA_TOKENS_62>|",
|
66 |
+
"|<EXTRA_TOKENS_63>|",
|
67 |
+
"|<EXTRA_TOKENS_64>|",
|
68 |
+
"|<EXTRA_TOKENS_65>|",
|
69 |
+
"|<EXTRA_TOKENS_66>|",
|
70 |
+
"|<EXTRA_TOKENS_67>|",
|
71 |
+
"|<EXTRA_TOKENS_68>|",
|
72 |
+
"|<EXTRA_TOKENS_69>|",
|
73 |
+
"|<EXTRA_TOKENS_70>|",
|
74 |
+
"|<EXTRA_TOKENS_71>|",
|
75 |
+
"|<EXTRA_TOKENS_72>|",
|
76 |
+
"|<EXTRA_TOKENS_73>|",
|
77 |
+
"|<EXTRA_TOKENS_74>|",
|
78 |
+
"|<EXTRA_TOKENS_75>|",
|
79 |
+
"|<EXTRA_TOKENS_76>|",
|
80 |
+
"|<EXTRA_TOKENS_77>|",
|
81 |
+
"|<EXTRA_TOKENS_78>|",
|
82 |
+
"|<EXTRA_TOKENS_79>|",
|
83 |
+
"|<EXTRA_TOKENS_80>|",
|
84 |
+
"|<EXTRA_TOKENS_81>|",
|
85 |
+
"|<EXTRA_TOKENS_82>|",
|
86 |
+
"|<EXTRA_TOKENS_83>|",
|
87 |
+
"|<EXTRA_TOKENS_84>|",
|
88 |
+
"|<EXTRA_TOKENS_85>|",
|
89 |
+
"|<EXTRA_TOKENS_86>|",
|
90 |
+
"|<EXTRA_TOKENS_87>|",
|
91 |
+
"|<EXTRA_TOKENS_88>|",
|
92 |
+
"|<EXTRA_TOKENS_89>|",
|
93 |
+
"|<EXTRA_TOKENS_90>|",
|
94 |
+
"|<EXTRA_TOKENS_91>|",
|
95 |
+
"|<EXTRA_TOKENS_92>|",
|
96 |
+
"|<EXTRA_TOKENS_93>|",
|
97 |
+
"|<EXTRA_TOKENS_94>|",
|
98 |
+
"|<EXTRA_TOKENS_95>|",
|
99 |
+
"|<EXTRA_TOKENS_96>|",
|
100 |
+
"|<EXTRA_TOKENS_97>|",
|
101 |
+
"|<EXTRA_TOKENS_98>|",
|
102 |
+
"|<EXTRA_TOKENS_99>|",
|
103 |
+
"|<EXTRA_TOKENS_100>|",
|
104 |
+
"|<EXTRA_TOKENS_101>|",
|
105 |
+
"|<EXTRA_TOKENS_102>|",
|
106 |
+
"|<EXTRA_TOKENS_103>|",
|
107 |
+
"|<EXTRA_TOKENS_104>|",
|
108 |
+
"|<EXTRA_TOKENS_105>|",
|
109 |
+
"|<EXTRA_TOKENS_106>|",
|
110 |
+
"|<EXTRA_TOKENS_107>|",
|
111 |
+
"|<EXTRA_TOKENS_108>|",
|
112 |
+
"|<EXTRA_TOKENS_109>|",
|
113 |
+
"|<EXTRA_TOKENS_110>|",
|
114 |
+
"|<EXTRA_TOKENS_111>|",
|
115 |
+
"|<EXTRA_TOKENS_112>|",
|
116 |
+
"|<EXTRA_TOKENS_113>|",
|
117 |
+
"|<EXTRA_TOKENS_114>|",
|
118 |
+
"|<EXTRA_TOKENS_115>|",
|
119 |
+
"|<EXTRA_TOKENS_116>|",
|
120 |
+
"|<EXTRA_TOKENS_117>|",
|
121 |
+
"|<EXTRA_TOKENS_118>|",
|
122 |
+
"|<EXTRA_TOKENS_119>|",
|
123 |
+
"|<EXTRA_TOKENS_120>|",
|
124 |
+
"|<EXTRA_TOKENS_121>|",
|
125 |
+
"|<EXTRA_TOKENS_122>|",
|
126 |
+
"|<EXTRA_TOKENS_123>|",
|
127 |
+
"|<EXTRA_TOKENS_124>|",
|
128 |
+
"|<EXTRA_TOKENS_125>|",
|
129 |
+
"|<EXTRA_TOKENS_126>|",
|
130 |
+
"|<EXTRA_TOKENS_127>|",
|
131 |
+
"|<EXTRA_TOKENS_128>|",
|
132 |
+
"|<EXTRA_TOKENS_129>|",
|
133 |
+
"|<EXTRA_TOKENS_130>|",
|
134 |
+
"|<EXTRA_TOKENS_131>|",
|
135 |
+
"|<EXTRA_TOKENS_132>|",
|
136 |
+
"|<EXTRA_TOKENS_133>|",
|
137 |
+
"|<EXTRA_TOKENS_134>|",
|
138 |
+
"|<EXTRA_TOKENS_135>|",
|
139 |
+
"|<EXTRA_TOKENS_136>|",
|
140 |
+
"|<EXTRA_TOKENS_137>|",
|
141 |
+
"|<EXTRA_TOKENS_138>|",
|
142 |
+
"|<EXTRA_TOKENS_139>|",
|
143 |
+
"|<EXTRA_TOKENS_140>|",
|
144 |
+
"|<EXTRA_TOKENS_141>|",
|
145 |
+
"|<EXTRA_TOKENS_142>|",
|
146 |
+
"|<EXTRA_TOKENS_143>|",
|
147 |
+
"|<EXTRA_TOKENS_144>|",
|
148 |
+
"|<EXTRA_TOKENS_145>|",
|
149 |
+
"|<EXTRA_TOKENS_146>|",
|
150 |
+
"|<EXTRA_TOKENS_147>|",
|
151 |
+
"|<EXTRA_TOKENS_148>|",
|
152 |
+
"|<EXTRA_TOKENS_149>|",
|
153 |
+
"|<EXTRA_TOKENS_150>|",
|
154 |
+
"|<EXTRA_TOKENS_151>|",
|
155 |
+
"|<EXTRA_TOKENS_152>|",
|
156 |
+
"|<EXTRA_TOKENS_153>|",
|
157 |
+
"|<EXTRA_TOKENS_154>|",
|
158 |
+
"|<EXTRA_TOKENS_155>|",
|
159 |
+
"|<EXTRA_TOKENS_156>|",
|
160 |
+
"|<EXTRA_TOKENS_157>|",
|
161 |
+
"|<EXTRA_TOKENS_158>|",
|
162 |
+
"|<EXTRA_TOKENS_159>|",
|
163 |
+
"|<EXTRA_TOKENS_160>|",
|
164 |
+
"|<EXTRA_TOKENS_161>|",
|
165 |
+
"|<EXTRA_TOKENS_162>|",
|
166 |
+
"|<EXTRA_TOKENS_163>|",
|
167 |
+
"|<EXTRA_TOKENS_164>|",
|
168 |
+
"|<EXTRA_TOKENS_165>|",
|
169 |
+
"|<EXTRA_TOKENS_166>|",
|
170 |
+
"|<EXTRA_TOKENS_167>|",
|
171 |
+
"|<EXTRA_TOKENS_168>|",
|
172 |
+
"|<EXTRA_TOKENS_169>|",
|
173 |
+
"|<EXTRA_TOKENS_170>|",
|
174 |
+
"|<EXTRA_TOKENS_171>|",
|
175 |
+
"|<EXTRA_TOKENS_172>|",
|
176 |
+
"|<EXTRA_TOKENS_173>|",
|
177 |
+
"|<EXTRA_TOKENS_174>|",
|
178 |
+
"|<EXTRA_TOKENS_175>|",
|
179 |
+
"|<EXTRA_TOKENS_176>|",
|
180 |
+
"|<EXTRA_TOKENS_177>|",
|
181 |
+
"|<EXTRA_TOKENS_178>|",
|
182 |
+
"|<EXTRA_TOKENS_179>|",
|
183 |
+
"|<EXTRA_TOKENS_180>|",
|
184 |
+
"|<EXTRA_TOKENS_181>|",
|
185 |
+
"|<EXTRA_TOKENS_182>|",
|
186 |
+
"|<EXTRA_TOKENS_183>|",
|
187 |
+
"|<EXTRA_TOKENS_184>|",
|
188 |
+
"|<EXTRA_TOKENS_185>|",
|
189 |
+
"|<EXTRA_TOKENS_186>|",
|
190 |
+
"|<EXTRA_TOKENS_187>|",
|
191 |
+
"|<EXTRA_TOKENS_188>|",
|
192 |
+
"|<EXTRA_TOKENS_189>|",
|
193 |
+
"|<EXTRA_TOKENS_190>|",
|
194 |
+
"|<EXTRA_TOKENS_191>|",
|
195 |
+
"|<EXTRA_TOKENS_192>|",
|
196 |
+
"|<EXTRA_TOKENS_193>|",
|
197 |
+
"|<EXTRA_TOKENS_194>|",
|
198 |
+
"|<EXTRA_TOKENS_195>|",
|
199 |
+
"|<EXTRA_TOKENS_196>|",
|
200 |
+
"|<EXTRA_TOKENS_197>|",
|
201 |
+
"|<EXTRA_TOKENS_198>|",
|
202 |
+
"|<EXTRA_TOKENS_199>|",
|
203 |
+
"|<EXTRA_TOKENS_200>|",
|
204 |
+
"|<EXTRA_TOKENS_201>|",
|
205 |
+
"|<EXTRA_TOKENS_202>|",
|
206 |
+
"|<EXTRA_TOKENS_203>|",
|
207 |
+
"|<EXTRA_TOKENS_204>|",
|
208 |
+
"|<EXTRA_TOKENS_205>|",
|
209 |
+
"|<EXTRA_TOKENS_206>|",
|
210 |
+
"|<EXTRA_TOKENS_207>|",
|
211 |
+
"|<EXTRA_TOKENS_208>|",
|
212 |
+
"|<EXTRA_TOKENS_209>|",
|
213 |
+
"|<EXTRA_TOKENS_210>|",
|
214 |
+
"|<EXTRA_TOKENS_211>|",
|
215 |
+
"|<EXTRA_TOKENS_212>|",
|
216 |
+
"|<EXTRA_TOKENS_213>|",
|
217 |
+
"|<EXTRA_TOKENS_214>|",
|
218 |
+
"|<EXTRA_TOKENS_215>|",
|
219 |
+
"|<EXTRA_TOKENS_216>|",
|
220 |
+
"|<EXTRA_TOKENS_217>|",
|
221 |
+
"|<EXTRA_TOKENS_218>|",
|
222 |
+
"|<EXTRA_TOKENS_219>|",
|
223 |
+
"|<EXTRA_TOKENS_220>|",
|
224 |
+
"|<EXTRA_TOKENS_221>|",
|
225 |
+
"|<EXTRA_TOKENS_222>|",
|
226 |
+
"|<EXTRA_TOKENS_223>|",
|
227 |
+
"|<EXTRA_TOKENS_224>|",
|
228 |
+
"|<EXTRA_TOKENS_225>|",
|
229 |
+
"|<EXTRA_TOKENS_226>|",
|
230 |
+
"|<EXTRA_TOKENS_227>|",
|
231 |
+
"|<EXTRA_TOKENS_228>|",
|
232 |
+
"|<EXTRA_TOKENS_229>|",
|
233 |
+
"|<EXTRA_TOKENS_230>|",
|
234 |
+
"|<EXTRA_TOKENS_231>|",
|
235 |
+
"|<EXTRA_TOKENS_232>|",
|
236 |
+
"|<EXTRA_TOKENS_233>|",
|
237 |
+
"|<EXTRA_TOKENS_234>|",
|
238 |
+
"|<EXTRA_TOKENS_235>|",
|
239 |
+
"|<EXTRA_TOKENS_236>|",
|
240 |
+
"|<EXTRA_TOKENS_237>|",
|
241 |
+
"|<EXTRA_TOKENS_238>|",
|
242 |
+
"|<EXTRA_TOKENS_239>|",
|
243 |
+
"|<EXTRA_TOKENS_240>|",
|
244 |
+
"|<EXTRA_TOKENS_241>|",
|
245 |
+
"|<EXTRA_TOKENS_242>|",
|
246 |
+
"|<EXTRA_TOKENS_243>|",
|
247 |
+
"|<EXTRA_TOKENS_244>|",
|
248 |
+
"|<EXTRA_TOKENS_245>|",
|
249 |
+
"|<EXTRA_TOKENS_246>|",
|
250 |
+
"|<EXTRA_TOKENS_247>|",
|
251 |
+
"|<EXTRA_TOKENS_248>|",
|
252 |
+
"|<EXTRA_TOKENS_249>|",
|
253 |
+
"|<EXTRA_TOKENS_250>|",
|
254 |
+
"|<EXTRA_TOKENS_251>|",
|
255 |
+
"|<EXTRA_TOKENS_252>|",
|
256 |
+
"|<EXTRA_TOKENS_253>|",
|
257 |
+
"|<EXTRA_TOKENS_254>|",
|
258 |
+
"|<EXTRA_TOKENS_255>|",
|
259 |
+
"|<EXTRA_TOKENS_256>|",
|
260 |
+
"|<EXTRA_TOKENS_257>|",
|
261 |
+
"|<EXTRA_TOKENS_258>|",
|
262 |
+
"|<EXTRA_TOKENS_259>|",
|
263 |
+
"|<EXTRA_TOKENS_260>|",
|
264 |
+
"|<EXTRA_TOKENS_261>|",
|
265 |
+
"|<EXTRA_TOKENS_262>|",
|
266 |
+
"|<EXTRA_TOKENS_263>|",
|
267 |
+
"|<EXTRA_TOKENS_264>|",
|
268 |
+
"|<EXTRA_TOKENS_265>|",
|
269 |
+
"|<EXTRA_TOKENS_266>|",
|
270 |
+
"|<EXTRA_TOKENS_267>|",
|
271 |
+
"|<EXTRA_TOKENS_268>|",
|
272 |
+
"|<EXTRA_TOKENS_269>|",
|
273 |
+
"|<EXTRA_TOKENS_270>|",
|
274 |
+
"|<EXTRA_TOKENS_271>|",
|
275 |
+
"|<EXTRA_TOKENS_272>|",
|
276 |
+
"|<EXTRA_TOKENS_273>|",
|
277 |
+
"|<EXTRA_TOKENS_274>|",
|
278 |
+
"|<EXTRA_TOKENS_275>|",
|
279 |
+
"|<EXTRA_TOKENS_276>|",
|
280 |
+
"|<EXTRA_TOKENS_277>|",
|
281 |
+
"|<EXTRA_TOKENS_278>|",
|
282 |
+
"|<EXTRA_TOKENS_279>|",
|
283 |
+
"|<EXTRA_TOKENS_280>|",
|
284 |
+
"|<EXTRA_TOKENS_281>|",
|
285 |
+
"|<EXTRA_TOKENS_282>|",
|
286 |
+
"|<EXTRA_TOKENS_283>|",
|
287 |
+
"|<EXTRA_TOKENS_284>|",
|
288 |
+
"|<EXTRA_TOKENS_285>|",
|
289 |
+
"|<EXTRA_TOKENS_286>|",
|
290 |
+
"|<EXTRA_TOKENS_287>|",
|
291 |
+
"|<EXTRA_TOKENS_288>|",
|
292 |
+
"|<EXTRA_TOKENS_289>|",
|
293 |
+
"|<EXTRA_TOKENS_290>|",
|
294 |
+
"|<EXTRA_TOKENS_291>|",
|
295 |
+
"|<EXTRA_TOKENS_292>|",
|
296 |
+
"|<EXTRA_TOKENS_293>|",
|
297 |
+
"|<EXTRA_TOKENS_294>|",
|
298 |
+
"|<EXTRA_TOKENS_295>|",
|
299 |
+
"|<EXTRA_TOKENS_296>|",
|
300 |
+
"|<EXTRA_TOKENS_297>|",
|
301 |
+
"|<EXTRA_TOKENS_298>|",
|
302 |
+
"|<EXTRA_TOKENS_299>|",
|
303 |
+
"|<EXTRA_TOKENS_300>|",
|
304 |
+
"|<EXTRA_TOKENS_301>|",
|
305 |
+
"|<EXTRA_TOKENS_302>|",
|
306 |
+
"|<EXTRA_TOKENS_303>|",
|
307 |
+
"|<EXTRA_TOKENS_304>|",
|
308 |
+
"|<EXTRA_TOKENS_305>|",
|
309 |
+
"|<EXTRA_TOKENS_306>|",
|
310 |
+
"|<EXTRA_TOKENS_307>|",
|
311 |
+
"|<EXTRA_TOKENS_308>|",
|
312 |
+
"|<EXTRA_TOKENS_309>|",
|
313 |
+
"|<EXTRA_TOKENS_310>|",
|
314 |
+
"|<EXTRA_TOKENS_311>|",
|
315 |
+
"|<EXTRA_TOKENS_312>|",
|
316 |
+
"|<EXTRA_TOKENS_313>|",
|
317 |
+
"|<EXTRA_TOKENS_314>|",
|
318 |
+
"|<EXTRA_TOKENS_315>|",
|
319 |
+
"|<EXTRA_TOKENS_316>|",
|
320 |
+
"|<EXTRA_TOKENS_317>|",
|
321 |
+
"|<EXTRA_TOKENS_318>|",
|
322 |
+
"|<EXTRA_TOKENS_319>|",
|
323 |
+
"|<EXTRA_TOKENS_320>|",
|
324 |
+
"|<EXTRA_TOKENS_321>|",
|
325 |
+
"|<EXTRA_TOKENS_322>|",
|
326 |
+
"|<EXTRA_TOKENS_323>|",
|
327 |
+
"|<EXTRA_TOKENS_324>|",
|
328 |
+
"|<EXTRA_TOKENS_325>|",
|
329 |
+
"|<EXTRA_TOKENS_326>|",
|
330 |
+
"|<EXTRA_TOKENS_327>|",
|
331 |
+
"|<EXTRA_TOKENS_328>|",
|
332 |
+
"|<EXTRA_TOKENS_329>|",
|
333 |
+
"|<EXTRA_TOKENS_330>|",
|
334 |
+
"|<EXTRA_TOKENS_331>|",
|
335 |
+
"|<EXTRA_TOKENS_332>|",
|
336 |
+
"|<EXTRA_TOKENS_333>|",
|
337 |
+
"|<EXTRA_TOKENS_334>|",
|
338 |
+
"|<EXTRA_TOKENS_335>|",
|
339 |
+
"|<EXTRA_TOKENS_336>|",
|
340 |
+
"|<EXTRA_TOKENS_337>|",
|
341 |
+
"|<EXTRA_TOKENS_338>|",
|
342 |
+
"|<EXTRA_TOKENS_339>|",
|
343 |
+
"|<EXTRA_TOKENS_340>|",
|
344 |
+
"|<EXTRA_TOKENS_341>|",
|
345 |
+
"|<EXTRA_TOKENS_342>|",
|
346 |
+
"|<EXTRA_TOKENS_343>|",
|
347 |
+
"|<EXTRA_TOKENS_344>|",
|
348 |
+
"|<EXTRA_TOKENS_345>|",
|
349 |
+
"|<EXTRA_TOKENS_346>|",
|
350 |
+
"|<EXTRA_TOKENS_347>|",
|
351 |
+
"|<EXTRA_TOKENS_348>|",
|
352 |
+
"|<EXTRA_TOKENS_349>|",
|
353 |
+
"|<EXTRA_TOKENS_350>|",
|
354 |
+
"|<EXTRA_TOKENS_351>|",
|
355 |
+
"|<EXTRA_TOKENS_352>|",
|
356 |
+
"|<EXTRA_TOKENS_353>|",
|
357 |
+
"|<EXTRA_TOKENS_354>|",
|
358 |
+
"|<EXTRA_TOKENS_355>|",
|
359 |
+
"|<EXTRA_TOKENS_356>|",
|
360 |
+
"|<EXTRA_TOKENS_357>|",
|
361 |
+
"|<EXTRA_TOKENS_358>|",
|
362 |
+
"|<EXTRA_TOKENS_359>|",
|
363 |
+
"|<EXTRA_TOKENS_360>|",
|
364 |
+
"|<EXTRA_TOKENS_361>|",
|
365 |
+
"|<EXTRA_TOKENS_362>|",
|
366 |
+
"|<EXTRA_TOKENS_363>|",
|
367 |
+
"|<EXTRA_TOKENS_364>|",
|
368 |
+
"|<EXTRA_TOKENS_365>|",
|
369 |
+
"|<EXTRA_TOKENS_366>|",
|
370 |
+
"|<EXTRA_TOKENS_367>|",
|
371 |
+
"|<EXTRA_TOKENS_368>|",
|
372 |
+
"|<EXTRA_TOKENS_369>|",
|
373 |
+
"|<EXTRA_TOKENS_370>|",
|
374 |
+
"|<EXTRA_TOKENS_371>|",
|
375 |
+
"|<EXTRA_TOKENS_372>|",
|
376 |
+
"|<EXTRA_TOKENS_373>|",
|
377 |
+
"|<EXTRA_TOKENS_374>|",
|
378 |
+
"|<EXTRA_TOKENS_375>|",
|
379 |
+
"|<EXTRA_TOKENS_376>|",
|
380 |
+
"|<EXTRA_TOKENS_377>|",
|
381 |
+
"|<EXTRA_TOKENS_378>|",
|
382 |
+
"|<EXTRA_TOKENS_379>|",
|
383 |
+
"|<EXTRA_TOKENS_380>|",
|
384 |
+
"|<EXTRA_TOKENS_381>|",
|
385 |
+
"|<EXTRA_TOKENS_382>|",
|
386 |
+
"|<EXTRA_TOKENS_383>|",
|
387 |
+
"|<EXTRA_TOKENS_384>|",
|
388 |
+
"|<EXTRA_TOKENS_385>|",
|
389 |
+
"|<EXTRA_TOKENS_386>|",
|
390 |
+
"|<EXTRA_TOKENS_387>|",
|
391 |
+
"|<EXTRA_TOKENS_388>|",
|
392 |
+
"|<EXTRA_TOKENS_389>|",
|
393 |
+
"|<EXTRA_TOKENS_390>|",
|
394 |
+
"|<EXTRA_TOKENS_391>|",
|
395 |
+
"|<EXTRA_TOKENS_392>|",
|
396 |
+
"|<EXTRA_TOKENS_393>|",
|
397 |
+
"|<EXTRA_TOKENS_394>|",
|
398 |
+
"|<EXTRA_TOKENS_395>|",
|
399 |
+
"|<EXTRA_TOKENS_396>|",
|
400 |
+
"|<EXTRA_TOKENS_397>|",
|
401 |
+
"|<EXTRA_TOKENS_398>|",
|
402 |
+
"|<EXTRA_TOKENS_399>|",
|
403 |
+
"|<EXTRA_TOKENS_400>|",
|
404 |
+
"|<EXTRA_TOKENS_401>|",
|
405 |
+
"|<EXTRA_TOKENS_402>|",
|
406 |
+
"|<EXTRA_TOKENS_403>|",
|
407 |
+
"|<EXTRA_TOKENS_404>|",
|
408 |
+
"|<EXTRA_TOKENS_405>|",
|
409 |
+
"|<EXTRA_TOKENS_406>|",
|
410 |
+
"|<EXTRA_TOKENS_407>|",
|
411 |
+
"|<EXTRA_TOKENS_408>|",
|
412 |
+
"|<EXTRA_TOKENS_409>|",
|
413 |
+
"|<EXTRA_TOKENS_410>|",
|
414 |
+
"|<EXTRA_TOKENS_411>|",
|
415 |
+
"|<EXTRA_TOKENS_412>|",
|
416 |
+
"|<EXTRA_TOKENS_413>|",
|
417 |
+
"|<EXTRA_TOKENS_414>|",
|
418 |
+
"|<EXTRA_TOKENS_415>|",
|
419 |
+
"|<EXTRA_TOKENS_416>|",
|
420 |
+
"|<EXTRA_TOKENS_417>|",
|
421 |
+
"<im_start>",
|
422 |
+
"<im_end>",
|
423 |
+
"<im_patch>",
|
424 |
+
"<im_col>",
|
425 |
+
"<|image|>"
|
426 |
+
],
|
427 |
+
"eos_token": {
|
428 |
+
"content": "<|endoftext|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false
|
433 |
+
},
|
434 |
+
"pad_token": {
|
435 |
+
"content": "<|endoftext|>",
|
436 |
+
"lstrip": false,
|
437 |
+
"normalized": false,
|
438 |
+
"rstrip": false,
|
439 |
+
"single_word": false
|
440 |
+
}
|
441 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6248048a83152ce87663c799492fe7e60c8086f3ae51ce7bd255ccc445746fc0
|
3 |
+
size 11501432
|
tokenizer_config.json
ADDED
@@ -0,0 +1,3852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "|<EXTRA_TOKENS_0>|",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "|<EXTRA_TOKENS_1>|",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "|<EXTRA_TOKENS_2>|",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "|<EXTRA_TOKENS_3>|",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "|<EXTRA_TOKENS_4>|",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "|<EXTRA_TOKENS_5>|",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "|<EXTRA_TOKENS_6>|",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "|<EXTRA_TOKENS_7>|",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "|<EXTRA_TOKENS_8>|",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "|<EXTRA_TOKENS_9>|",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "|<EXTRA_TOKENS_10>|",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"151657": {
|
117 |
+
"content": "|<EXTRA_TOKENS_11>|",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"151658": {
|
125 |
+
"content": "|<EXTRA_TOKENS_12>|",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"151659": {
|
133 |
+
"content": "|<EXTRA_TOKENS_13>|",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"151660": {
|
141 |
+
"content": "|<EXTRA_TOKENS_14>|",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"151661": {
|
149 |
+
"content": "|<EXTRA_TOKENS_15>|",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"151662": {
|
157 |
+
"content": "|<EXTRA_TOKENS_16>|",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"151663": {
|
165 |
+
"content": "|<EXTRA_TOKENS_17>|",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"151664": {
|
173 |
+
"content": "|<EXTRA_TOKENS_18>|",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"151665": {
|
181 |
+
"content": "|<EXTRA_TOKENS_19>|",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"151666": {
|
189 |
+
"content": "|<EXTRA_TOKENS_20>|",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"151667": {
|
197 |
+
"content": "|<EXTRA_TOKENS_21>|",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"151668": {
|
205 |
+
"content": "|<EXTRA_TOKENS_22>|",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"151669": {
|
213 |
+
"content": "|<EXTRA_TOKENS_23>|",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"151670": {
|
221 |
+
"content": "|<EXTRA_TOKENS_24>|",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"151671": {
|
229 |
+
"content": "|<EXTRA_TOKENS_25>|",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"151672": {
|
237 |
+
"content": "|<EXTRA_TOKENS_26>|",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"151673": {
|
245 |
+
"content": "|<EXTRA_TOKENS_27>|",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"151674": {
|
253 |
+
"content": "|<EXTRA_TOKENS_28>|",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"151675": {
|
261 |
+
"content": "|<EXTRA_TOKENS_29>|",
|
262 |
+
"lstrip": false,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": false,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"151676": {
|
269 |
+
"content": "|<EXTRA_TOKENS_30>|",
|
270 |
+
"lstrip": false,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": false,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"151677": {
|
277 |
+
"content": "|<EXTRA_TOKENS_31>|",
|
278 |
+
"lstrip": false,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"151678": {
|
285 |
+
"content": "|<EXTRA_TOKENS_32>|",
|
286 |
+
"lstrip": false,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": false,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"151679": {
|
293 |
+
"content": "|<EXTRA_TOKENS_33>|",
|
294 |
+
"lstrip": false,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": false,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"151680": {
|
301 |
+
"content": "|<EXTRA_TOKENS_34>|",
|
302 |
+
"lstrip": false,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": false,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"151681": {
|
309 |
+
"content": "|<EXTRA_TOKENS_35>|",
|
310 |
+
"lstrip": false,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": false,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"151682": {
|
317 |
+
"content": "|<EXTRA_TOKENS_36>|",
|
318 |
+
"lstrip": false,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": false,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"151683": {
|
325 |
+
"content": "|<EXTRA_TOKENS_37>|",
|
326 |
+
"lstrip": false,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": false,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"151684": {
|
333 |
+
"content": "|<EXTRA_TOKENS_38>|",
|
334 |
+
"lstrip": false,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": false,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"151685": {
|
341 |
+
"content": "|<EXTRA_TOKENS_39>|",
|
342 |
+
"lstrip": false,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": false,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"151686": {
|
349 |
+
"content": "|<EXTRA_TOKENS_40>|",
|
350 |
+
"lstrip": false,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": false,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"151687": {
|
357 |
+
"content": "|<EXTRA_TOKENS_41>|",
|
358 |
+
"lstrip": false,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": false,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"151688": {
|
365 |
+
"content": "|<EXTRA_TOKENS_42>|",
|
366 |
+
"lstrip": false,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": false,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"151689": {
|
373 |
+
"content": "|<EXTRA_TOKENS_43>|",
|
374 |
+
"lstrip": false,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": false,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"151690": {
|
381 |
+
"content": "|<EXTRA_TOKENS_44>|",
|
382 |
+
"lstrip": false,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": false,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"151691": {
|
389 |
+
"content": "|<EXTRA_TOKENS_45>|",
|
390 |
+
"lstrip": false,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": false,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"151692": {
|
397 |
+
"content": "|<EXTRA_TOKENS_46>|",
|
398 |
+
"lstrip": false,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": false,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"151693": {
|
405 |
+
"content": "|<EXTRA_TOKENS_47>|",
|
406 |
+
"lstrip": false,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": false,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"151694": {
|
413 |
+
"content": "|<EXTRA_TOKENS_48>|",
|
414 |
+
"lstrip": false,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": false,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"151695": {
|
421 |
+
"content": "|<EXTRA_TOKENS_49>|",
|
422 |
+
"lstrip": false,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": false,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"151696": {
|
429 |
+
"content": "|<EXTRA_TOKENS_50>|",
|
430 |
+
"lstrip": false,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": false,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
},
|
436 |
+
"151697": {
|
437 |
+
"content": "|<EXTRA_TOKENS_51>|",
|
438 |
+
"lstrip": false,
|
439 |
+
"normalized": false,
|
440 |
+
"rstrip": false,
|
441 |
+
"single_word": false,
|
442 |
+
"special": true
|
443 |
+
},
|
444 |
+
"151698": {
|
445 |
+
"content": "|<EXTRA_TOKENS_52>|",
|
446 |
+
"lstrip": false,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": false,
|
449 |
+
"single_word": false,
|
450 |
+
"special": true
|
451 |
+
},
|
452 |
+
"151699": {
|
453 |
+
"content": "|<EXTRA_TOKENS_53>|",
|
454 |
+
"lstrip": false,
|
455 |
+
"normalized": false,
|
456 |
+
"rstrip": false,
|
457 |
+
"single_word": false,
|
458 |
+
"special": true
|
459 |
+
},
|
460 |
+
"151700": {
|
461 |
+
"content": "|<EXTRA_TOKENS_54>|",
|
462 |
+
"lstrip": false,
|
463 |
+
"normalized": false,
|
464 |
+
"rstrip": false,
|
465 |
+
"single_word": false,
|
466 |
+
"special": true
|
467 |
+
},
|
468 |
+
"151701": {
|
469 |
+
"content": "|<EXTRA_TOKENS_55>|",
|
470 |
+
"lstrip": false,
|
471 |
+
"normalized": false,
|
472 |
+
"rstrip": false,
|
473 |
+
"single_word": false,
|
474 |
+
"special": true
|
475 |
+
},
|
476 |
+
"151702": {
|
477 |
+
"content": "|<EXTRA_TOKENS_56>|",
|
478 |
+
"lstrip": false,
|
479 |
+
"normalized": false,
|
480 |
+
"rstrip": false,
|
481 |
+
"single_word": false,
|
482 |
+
"special": true
|
483 |
+
},
|
484 |
+
"151703": {
|
485 |
+
"content": "|<EXTRA_TOKENS_57>|",
|
486 |
+
"lstrip": false,
|
487 |
+
"normalized": false,
|
488 |
+
"rstrip": false,
|
489 |
+
"single_word": false,
|
490 |
+
"special": true
|
491 |
+
},
|
492 |
+
"151704": {
|
493 |
+
"content": "|<EXTRA_TOKENS_58>|",
|
494 |
+
"lstrip": false,
|
495 |
+
"normalized": false,
|
496 |
+
"rstrip": false,
|
497 |
+
"single_word": false,
|
498 |
+
"special": true
|
499 |
+
},
|
500 |
+
"151705": {
|
501 |
+
"content": "|<EXTRA_TOKENS_59>|",
|
502 |
+
"lstrip": false,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": false,
|
505 |
+
"single_word": false,
|
506 |
+
"special": true
|
507 |
+
},
|
508 |
+
"151706": {
|
509 |
+
"content": "|<EXTRA_TOKENS_60>|",
|
510 |
+
"lstrip": false,
|
511 |
+
"normalized": false,
|
512 |
+
"rstrip": false,
|
513 |
+
"single_word": false,
|
514 |
+
"special": true
|
515 |
+
},
|
516 |
+
"151707": {
|
517 |
+
"content": "|<EXTRA_TOKENS_61>|",
|
518 |
+
"lstrip": false,
|
519 |
+
"normalized": false,
|
520 |
+
"rstrip": false,
|
521 |
+
"single_word": false,
|
522 |
+
"special": true
|
523 |
+
},
|
524 |
+
"151708": {
|
525 |
+
"content": "|<EXTRA_TOKENS_62>|",
|
526 |
+
"lstrip": false,
|
527 |
+
"normalized": false,
|
528 |
+
"rstrip": false,
|
529 |
+
"single_word": false,
|
530 |
+
"special": true
|
531 |
+
},
|
532 |
+
"151709": {
|
533 |
+
"content": "|<EXTRA_TOKENS_63>|",
|
534 |
+
"lstrip": false,
|
535 |
+
"normalized": false,
|
536 |
+
"rstrip": false,
|
537 |
+
"single_word": false,
|
538 |
+
"special": true
|
539 |
+
},
|
540 |
+
"151710": {
|
541 |
+
"content": "|<EXTRA_TOKENS_64>|",
|
542 |
+
"lstrip": false,
|
543 |
+
"normalized": false,
|
544 |
+
"rstrip": false,
|
545 |
+
"single_word": false,
|
546 |
+
"special": true
|
547 |
+
},
|
548 |
+
"151711": {
|
549 |
+
"content": "|<EXTRA_TOKENS_65>|",
|
550 |
+
"lstrip": false,
|
551 |
+
"normalized": false,
|
552 |
+
"rstrip": false,
|
553 |
+
"single_word": false,
|
554 |
+
"special": true
|
555 |
+
},
|
556 |
+
"151712": {
|
557 |
+
"content": "|<EXTRA_TOKENS_66>|",
|
558 |
+
"lstrip": false,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": false,
|
561 |
+
"single_word": false,
|
562 |
+
"special": true
|
563 |
+
},
|
564 |
+
"151713": {
|
565 |
+
"content": "|<EXTRA_TOKENS_67>|",
|
566 |
+
"lstrip": false,
|
567 |
+
"normalized": false,
|
568 |
+
"rstrip": false,
|
569 |
+
"single_word": false,
|
570 |
+
"special": true
|
571 |
+
},
|
572 |
+
"151714": {
|
573 |
+
"content": "|<EXTRA_TOKENS_68>|",
|
574 |
+
"lstrip": false,
|
575 |
+
"normalized": false,
|
576 |
+
"rstrip": false,
|
577 |
+
"single_word": false,
|
578 |
+
"special": true
|
579 |
+
},
|
580 |
+
"151715": {
|
581 |
+
"content": "|<EXTRA_TOKENS_69>|",
|
582 |
+
"lstrip": false,
|
583 |
+
"normalized": false,
|
584 |
+
"rstrip": false,
|
585 |
+
"single_word": false,
|
586 |
+
"special": true
|
587 |
+
},
|
588 |
+
"151716": {
|
589 |
+
"content": "|<EXTRA_TOKENS_70>|",
|
590 |
+
"lstrip": false,
|
591 |
+
"normalized": false,
|
592 |
+
"rstrip": false,
|
593 |
+
"single_word": false,
|
594 |
+
"special": true
|
595 |
+
},
|
596 |
+
"151717": {
|
597 |
+
"content": "|<EXTRA_TOKENS_71>|",
|
598 |
+
"lstrip": false,
|
599 |
+
"normalized": false,
|
600 |
+
"rstrip": false,
|
601 |
+
"single_word": false,
|
602 |
+
"special": true
|
603 |
+
},
|
604 |
+
"151718": {
|
605 |
+
"content": "|<EXTRA_TOKENS_72>|",
|
606 |
+
"lstrip": false,
|
607 |
+
"normalized": false,
|
608 |
+
"rstrip": false,
|
609 |
+
"single_word": false,
|
610 |
+
"special": true
|
611 |
+
},
|
612 |
+
"151719": {
|
613 |
+
"content": "|<EXTRA_TOKENS_73>|",
|
614 |
+
"lstrip": false,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": false,
|
617 |
+
"single_word": false,
|
618 |
+
"special": true
|
619 |
+
},
|
620 |
+
"151720": {
|
621 |
+
"content": "|<EXTRA_TOKENS_74>|",
|
622 |
+
"lstrip": false,
|
623 |
+
"normalized": false,
|
624 |
+
"rstrip": false,
|
625 |
+
"single_word": false,
|
626 |
+
"special": true
|
627 |
+
},
|
628 |
+
"151721": {
|
629 |
+
"content": "|<EXTRA_TOKENS_75>|",
|
630 |
+
"lstrip": false,
|
631 |
+
"normalized": false,
|
632 |
+
"rstrip": false,
|
633 |
+
"single_word": false,
|
634 |
+
"special": true
|
635 |
+
},
|
636 |
+
"151722": {
|
637 |
+
"content": "|<EXTRA_TOKENS_76>|",
|
638 |
+
"lstrip": false,
|
639 |
+
"normalized": false,
|
640 |
+
"rstrip": false,
|
641 |
+
"single_word": false,
|
642 |
+
"special": true
|
643 |
+
},
|
644 |
+
"151723": {
|
645 |
+
"content": "|<EXTRA_TOKENS_77>|",
|
646 |
+
"lstrip": false,
|
647 |
+
"normalized": false,
|
648 |
+
"rstrip": false,
|
649 |
+
"single_word": false,
|
650 |
+
"special": true
|
651 |
+
},
|
652 |
+
"151724": {
|
653 |
+
"content": "|<EXTRA_TOKENS_78>|",
|
654 |
+
"lstrip": false,
|
655 |
+
"normalized": false,
|
656 |
+
"rstrip": false,
|
657 |
+
"single_word": false,
|
658 |
+
"special": true
|
659 |
+
},
|
660 |
+
"151725": {
|
661 |
+
"content": "|<EXTRA_TOKENS_79>|",
|
662 |
+
"lstrip": false,
|
663 |
+
"normalized": false,
|
664 |
+
"rstrip": false,
|
665 |
+
"single_word": false,
|
666 |
+
"special": true
|
667 |
+
},
|
668 |
+
"151726": {
|
669 |
+
"content": "|<EXTRA_TOKENS_80>|",
|
670 |
+
"lstrip": false,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": false,
|
673 |
+
"single_word": false,
|
674 |
+
"special": true
|
675 |
+
},
|
676 |
+
"151727": {
|
677 |
+
"content": "|<EXTRA_TOKENS_81>|",
|
678 |
+
"lstrip": false,
|
679 |
+
"normalized": false,
|
680 |
+
"rstrip": false,
|
681 |
+
"single_word": false,
|
682 |
+
"special": true
|
683 |
+
},
|
684 |
+
"151728": {
|
685 |
+
"content": "|<EXTRA_TOKENS_82>|",
|
686 |
+
"lstrip": false,
|
687 |
+
"normalized": false,
|
688 |
+
"rstrip": false,
|
689 |
+
"single_word": false,
|
690 |
+
"special": true
|
691 |
+
},
|
692 |
+
"151729": {
|
693 |
+
"content": "|<EXTRA_TOKENS_83>|",
|
694 |
+
"lstrip": false,
|
695 |
+
"normalized": false,
|
696 |
+
"rstrip": false,
|
697 |
+
"single_word": false,
|
698 |
+
"special": true
|
699 |
+
},
|
700 |
+
"151730": {
|
701 |
+
"content": "|<EXTRA_TOKENS_84>|",
|
702 |
+
"lstrip": false,
|
703 |
+
"normalized": false,
|
704 |
+
"rstrip": false,
|
705 |
+
"single_word": false,
|
706 |
+
"special": true
|
707 |
+
},
|
708 |
+
"151731": {
|
709 |
+
"content": "|<EXTRA_TOKENS_85>|",
|
710 |
+
"lstrip": false,
|
711 |
+
"normalized": false,
|
712 |
+
"rstrip": false,
|
713 |
+
"single_word": false,
|
714 |
+
"special": true
|
715 |
+
},
|
716 |
+
"151732": {
|
717 |
+
"content": "|<EXTRA_TOKENS_86>|",
|
718 |
+
"lstrip": false,
|
719 |
+
"normalized": false,
|
720 |
+
"rstrip": false,
|
721 |
+
"single_word": false,
|
722 |
+
"special": true
|
723 |
+
},
|
724 |
+
"151733": {
|
725 |
+
"content": "|<EXTRA_TOKENS_87>|",
|
726 |
+
"lstrip": false,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": false,
|
729 |
+
"single_word": false,
|
730 |
+
"special": true
|
731 |
+
},
|
732 |
+
"151734": {
|
733 |
+
"content": "|<EXTRA_TOKENS_88>|",
|
734 |
+
"lstrip": false,
|
735 |
+
"normalized": false,
|
736 |
+
"rstrip": false,
|
737 |
+
"single_word": false,
|
738 |
+
"special": true
|
739 |
+
},
|
740 |
+
"151735": {
|
741 |
+
"content": "|<EXTRA_TOKENS_89>|",
|
742 |
+
"lstrip": false,
|
743 |
+
"normalized": false,
|
744 |
+
"rstrip": false,
|
745 |
+
"single_word": false,
|
746 |
+
"special": true
|
747 |
+
},
|
748 |
+
"151736": {
|
749 |
+
"content": "|<EXTRA_TOKENS_90>|",
|
750 |
+
"lstrip": false,
|
751 |
+
"normalized": false,
|
752 |
+
"rstrip": false,
|
753 |
+
"single_word": false,
|
754 |
+
"special": true
|
755 |
+
},
|
756 |
+
"151737": {
|
757 |
+
"content": "|<EXTRA_TOKENS_91>|",
|
758 |
+
"lstrip": false,
|
759 |
+
"normalized": false,
|
760 |
+
"rstrip": false,
|
761 |
+
"single_word": false,
|
762 |
+
"special": true
|
763 |
+
},
|
764 |
+
"151738": {
|
765 |
+
"content": "|<EXTRA_TOKENS_92>|",
|
766 |
+
"lstrip": false,
|
767 |
+
"normalized": false,
|
768 |
+
"rstrip": false,
|
769 |
+
"single_word": false,
|
770 |
+
"special": true
|
771 |
+
},
|
772 |
+
"151739": {
|
773 |
+
"content": "|<EXTRA_TOKENS_93>|",
|
774 |
+
"lstrip": false,
|
775 |
+
"normalized": false,
|
776 |
+
"rstrip": false,
|
777 |
+
"single_word": false,
|
778 |
+
"special": true
|
779 |
+
},
|
780 |
+
"151740": {
|
781 |
+
"content": "|<EXTRA_TOKENS_94>|",
|
782 |
+
"lstrip": false,
|
783 |
+
"normalized": false,
|
784 |
+
"rstrip": false,
|
785 |
+
"single_word": false,
|
786 |
+
"special": true
|
787 |
+
},
|
788 |
+
"151741": {
|
789 |
+
"content": "|<EXTRA_TOKENS_95>|",
|
790 |
+
"lstrip": false,
|
791 |
+
"normalized": false,
|
792 |
+
"rstrip": false,
|
793 |
+
"single_word": false,
|
794 |
+
"special": true
|
795 |
+
},
|
796 |
+
"151742": {
|
797 |
+
"content": "|<EXTRA_TOKENS_96>|",
|
798 |
+
"lstrip": false,
|
799 |
+
"normalized": false,
|
800 |
+
"rstrip": false,
|
801 |
+
"single_word": false,
|
802 |
+
"special": true
|
803 |
+
},
|
804 |
+
"151743": {
|
805 |
+
"content": "|<EXTRA_TOKENS_97>|",
|
806 |
+
"lstrip": false,
|
807 |
+
"normalized": false,
|
808 |
+
"rstrip": false,
|
809 |
+
"single_word": false,
|
810 |
+
"special": true
|
811 |
+
},
|
812 |
+
"151744": {
|
813 |
+
"content": "|<EXTRA_TOKENS_98>|",
|
814 |
+
"lstrip": false,
|
815 |
+
"normalized": false,
|
816 |
+
"rstrip": false,
|
817 |
+
"single_word": false,
|
818 |
+
"special": true
|
819 |
+
},
|
820 |
+
"151745": {
|
821 |
+
"content": "|<EXTRA_TOKENS_99>|",
|
822 |
+
"lstrip": false,
|
823 |
+
"normalized": false,
|
824 |
+
"rstrip": false,
|
825 |
+
"single_word": false,
|
826 |
+
"special": true
|
827 |
+
},
|
828 |
+
"151746": {
|
829 |
+
"content": "|<EXTRA_TOKENS_100>|",
|
830 |
+
"lstrip": false,
|
831 |
+
"normalized": false,
|
832 |
+
"rstrip": false,
|
833 |
+
"single_word": false,
|
834 |
+
"special": true
|
835 |
+
},
|
836 |
+
"151747": {
|
837 |
+
"content": "|<EXTRA_TOKENS_101>|",
|
838 |
+
"lstrip": false,
|
839 |
+
"normalized": false,
|
840 |
+
"rstrip": false,
|
841 |
+
"single_word": false,
|
842 |
+
"special": true
|
843 |
+
},
|
844 |
+
"151748": {
|
845 |
+
"content": "|<EXTRA_TOKENS_102>|",
|
846 |
+
"lstrip": false,
|
847 |
+
"normalized": false,
|
848 |
+
"rstrip": false,
|
849 |
+
"single_word": false,
|
850 |
+
"special": true
|
851 |
+
},
|
852 |
+
"151749": {
|
853 |
+
"content": "|<EXTRA_TOKENS_103>|",
|
854 |
+
"lstrip": false,
|
855 |
+
"normalized": false,
|
856 |
+
"rstrip": false,
|
857 |
+
"single_word": false,
|
858 |
+
"special": true
|
859 |
+
},
|
860 |
+
"151750": {
|
861 |
+
"content": "|<EXTRA_TOKENS_104>|",
|
862 |
+
"lstrip": false,
|
863 |
+
"normalized": false,
|
864 |
+
"rstrip": false,
|
865 |
+
"single_word": false,
|
866 |
+
"special": true
|
867 |
+
},
|
868 |
+
"151751": {
|
869 |
+
"content": "|<EXTRA_TOKENS_105>|",
|
870 |
+
"lstrip": false,
|
871 |
+
"normalized": false,
|
872 |
+
"rstrip": false,
|
873 |
+
"single_word": false,
|
874 |
+
"special": true
|
875 |
+
},
|
876 |
+
"151752": {
|
877 |
+
"content": "|<EXTRA_TOKENS_106>|",
|
878 |
+
"lstrip": false,
|
879 |
+
"normalized": false,
|
880 |
+
"rstrip": false,
|
881 |
+
"single_word": false,
|
882 |
+
"special": true
|
883 |
+
},
|
884 |
+
"151753": {
|
885 |
+
"content": "|<EXTRA_TOKENS_107>|",
|
886 |
+
"lstrip": false,
|
887 |
+
"normalized": false,
|
888 |
+
"rstrip": false,
|
889 |
+
"single_word": false,
|
890 |
+
"special": true
|
891 |
+
},
|
892 |
+
"151754": {
|
893 |
+
"content": "|<EXTRA_TOKENS_108>|",
|
894 |
+
"lstrip": false,
|
895 |
+
"normalized": false,
|
896 |
+
"rstrip": false,
|
897 |
+
"single_word": false,
|
898 |
+
"special": true
|
899 |
+
},
|
900 |
+
"151755": {
|
901 |
+
"content": "|<EXTRA_TOKENS_109>|",
|
902 |
+
"lstrip": false,
|
903 |
+
"normalized": false,
|
904 |
+
"rstrip": false,
|
905 |
+
"single_word": false,
|
906 |
+
"special": true
|
907 |
+
},
|
908 |
+
"151756": {
|
909 |
+
"content": "|<EXTRA_TOKENS_110>|",
|
910 |
+
"lstrip": false,
|
911 |
+
"normalized": false,
|
912 |
+
"rstrip": false,
|
913 |
+
"single_word": false,
|
914 |
+
"special": true
|
915 |
+
},
|
916 |
+
"151757": {
|
917 |
+
"content": "|<EXTRA_TOKENS_111>|",
|
918 |
+
"lstrip": false,
|
919 |
+
"normalized": false,
|
920 |
+
"rstrip": false,
|
921 |
+
"single_word": false,
|
922 |
+
"special": true
|
923 |
+
},
|
924 |
+
"151758": {
|
925 |
+
"content": "|<EXTRA_TOKENS_112>|",
|
926 |
+
"lstrip": false,
|
927 |
+
"normalized": false,
|
928 |
+
"rstrip": false,
|
929 |
+
"single_word": false,
|
930 |
+
"special": true
|
931 |
+
},
|
932 |
+
"151759": {
|
933 |
+
"content": "|<EXTRA_TOKENS_113>|",
|
934 |
+
"lstrip": false,
|
935 |
+
"normalized": false,
|
936 |
+
"rstrip": false,
|
937 |
+
"single_word": false,
|
938 |
+
"special": true
|
939 |
+
},
|
940 |
+
"151760": {
|
941 |
+
"content": "|<EXTRA_TOKENS_114>|",
|
942 |
+
"lstrip": false,
|
943 |
+
"normalized": false,
|
944 |
+
"rstrip": false,
|
945 |
+
"single_word": false,
|
946 |
+
"special": true
|
947 |
+
},
|
948 |
+
"151761": {
|
949 |
+
"content": "|<EXTRA_TOKENS_115>|",
|
950 |
+
"lstrip": false,
|
951 |
+
"normalized": false,
|
952 |
+
"rstrip": false,
|
953 |
+
"single_word": false,
|
954 |
+
"special": true
|
955 |
+
},
|
956 |
+
"151762": {
|
957 |
+
"content": "|<EXTRA_TOKENS_116>|",
|
958 |
+
"lstrip": false,
|
959 |
+
"normalized": false,
|
960 |
+
"rstrip": false,
|
961 |
+
"single_word": false,
|
962 |
+
"special": true
|
963 |
+
},
|
964 |
+
"151763": {
|
965 |
+
"content": "|<EXTRA_TOKENS_117>|",
|
966 |
+
"lstrip": false,
|
967 |
+
"normalized": false,
|
968 |
+
"rstrip": false,
|
969 |
+
"single_word": false,
|
970 |
+
"special": true
|
971 |
+
},
|
972 |
+
"151764": {
|
973 |
+
"content": "|<EXTRA_TOKENS_118>|",
|
974 |
+
"lstrip": false,
|
975 |
+
"normalized": false,
|
976 |
+
"rstrip": false,
|
977 |
+
"single_word": false,
|
978 |
+
"special": true
|
979 |
+
},
|
980 |
+
"151765": {
|
981 |
+
"content": "|<EXTRA_TOKENS_119>|",
|
982 |
+
"lstrip": false,
|
983 |
+
"normalized": false,
|
984 |
+
"rstrip": false,
|
985 |
+
"single_word": false,
|
986 |
+
"special": true
|
987 |
+
},
|
988 |
+
"151766": {
|
989 |
+
"content": "|<EXTRA_TOKENS_120>|",
|
990 |
+
"lstrip": false,
|
991 |
+
"normalized": false,
|
992 |
+
"rstrip": false,
|
993 |
+
"single_word": false,
|
994 |
+
"special": true
|
995 |
+
},
|
996 |
+
"151767": {
|
997 |
+
"content": "|<EXTRA_TOKENS_121>|",
|
998 |
+
"lstrip": false,
|
999 |
+
"normalized": false,
|
1000 |
+
"rstrip": false,
|
1001 |
+
"single_word": false,
|
1002 |
+
"special": true
|
1003 |
+
},
|
1004 |
+
"151768": {
|
1005 |
+
"content": "|<EXTRA_TOKENS_122>|",
|
1006 |
+
"lstrip": false,
|
1007 |
+
"normalized": false,
|
1008 |
+
"rstrip": false,
|
1009 |
+
"single_word": false,
|
1010 |
+
"special": true
|
1011 |
+
},
|
1012 |
+
"151769": {
|
1013 |
+
"content": "|<EXTRA_TOKENS_123>|",
|
1014 |
+
"lstrip": false,
|
1015 |
+
"normalized": false,
|
1016 |
+
"rstrip": false,
|
1017 |
+
"single_word": false,
|
1018 |
+
"special": true
|
1019 |
+
},
|
1020 |
+
"151770": {
|
1021 |
+
"content": "|<EXTRA_TOKENS_124>|",
|
1022 |
+
"lstrip": false,
|
1023 |
+
"normalized": false,
|
1024 |
+
"rstrip": false,
|
1025 |
+
"single_word": false,
|
1026 |
+
"special": true
|
1027 |
+
},
|
1028 |
+
"151771": {
|
1029 |
+
"content": "|<EXTRA_TOKENS_125>|",
|
1030 |
+
"lstrip": false,
|
1031 |
+
"normalized": false,
|
1032 |
+
"rstrip": false,
|
1033 |
+
"single_word": false,
|
1034 |
+
"special": true
|
1035 |
+
},
|
1036 |
+
"151772": {
|
1037 |
+
"content": "|<EXTRA_TOKENS_126>|",
|
1038 |
+
"lstrip": false,
|
1039 |
+
"normalized": false,
|
1040 |
+
"rstrip": false,
|
1041 |
+
"single_word": false,
|
1042 |
+
"special": true
|
1043 |
+
},
|
1044 |
+
"151773": {
|
1045 |
+
"content": "|<EXTRA_TOKENS_127>|",
|
1046 |
+
"lstrip": false,
|
1047 |
+
"normalized": false,
|
1048 |
+
"rstrip": false,
|
1049 |
+
"single_word": false,
|
1050 |
+
"special": true
|
1051 |
+
},
|
1052 |
+
"151774": {
|
1053 |
+
"content": "|<EXTRA_TOKENS_128>|",
|
1054 |
+
"lstrip": false,
|
1055 |
+
"normalized": false,
|
1056 |
+
"rstrip": false,
|
1057 |
+
"single_word": false,
|
1058 |
+
"special": true
|
1059 |
+
},
|
1060 |
+
"151775": {
|
1061 |
+
"content": "|<EXTRA_TOKENS_129>|",
|
1062 |
+
"lstrip": false,
|
1063 |
+
"normalized": false,
|
1064 |
+
"rstrip": false,
|
1065 |
+
"single_word": false,
|
1066 |
+
"special": true
|
1067 |
+
},
|
1068 |
+
"151776": {
|
1069 |
+
"content": "|<EXTRA_TOKENS_130>|",
|
1070 |
+
"lstrip": false,
|
1071 |
+
"normalized": false,
|
1072 |
+
"rstrip": false,
|
1073 |
+
"single_word": false,
|
1074 |
+
"special": true
|
1075 |
+
},
|
1076 |
+
"151777": {
|
1077 |
+
"content": "|<EXTRA_TOKENS_131>|",
|
1078 |
+
"lstrip": false,
|
1079 |
+
"normalized": false,
|
1080 |
+
"rstrip": false,
|
1081 |
+
"single_word": false,
|
1082 |
+
"special": true
|
1083 |
+
},
|
1084 |
+
"151778": {
|
1085 |
+
"content": "|<EXTRA_TOKENS_132>|",
|
1086 |
+
"lstrip": false,
|
1087 |
+
"normalized": false,
|
1088 |
+
"rstrip": false,
|
1089 |
+
"single_word": false,
|
1090 |
+
"special": true
|
1091 |
+
},
|
1092 |
+
"151779": {
|
1093 |
+
"content": "|<EXTRA_TOKENS_133>|",
|
1094 |
+
"lstrip": false,
|
1095 |
+
"normalized": false,
|
1096 |
+
"rstrip": false,
|
1097 |
+
"single_word": false,
|
1098 |
+
"special": true
|
1099 |
+
},
|
1100 |
+
"151780": {
|
1101 |
+
"content": "|<EXTRA_TOKENS_134>|",
|
1102 |
+
"lstrip": false,
|
1103 |
+
"normalized": false,
|
1104 |
+
"rstrip": false,
|
1105 |
+
"single_word": false,
|
1106 |
+
"special": true
|
1107 |
+
},
|
1108 |
+
"151781": {
|
1109 |
+
"content": "|<EXTRA_TOKENS_135>|",
|
1110 |
+
"lstrip": false,
|
1111 |
+
"normalized": false,
|
1112 |
+
"rstrip": false,
|
1113 |
+
"single_word": false,
|
1114 |
+
"special": true
|
1115 |
+
},
|
1116 |
+
"151782": {
|
1117 |
+
"content": "|<EXTRA_TOKENS_136>|",
|
1118 |
+
"lstrip": false,
|
1119 |
+
"normalized": false,
|
1120 |
+
"rstrip": false,
|
1121 |
+
"single_word": false,
|
1122 |
+
"special": true
|
1123 |
+
},
|
1124 |
+
"151783": {
|
1125 |
+
"content": "|<EXTRA_TOKENS_137>|",
|
1126 |
+
"lstrip": false,
|
1127 |
+
"normalized": false,
|
1128 |
+
"rstrip": false,
|
1129 |
+
"single_word": false,
|
1130 |
+
"special": true
|
1131 |
+
},
|
1132 |
+
"151784": {
|
1133 |
+
"content": "|<EXTRA_TOKENS_138>|",
|
1134 |
+
"lstrip": false,
|
1135 |
+
"normalized": false,
|
1136 |
+
"rstrip": false,
|
1137 |
+
"single_word": false,
|
1138 |
+
"special": true
|
1139 |
+
},
|
1140 |
+
"151785": {
|
1141 |
+
"content": "|<EXTRA_TOKENS_139>|",
|
1142 |
+
"lstrip": false,
|
1143 |
+
"normalized": false,
|
1144 |
+
"rstrip": false,
|
1145 |
+
"single_word": false,
|
1146 |
+
"special": true
|
1147 |
+
},
|
1148 |
+
"151786": {
|
1149 |
+
"content": "|<EXTRA_TOKENS_140>|",
|
1150 |
+
"lstrip": false,
|
1151 |
+
"normalized": false,
|
1152 |
+
"rstrip": false,
|
1153 |
+
"single_word": false,
|
1154 |
+
"special": true
|
1155 |
+
},
|
1156 |
+
"151787": {
|
1157 |
+
"content": "|<EXTRA_TOKENS_141>|",
|
1158 |
+
"lstrip": false,
|
1159 |
+
"normalized": false,
|
1160 |
+
"rstrip": false,
|
1161 |
+
"single_word": false,
|
1162 |
+
"special": true
|
1163 |
+
},
|
1164 |
+
"151788": {
|
1165 |
+
"content": "|<EXTRA_TOKENS_142>|",
|
1166 |
+
"lstrip": false,
|
1167 |
+
"normalized": false,
|
1168 |
+
"rstrip": false,
|
1169 |
+
"single_word": false,
|
1170 |
+
"special": true
|
1171 |
+
},
|
1172 |
+
"151789": {
|
1173 |
+
"content": "|<EXTRA_TOKENS_143>|",
|
1174 |
+
"lstrip": false,
|
1175 |
+
"normalized": false,
|
1176 |
+
"rstrip": false,
|
1177 |
+
"single_word": false,
|
1178 |
+
"special": true
|
1179 |
+
},
|
1180 |
+
"151790": {
|
1181 |
+
"content": "|<EXTRA_TOKENS_144>|",
|
1182 |
+
"lstrip": false,
|
1183 |
+
"normalized": false,
|
1184 |
+
"rstrip": false,
|
1185 |
+
"single_word": false,
|
1186 |
+
"special": true
|
1187 |
+
},
|
1188 |
+
"151791": {
|
1189 |
+
"content": "|<EXTRA_TOKENS_145>|",
|
1190 |
+
"lstrip": false,
|
1191 |
+
"normalized": false,
|
1192 |
+
"rstrip": false,
|
1193 |
+
"single_word": false,
|
1194 |
+
"special": true
|
1195 |
+
},
|
1196 |
+
"151792": {
|
1197 |
+
"content": "|<EXTRA_TOKENS_146>|",
|
1198 |
+
"lstrip": false,
|
1199 |
+
"normalized": false,
|
1200 |
+
"rstrip": false,
|
1201 |
+
"single_word": false,
|
1202 |
+
"special": true
|
1203 |
+
},
|
1204 |
+
"151793": {
|
1205 |
+
"content": "|<EXTRA_TOKENS_147>|",
|
1206 |
+
"lstrip": false,
|
1207 |
+
"normalized": false,
|
1208 |
+
"rstrip": false,
|
1209 |
+
"single_word": false,
|
1210 |
+
"special": true
|
1211 |
+
},
|
1212 |
+
"151794": {
|
1213 |
+
"content": "|<EXTRA_TOKENS_148>|",
|
1214 |
+
"lstrip": false,
|
1215 |
+
"normalized": false,
|
1216 |
+
"rstrip": false,
|
1217 |
+
"single_word": false,
|
1218 |
+
"special": true
|
1219 |
+
},
|
1220 |
+
"151795": {
|
1221 |
+
"content": "|<EXTRA_TOKENS_149>|",
|
1222 |
+
"lstrip": false,
|
1223 |
+
"normalized": false,
|
1224 |
+
"rstrip": false,
|
1225 |
+
"single_word": false,
|
1226 |
+
"special": true
|
1227 |
+
},
|
1228 |
+
"151796": {
|
1229 |
+
"content": "|<EXTRA_TOKENS_150>|",
|
1230 |
+
"lstrip": false,
|
1231 |
+
"normalized": false,
|
1232 |
+
"rstrip": false,
|
1233 |
+
"single_word": false,
|
1234 |
+
"special": true
|
1235 |
+
},
|
1236 |
+
"151797": {
|
1237 |
+
"content": "|<EXTRA_TOKENS_151>|",
|
1238 |
+
"lstrip": false,
|
1239 |
+
"normalized": false,
|
1240 |
+
"rstrip": false,
|
1241 |
+
"single_word": false,
|
1242 |
+
"special": true
|
1243 |
+
},
|
1244 |
+
"151798": {
|
1245 |
+
"content": "|<EXTRA_TOKENS_152>|",
|
1246 |
+
"lstrip": false,
|
1247 |
+
"normalized": false,
|
1248 |
+
"rstrip": false,
|
1249 |
+
"single_word": false,
|
1250 |
+
"special": true
|
1251 |
+
},
|
1252 |
+
"151799": {
|
1253 |
+
"content": "|<EXTRA_TOKENS_153>|",
|
1254 |
+
"lstrip": false,
|
1255 |
+
"normalized": false,
|
1256 |
+
"rstrip": false,
|
1257 |
+
"single_word": false,
|
1258 |
+
"special": true
|
1259 |
+
},
|
1260 |
+
"151800": {
|
1261 |
+
"content": "|<EXTRA_TOKENS_154>|",
|
1262 |
+
"lstrip": false,
|
1263 |
+
"normalized": false,
|
1264 |
+
"rstrip": false,
|
1265 |
+
"single_word": false,
|
1266 |
+
"special": true
|
1267 |
+
},
|
1268 |
+
"151801": {
|
1269 |
+
"content": "|<EXTRA_TOKENS_155>|",
|
1270 |
+
"lstrip": false,
|
1271 |
+
"normalized": false,
|
1272 |
+
"rstrip": false,
|
1273 |
+
"single_word": false,
|
1274 |
+
"special": true
|
1275 |
+
},
|
1276 |
+
"151802": {
|
1277 |
+
"content": "|<EXTRA_TOKENS_156>|",
|
1278 |
+
"lstrip": false,
|
1279 |
+
"normalized": false,
|
1280 |
+
"rstrip": false,
|
1281 |
+
"single_word": false,
|
1282 |
+
"special": true
|
1283 |
+
},
|
1284 |
+
"151803": {
|
1285 |
+
"content": "|<EXTRA_TOKENS_157>|",
|
1286 |
+
"lstrip": false,
|
1287 |
+
"normalized": false,
|
1288 |
+
"rstrip": false,
|
1289 |
+
"single_word": false,
|
1290 |
+
"special": true
|
1291 |
+
},
|
1292 |
+
"151804": {
|
1293 |
+
"content": "|<EXTRA_TOKENS_158>|",
|
1294 |
+
"lstrip": false,
|
1295 |
+
"normalized": false,
|
1296 |
+
"rstrip": false,
|
1297 |
+
"single_word": false,
|
1298 |
+
"special": true
|
1299 |
+
},
|
1300 |
+
"151805": {
|
1301 |
+
"content": "|<EXTRA_TOKENS_159>|",
|
1302 |
+
"lstrip": false,
|
1303 |
+
"normalized": false,
|
1304 |
+
"rstrip": false,
|
1305 |
+
"single_word": false,
|
1306 |
+
"special": true
|
1307 |
+
},
|
1308 |
+
"151806": {
|
1309 |
+
"content": "|<EXTRA_TOKENS_160>|",
|
1310 |
+
"lstrip": false,
|
1311 |
+
"normalized": false,
|
1312 |
+
"rstrip": false,
|
1313 |
+
"single_word": false,
|
1314 |
+
"special": true
|
1315 |
+
},
|
1316 |
+
"151807": {
|
1317 |
+
"content": "|<EXTRA_TOKENS_161>|",
|
1318 |
+
"lstrip": false,
|
1319 |
+
"normalized": false,
|
1320 |
+
"rstrip": false,
|
1321 |
+
"single_word": false,
|
1322 |
+
"special": true
|
1323 |
+
},
|
1324 |
+
"151808": {
|
1325 |
+
"content": "|<EXTRA_TOKENS_162>|",
|
1326 |
+
"lstrip": false,
|
1327 |
+
"normalized": false,
|
1328 |
+
"rstrip": false,
|
1329 |
+
"single_word": false,
|
1330 |
+
"special": true
|
1331 |
+
},
|
1332 |
+
"151809": {
|
1333 |
+
"content": "|<EXTRA_TOKENS_163>|",
|
1334 |
+
"lstrip": false,
|
1335 |
+
"normalized": false,
|
1336 |
+
"rstrip": false,
|
1337 |
+
"single_word": false,
|
1338 |
+
"special": true
|
1339 |
+
},
|
1340 |
+
"151810": {
|
1341 |
+
"content": "|<EXTRA_TOKENS_164>|",
|
1342 |
+
"lstrip": false,
|
1343 |
+
"normalized": false,
|
1344 |
+
"rstrip": false,
|
1345 |
+
"single_word": false,
|
1346 |
+
"special": true
|
1347 |
+
},
|
1348 |
+
"151811": {
|
1349 |
+
"content": "|<EXTRA_TOKENS_165>|",
|
1350 |
+
"lstrip": false,
|
1351 |
+
"normalized": false,
|
1352 |
+
"rstrip": false,
|
1353 |
+
"single_word": false,
|
1354 |
+
"special": true
|
1355 |
+
},
|
1356 |
+
"151812": {
|
1357 |
+
"content": "|<EXTRA_TOKENS_166>|",
|
1358 |
+
"lstrip": false,
|
1359 |
+
"normalized": false,
|
1360 |
+
"rstrip": false,
|
1361 |
+
"single_word": false,
|
1362 |
+
"special": true
|
1363 |
+
},
|
1364 |
+
"151813": {
|
1365 |
+
"content": "|<EXTRA_TOKENS_167>|",
|
1366 |
+
"lstrip": false,
|
1367 |
+
"normalized": false,
|
1368 |
+
"rstrip": false,
|
1369 |
+
"single_word": false,
|
1370 |
+
"special": true
|
1371 |
+
},
|
1372 |
+
"151814": {
|
1373 |
+
"content": "|<EXTRA_TOKENS_168>|",
|
1374 |
+
"lstrip": false,
|
1375 |
+
"normalized": false,
|
1376 |
+
"rstrip": false,
|
1377 |
+
"single_word": false,
|
1378 |
+
"special": true
|
1379 |
+
},
|
1380 |
+
"151815": {
|
1381 |
+
"content": "|<EXTRA_TOKENS_169>|",
|
1382 |
+
"lstrip": false,
|
1383 |
+
"normalized": false,
|
1384 |
+
"rstrip": false,
|
1385 |
+
"single_word": false,
|
1386 |
+
"special": true
|
1387 |
+
},
|
1388 |
+
"151816": {
|
1389 |
+
"content": "|<EXTRA_TOKENS_170>|",
|
1390 |
+
"lstrip": false,
|
1391 |
+
"normalized": false,
|
1392 |
+
"rstrip": false,
|
1393 |
+
"single_word": false,
|
1394 |
+
"special": true
|
1395 |
+
},
|
1396 |
+
"151817": {
|
1397 |
+
"content": "|<EXTRA_TOKENS_171>|",
|
1398 |
+
"lstrip": false,
|
1399 |
+
"normalized": false,
|
1400 |
+
"rstrip": false,
|
1401 |
+
"single_word": false,
|
1402 |
+
"special": true
|
1403 |
+
},
|
1404 |
+
"151818": {
|
1405 |
+
"content": "|<EXTRA_TOKENS_172>|",
|
1406 |
+
"lstrip": false,
|
1407 |
+
"normalized": false,
|
1408 |
+
"rstrip": false,
|
1409 |
+
"single_word": false,
|
1410 |
+
"special": true
|
1411 |
+
},
|
1412 |
+
"151819": {
|
1413 |
+
"content": "|<EXTRA_TOKENS_173>|",
|
1414 |
+
"lstrip": false,
|
1415 |
+
"normalized": false,
|
1416 |
+
"rstrip": false,
|
1417 |
+
"single_word": false,
|
1418 |
+
"special": true
|
1419 |
+
},
|
1420 |
+
"151820": {
|
1421 |
+
"content": "|<EXTRA_TOKENS_174>|",
|
1422 |
+
"lstrip": false,
|
1423 |
+
"normalized": false,
|
1424 |
+
"rstrip": false,
|
1425 |
+
"single_word": false,
|
1426 |
+
"special": true
|
1427 |
+
},
|
1428 |
+
"151821": {
|
1429 |
+
"content": "|<EXTRA_TOKENS_175>|",
|
1430 |
+
"lstrip": false,
|
1431 |
+
"normalized": false,
|
1432 |
+
"rstrip": false,
|
1433 |
+
"single_word": false,
|
1434 |
+
"special": true
|
1435 |
+
},
|
1436 |
+
"151822": {
|
1437 |
+
"content": "|<EXTRA_TOKENS_176>|",
|
1438 |
+
"lstrip": false,
|
1439 |
+
"normalized": false,
|
1440 |
+
"rstrip": false,
|
1441 |
+
"single_word": false,
|
1442 |
+
"special": true
|
1443 |
+
},
|
1444 |
+
"151823": {
|
1445 |
+
"content": "|<EXTRA_TOKENS_177>|",
|
1446 |
+
"lstrip": false,
|
1447 |
+
"normalized": false,
|
1448 |
+
"rstrip": false,
|
1449 |
+
"single_word": false,
|
1450 |
+
"special": true
|
1451 |
+
},
|
1452 |
+
"151824": {
|
1453 |
+
"content": "|<EXTRA_TOKENS_178>|",
|
1454 |
+
"lstrip": false,
|
1455 |
+
"normalized": false,
|
1456 |
+
"rstrip": false,
|
1457 |
+
"single_word": false,
|
1458 |
+
"special": true
|
1459 |
+
},
|
1460 |
+
"151825": {
|
1461 |
+
"content": "|<EXTRA_TOKENS_179>|",
|
1462 |
+
"lstrip": false,
|
1463 |
+
"normalized": false,
|
1464 |
+
"rstrip": false,
|
1465 |
+
"single_word": false,
|
1466 |
+
"special": true
|
1467 |
+
},
|
1468 |
+
"151826": {
|
1469 |
+
"content": "|<EXTRA_TOKENS_180>|",
|
1470 |
+
"lstrip": false,
|
1471 |
+
"normalized": false,
|
1472 |
+
"rstrip": false,
|
1473 |
+
"single_word": false,
|
1474 |
+
"special": true
|
1475 |
+
},
|
1476 |
+
"151827": {
|
1477 |
+
"content": "|<EXTRA_TOKENS_181>|",
|
1478 |
+
"lstrip": false,
|
1479 |
+
"normalized": false,
|
1480 |
+
"rstrip": false,
|
1481 |
+
"single_word": false,
|
1482 |
+
"special": true
|
1483 |
+
},
|
1484 |
+
"151828": {
|
1485 |
+
"content": "|<EXTRA_TOKENS_182>|",
|
1486 |
+
"lstrip": false,
|
1487 |
+
"normalized": false,
|
1488 |
+
"rstrip": false,
|
1489 |
+
"single_word": false,
|
1490 |
+
"special": true
|
1491 |
+
},
|
1492 |
+
"151829": {
|
1493 |
+
"content": "|<EXTRA_TOKENS_183>|",
|
1494 |
+
"lstrip": false,
|
1495 |
+
"normalized": false,
|
1496 |
+
"rstrip": false,
|
1497 |
+
"single_word": false,
|
1498 |
+
"special": true
|
1499 |
+
},
|
1500 |
+
"151830": {
|
1501 |
+
"content": "|<EXTRA_TOKENS_184>|",
|
1502 |
+
"lstrip": false,
|
1503 |
+
"normalized": false,
|
1504 |
+
"rstrip": false,
|
1505 |
+
"single_word": false,
|
1506 |
+
"special": true
|
1507 |
+
},
|
1508 |
+
"151831": {
|
1509 |
+
"content": "|<EXTRA_TOKENS_185>|",
|
1510 |
+
"lstrip": false,
|
1511 |
+
"normalized": false,
|
1512 |
+
"rstrip": false,
|
1513 |
+
"single_word": false,
|
1514 |
+
"special": true
|
1515 |
+
},
|
1516 |
+
"151832": {
|
1517 |
+
"content": "|<EXTRA_TOKENS_186>|",
|
1518 |
+
"lstrip": false,
|
1519 |
+
"normalized": false,
|
1520 |
+
"rstrip": false,
|
1521 |
+
"single_word": false,
|
1522 |
+
"special": true
|
1523 |
+
},
|
1524 |
+
"151833": {
|
1525 |
+
"content": "|<EXTRA_TOKENS_187>|",
|
1526 |
+
"lstrip": false,
|
1527 |
+
"normalized": false,
|
1528 |
+
"rstrip": false,
|
1529 |
+
"single_word": false,
|
1530 |
+
"special": true
|
1531 |
+
},
|
1532 |
+
"151834": {
|
1533 |
+
"content": "|<EXTRA_TOKENS_188>|",
|
1534 |
+
"lstrip": false,
|
1535 |
+
"normalized": false,
|
1536 |
+
"rstrip": false,
|
1537 |
+
"single_word": false,
|
1538 |
+
"special": true
|
1539 |
+
},
|
1540 |
+
"151835": {
|
1541 |
+
"content": "|<EXTRA_TOKENS_189>|",
|
1542 |
+
"lstrip": false,
|
1543 |
+
"normalized": false,
|
1544 |
+
"rstrip": false,
|
1545 |
+
"single_word": false,
|
1546 |
+
"special": true
|
1547 |
+
},
|
1548 |
+
"151836": {
|
1549 |
+
"content": "|<EXTRA_TOKENS_190>|",
|
1550 |
+
"lstrip": false,
|
1551 |
+
"normalized": false,
|
1552 |
+
"rstrip": false,
|
1553 |
+
"single_word": false,
|
1554 |
+
"special": true
|
1555 |
+
},
|
1556 |
+
"151837": {
|
1557 |
+
"content": "|<EXTRA_TOKENS_191>|",
|
1558 |
+
"lstrip": false,
|
1559 |
+
"normalized": false,
|
1560 |
+
"rstrip": false,
|
1561 |
+
"single_word": false,
|
1562 |
+
"special": true
|
1563 |
+
},
|
1564 |
+
"151838": {
|
1565 |
+
"content": "|<EXTRA_TOKENS_192>|",
|
1566 |
+
"lstrip": false,
|
1567 |
+
"normalized": false,
|
1568 |
+
"rstrip": false,
|
1569 |
+
"single_word": false,
|
1570 |
+
"special": true
|
1571 |
+
},
|
1572 |
+
"151839": {
|
1573 |
+
"content": "|<EXTRA_TOKENS_193>|",
|
1574 |
+
"lstrip": false,
|
1575 |
+
"normalized": false,
|
1576 |
+
"rstrip": false,
|
1577 |
+
"single_word": false,
|
1578 |
+
"special": true
|
1579 |
+
},
|
1580 |
+
"151840": {
|
1581 |
+
"content": "|<EXTRA_TOKENS_194>|",
|
1582 |
+
"lstrip": false,
|
1583 |
+
"normalized": false,
|
1584 |
+
"rstrip": false,
|
1585 |
+
"single_word": false,
|
1586 |
+
"special": true
|
1587 |
+
},
|
1588 |
+
"151841": {
|
1589 |
+
"content": "|<EXTRA_TOKENS_195>|",
|
1590 |
+
"lstrip": false,
|
1591 |
+
"normalized": false,
|
1592 |
+
"rstrip": false,
|
1593 |
+
"single_word": false,
|
1594 |
+
"special": true
|
1595 |
+
},
|
1596 |
+
"151842": {
|
1597 |
+
"content": "|<EXTRA_TOKENS_196>|",
|
1598 |
+
"lstrip": false,
|
1599 |
+
"normalized": false,
|
1600 |
+
"rstrip": false,
|
1601 |
+
"single_word": false,
|
1602 |
+
"special": true
|
1603 |
+
},
|
1604 |
+
"151843": {
|
1605 |
+
"content": "|<EXTRA_TOKENS_197>|",
|
1606 |
+
"lstrip": false,
|
1607 |
+
"normalized": false,
|
1608 |
+
"rstrip": false,
|
1609 |
+
"single_word": false,
|
1610 |
+
"special": true
|
1611 |
+
},
|
1612 |
+
"151844": {
|
1613 |
+
"content": "|<EXTRA_TOKENS_198>|",
|
1614 |
+
"lstrip": false,
|
1615 |
+
"normalized": false,
|
1616 |
+
"rstrip": false,
|
1617 |
+
"single_word": false,
|
1618 |
+
"special": true
|
1619 |
+
},
|
1620 |
+
"151845": {
|
1621 |
+
"content": "|<EXTRA_TOKENS_199>|",
|
1622 |
+
"lstrip": false,
|
1623 |
+
"normalized": false,
|
1624 |
+
"rstrip": false,
|
1625 |
+
"single_word": false,
|
1626 |
+
"special": true
|
1627 |
+
},
|
1628 |
+
"151846": {
|
1629 |
+
"content": "|<EXTRA_TOKENS_200>|",
|
1630 |
+
"lstrip": false,
|
1631 |
+
"normalized": false,
|
1632 |
+
"rstrip": false,
|
1633 |
+
"single_word": false,
|
1634 |
+
"special": true
|
1635 |
+
},
|
1636 |
+
"151847": {
|
1637 |
+
"content": "|<EXTRA_TOKENS_201>|",
|
1638 |
+
"lstrip": false,
|
1639 |
+
"normalized": false,
|
1640 |
+
"rstrip": false,
|
1641 |
+
"single_word": false,
|
1642 |
+
"special": true
|
1643 |
+
},
|
1644 |
+
"151848": {
|
1645 |
+
"content": "|<EXTRA_TOKENS_202>|",
|
1646 |
+
"lstrip": false,
|
1647 |
+
"normalized": false,
|
1648 |
+
"rstrip": false,
|
1649 |
+
"single_word": false,
|
1650 |
+
"special": true
|
1651 |
+
},
|
1652 |
+
"151849": {
|
1653 |
+
"content": "|<EXTRA_TOKENS_203>|",
|
1654 |
+
"lstrip": false,
|
1655 |
+
"normalized": false,
|
1656 |
+
"rstrip": false,
|
1657 |
+
"single_word": false,
|
1658 |
+
"special": true
|
1659 |
+
},
|
1660 |
+
"151850": {
|
1661 |
+
"content": "|<EXTRA_TOKENS_204>|",
|
1662 |
+
"lstrip": false,
|
1663 |
+
"normalized": false,
|
1664 |
+
"rstrip": false,
|
1665 |
+
"single_word": false,
|
1666 |
+
"special": true
|
1667 |
+
},
|
1668 |
+
"151851": {
|
1669 |
+
"content": "|<EXTRA_TOKENS_205>|",
|
1670 |
+
"lstrip": false,
|
1671 |
+
"normalized": false,
|
1672 |
+
"rstrip": false,
|
1673 |
+
"single_word": false,
|
1674 |
+
"special": true
|
1675 |
+
},
|
1676 |
+
"151852": {
|
1677 |
+
"content": "|<EXTRA_TOKENS_206>|",
|
1678 |
+
"lstrip": false,
|
1679 |
+
"normalized": false,
|
1680 |
+
"rstrip": false,
|
1681 |
+
"single_word": false,
|
1682 |
+
"special": true
|
1683 |
+
},
|
1684 |
+
"151853": {
|
1685 |
+
"content": "|<EXTRA_TOKENS_207>|",
|
1686 |
+
"lstrip": false,
|
1687 |
+
"normalized": false,
|
1688 |
+
"rstrip": false,
|
1689 |
+
"single_word": false,
|
1690 |
+
"special": true
|
1691 |
+
},
|
1692 |
+
"151854": {
|
1693 |
+
"content": "|<EXTRA_TOKENS_208>|",
|
1694 |
+
"lstrip": false,
|
1695 |
+
"normalized": false,
|
1696 |
+
"rstrip": false,
|
1697 |
+
"single_word": false,
|
1698 |
+
"special": true
|
1699 |
+
},
|
1700 |
+
"151855": {
|
1701 |
+
"content": "|<EXTRA_TOKENS_209>|",
|
1702 |
+
"lstrip": false,
|
1703 |
+
"normalized": false,
|
1704 |
+
"rstrip": false,
|
1705 |
+
"single_word": false,
|
1706 |
+
"special": true
|
1707 |
+
},
|
1708 |
+
"151856": {
|
1709 |
+
"content": "|<EXTRA_TOKENS_210>|",
|
1710 |
+
"lstrip": false,
|
1711 |
+
"normalized": false,
|
1712 |
+
"rstrip": false,
|
1713 |
+
"single_word": false,
|
1714 |
+
"special": true
|
1715 |
+
},
|
1716 |
+
"151857": {
|
1717 |
+
"content": "|<EXTRA_TOKENS_211>|",
|
1718 |
+
"lstrip": false,
|
1719 |
+
"normalized": false,
|
1720 |
+
"rstrip": false,
|
1721 |
+
"single_word": false,
|
1722 |
+
"special": true
|
1723 |
+
},
|
1724 |
+
"151858": {
|
1725 |
+
"content": "|<EXTRA_TOKENS_212>|",
|
1726 |
+
"lstrip": false,
|
1727 |
+
"normalized": false,
|
1728 |
+
"rstrip": false,
|
1729 |
+
"single_word": false,
|
1730 |
+
"special": true
|
1731 |
+
},
|
1732 |
+
"151859": {
|
1733 |
+
"content": "|<EXTRA_TOKENS_213>|",
|
1734 |
+
"lstrip": false,
|
1735 |
+
"normalized": false,
|
1736 |
+
"rstrip": false,
|
1737 |
+
"single_word": false,
|
1738 |
+
"special": true
|
1739 |
+
},
|
1740 |
+
"151860": {
|
1741 |
+
"content": "|<EXTRA_TOKENS_214>|",
|
1742 |
+
"lstrip": false,
|
1743 |
+
"normalized": false,
|
1744 |
+
"rstrip": false,
|
1745 |
+
"single_word": false,
|
1746 |
+
"special": true
|
1747 |
+
},
|
1748 |
+
"151861": {
|
1749 |
+
"content": "|<EXTRA_TOKENS_215>|",
|
1750 |
+
"lstrip": false,
|
1751 |
+
"normalized": false,
|
1752 |
+
"rstrip": false,
|
1753 |
+
"single_word": false,
|
1754 |
+
"special": true
|
1755 |
+
},
|
1756 |
+
"151862": {
|
1757 |
+
"content": "|<EXTRA_TOKENS_216>|",
|
1758 |
+
"lstrip": false,
|
1759 |
+
"normalized": false,
|
1760 |
+
"rstrip": false,
|
1761 |
+
"single_word": false,
|
1762 |
+
"special": true
|
1763 |
+
},
|
1764 |
+
"151863": {
|
1765 |
+
"content": "|<EXTRA_TOKENS_217>|",
|
1766 |
+
"lstrip": false,
|
1767 |
+
"normalized": false,
|
1768 |
+
"rstrip": false,
|
1769 |
+
"single_word": false,
|
1770 |
+
"special": true
|
1771 |
+
},
|
1772 |
+
"151864": {
|
1773 |
+
"content": "|<EXTRA_TOKENS_218>|",
|
1774 |
+
"lstrip": false,
|
1775 |
+
"normalized": false,
|
1776 |
+
"rstrip": false,
|
1777 |
+
"single_word": false,
|
1778 |
+
"special": true
|
1779 |
+
},
|
1780 |
+
"151865": {
|
1781 |
+
"content": "|<EXTRA_TOKENS_219>|",
|
1782 |
+
"lstrip": false,
|
1783 |
+
"normalized": false,
|
1784 |
+
"rstrip": false,
|
1785 |
+
"single_word": false,
|
1786 |
+
"special": true
|
1787 |
+
},
|
1788 |
+
"151866": {
|
1789 |
+
"content": "|<EXTRA_TOKENS_220>|",
|
1790 |
+
"lstrip": false,
|
1791 |
+
"normalized": false,
|
1792 |
+
"rstrip": false,
|
1793 |
+
"single_word": false,
|
1794 |
+
"special": true
|
1795 |
+
},
|
1796 |
+
"151867": {
|
1797 |
+
"content": "|<EXTRA_TOKENS_221>|",
|
1798 |
+
"lstrip": false,
|
1799 |
+
"normalized": false,
|
1800 |
+
"rstrip": false,
|
1801 |
+
"single_word": false,
|
1802 |
+
"special": true
|
1803 |
+
},
|
1804 |
+
"151868": {
|
1805 |
+
"content": "|<EXTRA_TOKENS_222>|",
|
1806 |
+
"lstrip": false,
|
1807 |
+
"normalized": false,
|
1808 |
+
"rstrip": false,
|
1809 |
+
"single_word": false,
|
1810 |
+
"special": true
|
1811 |
+
},
|
1812 |
+
"151869": {
|
1813 |
+
"content": "|<EXTRA_TOKENS_223>|",
|
1814 |
+
"lstrip": false,
|
1815 |
+
"normalized": false,
|
1816 |
+
"rstrip": false,
|
1817 |
+
"single_word": false,
|
1818 |
+
"special": true
|
1819 |
+
},
|
1820 |
+
"151870": {
|
1821 |
+
"content": "|<EXTRA_TOKENS_224>|",
|
1822 |
+
"lstrip": false,
|
1823 |
+
"normalized": false,
|
1824 |
+
"rstrip": false,
|
1825 |
+
"single_word": false,
|
1826 |
+
"special": true
|
1827 |
+
},
|
1828 |
+
"151871": {
|
1829 |
+
"content": "|<EXTRA_TOKENS_225>|",
|
1830 |
+
"lstrip": false,
|
1831 |
+
"normalized": false,
|
1832 |
+
"rstrip": false,
|
1833 |
+
"single_word": false,
|
1834 |
+
"special": true
|
1835 |
+
},
|
1836 |
+
"151872": {
|
1837 |
+
"content": "|<EXTRA_TOKENS_226>|",
|
1838 |
+
"lstrip": false,
|
1839 |
+
"normalized": false,
|
1840 |
+
"rstrip": false,
|
1841 |
+
"single_word": false,
|
1842 |
+
"special": true
|
1843 |
+
},
|
1844 |
+
"151873": {
|
1845 |
+
"content": "|<EXTRA_TOKENS_227>|",
|
1846 |
+
"lstrip": false,
|
1847 |
+
"normalized": false,
|
1848 |
+
"rstrip": false,
|
1849 |
+
"single_word": false,
|
1850 |
+
"special": true
|
1851 |
+
},
|
1852 |
+
"151874": {
|
1853 |
+
"content": "|<EXTRA_TOKENS_228>|",
|
1854 |
+
"lstrip": false,
|
1855 |
+
"normalized": false,
|
1856 |
+
"rstrip": false,
|
1857 |
+
"single_word": false,
|
1858 |
+
"special": true
|
1859 |
+
},
|
1860 |
+
"151875": {
|
1861 |
+
"content": "|<EXTRA_TOKENS_229>|",
|
1862 |
+
"lstrip": false,
|
1863 |
+
"normalized": false,
|
1864 |
+
"rstrip": false,
|
1865 |
+
"single_word": false,
|
1866 |
+
"special": true
|
1867 |
+
},
|
1868 |
+
"151876": {
|
1869 |
+
"content": "|<EXTRA_TOKENS_230>|",
|
1870 |
+
"lstrip": false,
|
1871 |
+
"normalized": false,
|
1872 |
+
"rstrip": false,
|
1873 |
+
"single_word": false,
|
1874 |
+
"special": true
|
1875 |
+
},
|
1876 |
+
"151877": {
|
1877 |
+
"content": "|<EXTRA_TOKENS_231>|",
|
1878 |
+
"lstrip": false,
|
1879 |
+
"normalized": false,
|
1880 |
+
"rstrip": false,
|
1881 |
+
"single_word": false,
|
1882 |
+
"special": true
|
1883 |
+
},
|
1884 |
+
"151878": {
|
1885 |
+
"content": "|<EXTRA_TOKENS_232>|",
|
1886 |
+
"lstrip": false,
|
1887 |
+
"normalized": false,
|
1888 |
+
"rstrip": false,
|
1889 |
+
"single_word": false,
|
1890 |
+
"special": true
|
1891 |
+
},
|
1892 |
+
"151879": {
|
1893 |
+
"content": "|<EXTRA_TOKENS_233>|",
|
1894 |
+
"lstrip": false,
|
1895 |
+
"normalized": false,
|
1896 |
+
"rstrip": false,
|
1897 |
+
"single_word": false,
|
1898 |
+
"special": true
|
1899 |
+
},
|
1900 |
+
"151880": {
|
1901 |
+
"content": "|<EXTRA_TOKENS_234>|",
|
1902 |
+
"lstrip": false,
|
1903 |
+
"normalized": false,
|
1904 |
+
"rstrip": false,
|
1905 |
+
"single_word": false,
|
1906 |
+
"special": true
|
1907 |
+
},
|
1908 |
+
"151881": {
|
1909 |
+
"content": "|<EXTRA_TOKENS_235>|",
|
1910 |
+
"lstrip": false,
|
1911 |
+
"normalized": false,
|
1912 |
+
"rstrip": false,
|
1913 |
+
"single_word": false,
|
1914 |
+
"special": true
|
1915 |
+
},
|
1916 |
+
"151882": {
|
1917 |
+
"content": "|<EXTRA_TOKENS_236>|",
|
1918 |
+
"lstrip": false,
|
1919 |
+
"normalized": false,
|
1920 |
+
"rstrip": false,
|
1921 |
+
"single_word": false,
|
1922 |
+
"special": true
|
1923 |
+
},
|
1924 |
+
"151883": {
|
1925 |
+
"content": "|<EXTRA_TOKENS_237>|",
|
1926 |
+
"lstrip": false,
|
1927 |
+
"normalized": false,
|
1928 |
+
"rstrip": false,
|
1929 |
+
"single_word": false,
|
1930 |
+
"special": true
|
1931 |
+
},
|
1932 |
+
"151884": {
|
1933 |
+
"content": "|<EXTRA_TOKENS_238>|",
|
1934 |
+
"lstrip": false,
|
1935 |
+
"normalized": false,
|
1936 |
+
"rstrip": false,
|
1937 |
+
"single_word": false,
|
1938 |
+
"special": true
|
1939 |
+
},
|
1940 |
+
"151885": {
|
1941 |
+
"content": "|<EXTRA_TOKENS_239>|",
|
1942 |
+
"lstrip": false,
|
1943 |
+
"normalized": false,
|
1944 |
+
"rstrip": false,
|
1945 |
+
"single_word": false,
|
1946 |
+
"special": true
|
1947 |
+
},
|
1948 |
+
"151886": {
|
1949 |
+
"content": "|<EXTRA_TOKENS_240>|",
|
1950 |
+
"lstrip": false,
|
1951 |
+
"normalized": false,
|
1952 |
+
"rstrip": false,
|
1953 |
+
"single_word": false,
|
1954 |
+
"special": true
|
1955 |
+
},
|
1956 |
+
"151887": {
|
1957 |
+
"content": "|<EXTRA_TOKENS_241>|",
|
1958 |
+
"lstrip": false,
|
1959 |
+
"normalized": false,
|
1960 |
+
"rstrip": false,
|
1961 |
+
"single_word": false,
|
1962 |
+
"special": true
|
1963 |
+
},
|
1964 |
+
"151888": {
|
1965 |
+
"content": "|<EXTRA_TOKENS_242>|",
|
1966 |
+
"lstrip": false,
|
1967 |
+
"normalized": false,
|
1968 |
+
"rstrip": false,
|
1969 |
+
"single_word": false,
|
1970 |
+
"special": true
|
1971 |
+
},
|
1972 |
+
"151889": {
|
1973 |
+
"content": "|<EXTRA_TOKENS_243>|",
|
1974 |
+
"lstrip": false,
|
1975 |
+
"normalized": false,
|
1976 |
+
"rstrip": false,
|
1977 |
+
"single_word": false,
|
1978 |
+
"special": true
|
1979 |
+
},
|
1980 |
+
"151890": {
|
1981 |
+
"content": "|<EXTRA_TOKENS_244>|",
|
1982 |
+
"lstrip": false,
|
1983 |
+
"normalized": false,
|
1984 |
+
"rstrip": false,
|
1985 |
+
"single_word": false,
|
1986 |
+
"special": true
|
1987 |
+
},
|
1988 |
+
"151891": {
|
1989 |
+
"content": "|<EXTRA_TOKENS_245>|",
|
1990 |
+
"lstrip": false,
|
1991 |
+
"normalized": false,
|
1992 |
+
"rstrip": false,
|
1993 |
+
"single_word": false,
|
1994 |
+
"special": true
|
1995 |
+
},
|
1996 |
+
"151892": {
|
1997 |
+
"content": "|<EXTRA_TOKENS_246>|",
|
1998 |
+
"lstrip": false,
|
1999 |
+
"normalized": false,
|
2000 |
+
"rstrip": false,
|
2001 |
+
"single_word": false,
|
2002 |
+
"special": true
|
2003 |
+
},
|
2004 |
+
"151893": {
|
2005 |
+
"content": "|<EXTRA_TOKENS_247>|",
|
2006 |
+
"lstrip": false,
|
2007 |
+
"normalized": false,
|
2008 |
+
"rstrip": false,
|
2009 |
+
"single_word": false,
|
2010 |
+
"special": true
|
2011 |
+
},
|
2012 |
+
"151894": {
|
2013 |
+
"content": "|<EXTRA_TOKENS_248>|",
|
2014 |
+
"lstrip": false,
|
2015 |
+
"normalized": false,
|
2016 |
+
"rstrip": false,
|
2017 |
+
"single_word": false,
|
2018 |
+
"special": true
|
2019 |
+
},
|
2020 |
+
"151895": {
|
2021 |
+
"content": "|<EXTRA_TOKENS_249>|",
|
2022 |
+
"lstrip": false,
|
2023 |
+
"normalized": false,
|
2024 |
+
"rstrip": false,
|
2025 |
+
"single_word": false,
|
2026 |
+
"special": true
|
2027 |
+
},
|
2028 |
+
"151896": {
|
2029 |
+
"content": "|<EXTRA_TOKENS_250>|",
|
2030 |
+
"lstrip": false,
|
2031 |
+
"normalized": false,
|
2032 |
+
"rstrip": false,
|
2033 |
+
"single_word": false,
|
2034 |
+
"special": true
|
2035 |
+
},
|
2036 |
+
"151897": {
|
2037 |
+
"content": "|<EXTRA_TOKENS_251>|",
|
2038 |
+
"lstrip": false,
|
2039 |
+
"normalized": false,
|
2040 |
+
"rstrip": false,
|
2041 |
+
"single_word": false,
|
2042 |
+
"special": true
|
2043 |
+
},
|
2044 |
+
"151898": {
|
2045 |
+
"content": "|<EXTRA_TOKENS_252>|",
|
2046 |
+
"lstrip": false,
|
2047 |
+
"normalized": false,
|
2048 |
+
"rstrip": false,
|
2049 |
+
"single_word": false,
|
2050 |
+
"special": true
|
2051 |
+
},
|
2052 |
+
"151899": {
|
2053 |
+
"content": "|<EXTRA_TOKENS_253>|",
|
2054 |
+
"lstrip": false,
|
2055 |
+
"normalized": false,
|
2056 |
+
"rstrip": false,
|
2057 |
+
"single_word": false,
|
2058 |
+
"special": true
|
2059 |
+
},
|
2060 |
+
"151900": {
|
2061 |
+
"content": "|<EXTRA_TOKENS_254>|",
|
2062 |
+
"lstrip": false,
|
2063 |
+
"normalized": false,
|
2064 |
+
"rstrip": false,
|
2065 |
+
"single_word": false,
|
2066 |
+
"special": true
|
2067 |
+
},
|
2068 |
+
"151901": {
|
2069 |
+
"content": "|<EXTRA_TOKENS_255>|",
|
2070 |
+
"lstrip": false,
|
2071 |
+
"normalized": false,
|
2072 |
+
"rstrip": false,
|
2073 |
+
"single_word": false,
|
2074 |
+
"special": true
|
2075 |
+
},
|
2076 |
+
"151902": {
|
2077 |
+
"content": "|<EXTRA_TOKENS_256>|",
|
2078 |
+
"lstrip": false,
|
2079 |
+
"normalized": false,
|
2080 |
+
"rstrip": false,
|
2081 |
+
"single_word": false,
|
2082 |
+
"special": true
|
2083 |
+
},
|
2084 |
+
"151903": {
|
2085 |
+
"content": "|<EXTRA_TOKENS_257>|",
|
2086 |
+
"lstrip": false,
|
2087 |
+
"normalized": false,
|
2088 |
+
"rstrip": false,
|
2089 |
+
"single_word": false,
|
2090 |
+
"special": true
|
2091 |
+
},
|
2092 |
+
"151904": {
|
2093 |
+
"content": "|<EXTRA_TOKENS_258>|",
|
2094 |
+
"lstrip": false,
|
2095 |
+
"normalized": false,
|
2096 |
+
"rstrip": false,
|
2097 |
+
"single_word": false,
|
2098 |
+
"special": true
|
2099 |
+
},
|
2100 |
+
"151905": {
|
2101 |
+
"content": "|<EXTRA_TOKENS_259>|",
|
2102 |
+
"lstrip": false,
|
2103 |
+
"normalized": false,
|
2104 |
+
"rstrip": false,
|
2105 |
+
"single_word": false,
|
2106 |
+
"special": true
|
2107 |
+
},
|
2108 |
+
"151906": {
|
2109 |
+
"content": "|<EXTRA_TOKENS_260>|",
|
2110 |
+
"lstrip": false,
|
2111 |
+
"normalized": false,
|
2112 |
+
"rstrip": false,
|
2113 |
+
"single_word": false,
|
2114 |
+
"special": true
|
2115 |
+
},
|
2116 |
+
"151907": {
|
2117 |
+
"content": "|<EXTRA_TOKENS_261>|",
|
2118 |
+
"lstrip": false,
|
2119 |
+
"normalized": false,
|
2120 |
+
"rstrip": false,
|
2121 |
+
"single_word": false,
|
2122 |
+
"special": true
|
2123 |
+
},
|
2124 |
+
"151908": {
|
2125 |
+
"content": "|<EXTRA_TOKENS_262>|",
|
2126 |
+
"lstrip": false,
|
2127 |
+
"normalized": false,
|
2128 |
+
"rstrip": false,
|
2129 |
+
"single_word": false,
|
2130 |
+
"special": true
|
2131 |
+
},
|
2132 |
+
"151909": {
|
2133 |
+
"content": "|<EXTRA_TOKENS_263>|",
|
2134 |
+
"lstrip": false,
|
2135 |
+
"normalized": false,
|
2136 |
+
"rstrip": false,
|
2137 |
+
"single_word": false,
|
2138 |
+
"special": true
|
2139 |
+
},
|
2140 |
+
"151910": {
|
2141 |
+
"content": "|<EXTRA_TOKENS_264>|",
|
2142 |
+
"lstrip": false,
|
2143 |
+
"normalized": false,
|
2144 |
+
"rstrip": false,
|
2145 |
+
"single_word": false,
|
2146 |
+
"special": true
|
2147 |
+
},
|
2148 |
+
"151911": {
|
2149 |
+
"content": "|<EXTRA_TOKENS_265>|",
|
2150 |
+
"lstrip": false,
|
2151 |
+
"normalized": false,
|
2152 |
+
"rstrip": false,
|
2153 |
+
"single_word": false,
|
2154 |
+
"special": true
|
2155 |
+
},
|
2156 |
+
"151912": {
|
2157 |
+
"content": "|<EXTRA_TOKENS_266>|",
|
2158 |
+
"lstrip": false,
|
2159 |
+
"normalized": false,
|
2160 |
+
"rstrip": false,
|
2161 |
+
"single_word": false,
|
2162 |
+
"special": true
|
2163 |
+
},
|
2164 |
+
"151913": {
|
2165 |
+
"content": "|<EXTRA_TOKENS_267>|",
|
2166 |
+
"lstrip": false,
|
2167 |
+
"normalized": false,
|
2168 |
+
"rstrip": false,
|
2169 |
+
"single_word": false,
|
2170 |
+
"special": true
|
2171 |
+
},
|
2172 |
+
"151914": {
|
2173 |
+
"content": "|<EXTRA_TOKENS_268>|",
|
2174 |
+
"lstrip": false,
|
2175 |
+
"normalized": false,
|
2176 |
+
"rstrip": false,
|
2177 |
+
"single_word": false,
|
2178 |
+
"special": true
|
2179 |
+
},
|
2180 |
+
"151915": {
|
2181 |
+
"content": "|<EXTRA_TOKENS_269>|",
|
2182 |
+
"lstrip": false,
|
2183 |
+
"normalized": false,
|
2184 |
+
"rstrip": false,
|
2185 |
+
"single_word": false,
|
2186 |
+
"special": true
|
2187 |
+
},
|
2188 |
+
"151916": {
|
2189 |
+
"content": "|<EXTRA_TOKENS_270>|",
|
2190 |
+
"lstrip": false,
|
2191 |
+
"normalized": false,
|
2192 |
+
"rstrip": false,
|
2193 |
+
"single_word": false,
|
2194 |
+
"special": true
|
2195 |
+
},
|
2196 |
+
"151917": {
|
2197 |
+
"content": "|<EXTRA_TOKENS_271>|",
|
2198 |
+
"lstrip": false,
|
2199 |
+
"normalized": false,
|
2200 |
+
"rstrip": false,
|
2201 |
+
"single_word": false,
|
2202 |
+
"special": true
|
2203 |
+
},
|
2204 |
+
"151918": {
|
2205 |
+
"content": "|<EXTRA_TOKENS_272>|",
|
2206 |
+
"lstrip": false,
|
2207 |
+
"normalized": false,
|
2208 |
+
"rstrip": false,
|
2209 |
+
"single_word": false,
|
2210 |
+
"special": true
|
2211 |
+
},
|
2212 |
+
"151919": {
|
2213 |
+
"content": "|<EXTRA_TOKENS_273>|",
|
2214 |
+
"lstrip": false,
|
2215 |
+
"normalized": false,
|
2216 |
+
"rstrip": false,
|
2217 |
+
"single_word": false,
|
2218 |
+
"special": true
|
2219 |
+
},
|
2220 |
+
"151920": {
|
2221 |
+
"content": "|<EXTRA_TOKENS_274>|",
|
2222 |
+
"lstrip": false,
|
2223 |
+
"normalized": false,
|
2224 |
+
"rstrip": false,
|
2225 |
+
"single_word": false,
|
2226 |
+
"special": true
|
2227 |
+
},
|
2228 |
+
"151921": {
|
2229 |
+
"content": "|<EXTRA_TOKENS_275>|",
|
2230 |
+
"lstrip": false,
|
2231 |
+
"normalized": false,
|
2232 |
+
"rstrip": false,
|
2233 |
+
"single_word": false,
|
2234 |
+
"special": true
|
2235 |
+
},
|
2236 |
+
"151922": {
|
2237 |
+
"content": "|<EXTRA_TOKENS_276>|",
|
2238 |
+
"lstrip": false,
|
2239 |
+
"normalized": false,
|
2240 |
+
"rstrip": false,
|
2241 |
+
"single_word": false,
|
2242 |
+
"special": true
|
2243 |
+
},
|
2244 |
+
"151923": {
|
2245 |
+
"content": "|<EXTRA_TOKENS_277>|",
|
2246 |
+
"lstrip": false,
|
2247 |
+
"normalized": false,
|
2248 |
+
"rstrip": false,
|
2249 |
+
"single_word": false,
|
2250 |
+
"special": true
|
2251 |
+
},
|
2252 |
+
"151924": {
|
2253 |
+
"content": "|<EXTRA_TOKENS_278>|",
|
2254 |
+
"lstrip": false,
|
2255 |
+
"normalized": false,
|
2256 |
+
"rstrip": false,
|
2257 |
+
"single_word": false,
|
2258 |
+
"special": true
|
2259 |
+
},
|
2260 |
+
"151925": {
|
2261 |
+
"content": "|<EXTRA_TOKENS_279>|",
|
2262 |
+
"lstrip": false,
|
2263 |
+
"normalized": false,
|
2264 |
+
"rstrip": false,
|
2265 |
+
"single_word": false,
|
2266 |
+
"special": true
|
2267 |
+
},
|
2268 |
+
"151926": {
|
2269 |
+
"content": "|<EXTRA_TOKENS_280>|",
|
2270 |
+
"lstrip": false,
|
2271 |
+
"normalized": false,
|
2272 |
+
"rstrip": false,
|
2273 |
+
"single_word": false,
|
2274 |
+
"special": true
|
2275 |
+
},
|
2276 |
+
"151927": {
|
2277 |
+
"content": "|<EXTRA_TOKENS_281>|",
|
2278 |
+
"lstrip": false,
|
2279 |
+
"normalized": false,
|
2280 |
+
"rstrip": false,
|
2281 |
+
"single_word": false,
|
2282 |
+
"special": true
|
2283 |
+
},
|
2284 |
+
"151928": {
|
2285 |
+
"content": "|<EXTRA_TOKENS_282>|",
|
2286 |
+
"lstrip": false,
|
2287 |
+
"normalized": false,
|
2288 |
+
"rstrip": false,
|
2289 |
+
"single_word": false,
|
2290 |
+
"special": true
|
2291 |
+
},
|
2292 |
+
"151929": {
|
2293 |
+
"content": "|<EXTRA_TOKENS_283>|",
|
2294 |
+
"lstrip": false,
|
2295 |
+
"normalized": false,
|
2296 |
+
"rstrip": false,
|
2297 |
+
"single_word": false,
|
2298 |
+
"special": true
|
2299 |
+
},
|
2300 |
+
"151930": {
|
2301 |
+
"content": "|<EXTRA_TOKENS_284>|",
|
2302 |
+
"lstrip": false,
|
2303 |
+
"normalized": false,
|
2304 |
+
"rstrip": false,
|
2305 |
+
"single_word": false,
|
2306 |
+
"special": true
|
2307 |
+
},
|
2308 |
+
"151931": {
|
2309 |
+
"content": "|<EXTRA_TOKENS_285>|",
|
2310 |
+
"lstrip": false,
|
2311 |
+
"normalized": false,
|
2312 |
+
"rstrip": false,
|
2313 |
+
"single_word": false,
|
2314 |
+
"special": true
|
2315 |
+
},
|
2316 |
+
"151932": {
|
2317 |
+
"content": "|<EXTRA_TOKENS_286>|",
|
2318 |
+
"lstrip": false,
|
2319 |
+
"normalized": false,
|
2320 |
+
"rstrip": false,
|
2321 |
+
"single_word": false,
|
2322 |
+
"special": true
|
2323 |
+
},
|
2324 |
+
"151933": {
|
2325 |
+
"content": "|<EXTRA_TOKENS_287>|",
|
2326 |
+
"lstrip": false,
|
2327 |
+
"normalized": false,
|
2328 |
+
"rstrip": false,
|
2329 |
+
"single_word": false,
|
2330 |
+
"special": true
|
2331 |
+
},
|
2332 |
+
"151934": {
|
2333 |
+
"content": "|<EXTRA_TOKENS_288>|",
|
2334 |
+
"lstrip": false,
|
2335 |
+
"normalized": false,
|
2336 |
+
"rstrip": false,
|
2337 |
+
"single_word": false,
|
2338 |
+
"special": true
|
2339 |
+
},
|
2340 |
+
"151935": {
|
2341 |
+
"content": "|<EXTRA_TOKENS_289>|",
|
2342 |
+
"lstrip": false,
|
2343 |
+
"normalized": false,
|
2344 |
+
"rstrip": false,
|
2345 |
+
"single_word": false,
|
2346 |
+
"special": true
|
2347 |
+
},
|
2348 |
+
"151936": {
|
2349 |
+
"content": "|<EXTRA_TOKENS_290>|",
|
2350 |
+
"lstrip": false,
|
2351 |
+
"normalized": false,
|
2352 |
+
"rstrip": false,
|
2353 |
+
"single_word": false,
|
2354 |
+
"special": true
|
2355 |
+
},
|
2356 |
+
"151937": {
|
2357 |
+
"content": "|<EXTRA_TOKENS_291>|",
|
2358 |
+
"lstrip": false,
|
2359 |
+
"normalized": false,
|
2360 |
+
"rstrip": false,
|
2361 |
+
"single_word": false,
|
2362 |
+
"special": true
|
2363 |
+
},
|
2364 |
+
"151938": {
|
2365 |
+
"content": "|<EXTRA_TOKENS_292>|",
|
2366 |
+
"lstrip": false,
|
2367 |
+
"normalized": false,
|
2368 |
+
"rstrip": false,
|
2369 |
+
"single_word": false,
|
2370 |
+
"special": true
|
2371 |
+
},
|
2372 |
+
"151939": {
|
2373 |
+
"content": "|<EXTRA_TOKENS_293>|",
|
2374 |
+
"lstrip": false,
|
2375 |
+
"normalized": false,
|
2376 |
+
"rstrip": false,
|
2377 |
+
"single_word": false,
|
2378 |
+
"special": true
|
2379 |
+
},
|
2380 |
+
"151940": {
|
2381 |
+
"content": "|<EXTRA_TOKENS_294>|",
|
2382 |
+
"lstrip": false,
|
2383 |
+
"normalized": false,
|
2384 |
+
"rstrip": false,
|
2385 |
+
"single_word": false,
|
2386 |
+
"special": true
|
2387 |
+
},
|
2388 |
+
"151941": {
|
2389 |
+
"content": "|<EXTRA_TOKENS_295>|",
|
2390 |
+
"lstrip": false,
|
2391 |
+
"normalized": false,
|
2392 |
+
"rstrip": false,
|
2393 |
+
"single_word": false,
|
2394 |
+
"special": true
|
2395 |
+
},
|
2396 |
+
"151942": {
|
2397 |
+
"content": "|<EXTRA_TOKENS_296>|",
|
2398 |
+
"lstrip": false,
|
2399 |
+
"normalized": false,
|
2400 |
+
"rstrip": false,
|
2401 |
+
"single_word": false,
|
2402 |
+
"special": true
|
2403 |
+
},
|
2404 |
+
"151943": {
|
2405 |
+
"content": "|<EXTRA_TOKENS_297>|",
|
2406 |
+
"lstrip": false,
|
2407 |
+
"normalized": false,
|
2408 |
+
"rstrip": false,
|
2409 |
+
"single_word": false,
|
2410 |
+
"special": true
|
2411 |
+
},
|
2412 |
+
"151944": {
|
2413 |
+
"content": "|<EXTRA_TOKENS_298>|",
|
2414 |
+
"lstrip": false,
|
2415 |
+
"normalized": false,
|
2416 |
+
"rstrip": false,
|
2417 |
+
"single_word": false,
|
2418 |
+
"special": true
|
2419 |
+
},
|
2420 |
+
"151945": {
|
2421 |
+
"content": "|<EXTRA_TOKENS_299>|",
|
2422 |
+
"lstrip": false,
|
2423 |
+
"normalized": false,
|
2424 |
+
"rstrip": false,
|
2425 |
+
"single_word": false,
|
2426 |
+
"special": true
|
2427 |
+
},
|
2428 |
+
"151946": {
|
2429 |
+
"content": "|<EXTRA_TOKENS_300>|",
|
2430 |
+
"lstrip": false,
|
2431 |
+
"normalized": false,
|
2432 |
+
"rstrip": false,
|
2433 |
+
"single_word": false,
|
2434 |
+
"special": true
|
2435 |
+
},
|
2436 |
+
"151947": {
|
2437 |
+
"content": "|<EXTRA_TOKENS_301>|",
|
2438 |
+
"lstrip": false,
|
2439 |
+
"normalized": false,
|
2440 |
+
"rstrip": false,
|
2441 |
+
"single_word": false,
|
2442 |
+
"special": true
|
2443 |
+
},
|
2444 |
+
"151948": {
|
2445 |
+
"content": "|<EXTRA_TOKENS_302>|",
|
2446 |
+
"lstrip": false,
|
2447 |
+
"normalized": false,
|
2448 |
+
"rstrip": false,
|
2449 |
+
"single_word": false,
|
2450 |
+
"special": true
|
2451 |
+
},
|
2452 |
+
"151949": {
|
2453 |
+
"content": "|<EXTRA_TOKENS_303>|",
|
2454 |
+
"lstrip": false,
|
2455 |
+
"normalized": false,
|
2456 |
+
"rstrip": false,
|
2457 |
+
"single_word": false,
|
2458 |
+
"special": true
|
2459 |
+
},
|
2460 |
+
"151950": {
|
2461 |
+
"content": "|<EXTRA_TOKENS_304>|",
|
2462 |
+
"lstrip": false,
|
2463 |
+
"normalized": false,
|
2464 |
+
"rstrip": false,
|
2465 |
+
"single_word": false,
|
2466 |
+
"special": true
|
2467 |
+
},
|
2468 |
+
"151951": {
|
2469 |
+
"content": "|<EXTRA_TOKENS_305>|",
|
2470 |
+
"lstrip": false,
|
2471 |
+
"normalized": false,
|
2472 |
+
"rstrip": false,
|
2473 |
+
"single_word": false,
|
2474 |
+
"special": true
|
2475 |
+
},
|
2476 |
+
"151952": {
|
2477 |
+
"content": "|<EXTRA_TOKENS_306>|",
|
2478 |
+
"lstrip": false,
|
2479 |
+
"normalized": false,
|
2480 |
+
"rstrip": false,
|
2481 |
+
"single_word": false,
|
2482 |
+
"special": true
|
2483 |
+
},
|
2484 |
+
"151953": {
|
2485 |
+
"content": "|<EXTRA_TOKENS_307>|",
|
2486 |
+
"lstrip": false,
|
2487 |
+
"normalized": false,
|
2488 |
+
"rstrip": false,
|
2489 |
+
"single_word": false,
|
2490 |
+
"special": true
|
2491 |
+
},
|
2492 |
+
"151954": {
|
2493 |
+
"content": "|<EXTRA_TOKENS_308>|",
|
2494 |
+
"lstrip": false,
|
2495 |
+
"normalized": false,
|
2496 |
+
"rstrip": false,
|
2497 |
+
"single_word": false,
|
2498 |
+
"special": true
|
2499 |
+
},
|
2500 |
+
"151955": {
|
2501 |
+
"content": "|<EXTRA_TOKENS_309>|",
|
2502 |
+
"lstrip": false,
|
2503 |
+
"normalized": false,
|
2504 |
+
"rstrip": false,
|
2505 |
+
"single_word": false,
|
2506 |
+
"special": true
|
2507 |
+
},
|
2508 |
+
"151956": {
|
2509 |
+
"content": "|<EXTRA_TOKENS_310>|",
|
2510 |
+
"lstrip": false,
|
2511 |
+
"normalized": false,
|
2512 |
+
"rstrip": false,
|
2513 |
+
"single_word": false,
|
2514 |
+
"special": true
|
2515 |
+
},
|
2516 |
+
"151957": {
|
2517 |
+
"content": "|<EXTRA_TOKENS_311>|",
|
2518 |
+
"lstrip": false,
|
2519 |
+
"normalized": false,
|
2520 |
+
"rstrip": false,
|
2521 |
+
"single_word": false,
|
2522 |
+
"special": true
|
2523 |
+
},
|
2524 |
+
"151958": {
|
2525 |
+
"content": "|<EXTRA_TOKENS_312>|",
|
2526 |
+
"lstrip": false,
|
2527 |
+
"normalized": false,
|
2528 |
+
"rstrip": false,
|
2529 |
+
"single_word": false,
|
2530 |
+
"special": true
|
2531 |
+
},
|
2532 |
+
"151959": {
|
2533 |
+
"content": "|<EXTRA_TOKENS_313>|",
|
2534 |
+
"lstrip": false,
|
2535 |
+
"normalized": false,
|
2536 |
+
"rstrip": false,
|
2537 |
+
"single_word": false,
|
2538 |
+
"special": true
|
2539 |
+
},
|
2540 |
+
"151960": {
|
2541 |
+
"content": "|<EXTRA_TOKENS_314>|",
|
2542 |
+
"lstrip": false,
|
2543 |
+
"normalized": false,
|
2544 |
+
"rstrip": false,
|
2545 |
+
"single_word": false,
|
2546 |
+
"special": true
|
2547 |
+
},
|
2548 |
+
"151961": {
|
2549 |
+
"content": "|<EXTRA_TOKENS_315>|",
|
2550 |
+
"lstrip": false,
|
2551 |
+
"normalized": false,
|
2552 |
+
"rstrip": false,
|
2553 |
+
"single_word": false,
|
2554 |
+
"special": true
|
2555 |
+
},
|
2556 |
+
"151962": {
|
2557 |
+
"content": "|<EXTRA_TOKENS_316>|",
|
2558 |
+
"lstrip": false,
|
2559 |
+
"normalized": false,
|
2560 |
+
"rstrip": false,
|
2561 |
+
"single_word": false,
|
2562 |
+
"special": true
|
2563 |
+
},
|
2564 |
+
"151963": {
|
2565 |
+
"content": "|<EXTRA_TOKENS_317>|",
|
2566 |
+
"lstrip": false,
|
2567 |
+
"normalized": false,
|
2568 |
+
"rstrip": false,
|
2569 |
+
"single_word": false,
|
2570 |
+
"special": true
|
2571 |
+
},
|
2572 |
+
"151964": {
|
2573 |
+
"content": "|<EXTRA_TOKENS_318>|",
|
2574 |
+
"lstrip": false,
|
2575 |
+
"normalized": false,
|
2576 |
+
"rstrip": false,
|
2577 |
+
"single_word": false,
|
2578 |
+
"special": true
|
2579 |
+
},
|
2580 |
+
"151965": {
|
2581 |
+
"content": "|<EXTRA_TOKENS_319>|",
|
2582 |
+
"lstrip": false,
|
2583 |
+
"normalized": false,
|
2584 |
+
"rstrip": false,
|
2585 |
+
"single_word": false,
|
2586 |
+
"special": true
|
2587 |
+
},
|
2588 |
+
"151966": {
|
2589 |
+
"content": "|<EXTRA_TOKENS_320>|",
|
2590 |
+
"lstrip": false,
|
2591 |
+
"normalized": false,
|
2592 |
+
"rstrip": false,
|
2593 |
+
"single_word": false,
|
2594 |
+
"special": true
|
2595 |
+
},
|
2596 |
+
"151967": {
|
2597 |
+
"content": "|<EXTRA_TOKENS_321>|",
|
2598 |
+
"lstrip": false,
|
2599 |
+
"normalized": false,
|
2600 |
+
"rstrip": false,
|
2601 |
+
"single_word": false,
|
2602 |
+
"special": true
|
2603 |
+
},
|
2604 |
+
"151968": {
|
2605 |
+
"content": "|<EXTRA_TOKENS_322>|",
|
2606 |
+
"lstrip": false,
|
2607 |
+
"normalized": false,
|
2608 |
+
"rstrip": false,
|
2609 |
+
"single_word": false,
|
2610 |
+
"special": true
|
2611 |
+
},
|
2612 |
+
"151969": {
|
2613 |
+
"content": "|<EXTRA_TOKENS_323>|",
|
2614 |
+
"lstrip": false,
|
2615 |
+
"normalized": false,
|
2616 |
+
"rstrip": false,
|
2617 |
+
"single_word": false,
|
2618 |
+
"special": true
|
2619 |
+
},
|
2620 |
+
"151970": {
|
2621 |
+
"content": "|<EXTRA_TOKENS_324>|",
|
2622 |
+
"lstrip": false,
|
2623 |
+
"normalized": false,
|
2624 |
+
"rstrip": false,
|
2625 |
+
"single_word": false,
|
2626 |
+
"special": true
|
2627 |
+
},
|
2628 |
+
"151971": {
|
2629 |
+
"content": "|<EXTRA_TOKENS_325>|",
|
2630 |
+
"lstrip": false,
|
2631 |
+
"normalized": false,
|
2632 |
+
"rstrip": false,
|
2633 |
+
"single_word": false,
|
2634 |
+
"special": true
|
2635 |
+
},
|
2636 |
+
"151972": {
|
2637 |
+
"content": "|<EXTRA_TOKENS_326>|",
|
2638 |
+
"lstrip": false,
|
2639 |
+
"normalized": false,
|
2640 |
+
"rstrip": false,
|
2641 |
+
"single_word": false,
|
2642 |
+
"special": true
|
2643 |
+
},
|
2644 |
+
"151973": {
|
2645 |
+
"content": "|<EXTRA_TOKENS_327>|",
|
2646 |
+
"lstrip": false,
|
2647 |
+
"normalized": false,
|
2648 |
+
"rstrip": false,
|
2649 |
+
"single_word": false,
|
2650 |
+
"special": true
|
2651 |
+
},
|
2652 |
+
"151974": {
|
2653 |
+
"content": "|<EXTRA_TOKENS_328>|",
|
2654 |
+
"lstrip": false,
|
2655 |
+
"normalized": false,
|
2656 |
+
"rstrip": false,
|
2657 |
+
"single_word": false,
|
2658 |
+
"special": true
|
2659 |
+
},
|
2660 |
+
"151975": {
|
2661 |
+
"content": "|<EXTRA_TOKENS_329>|",
|
2662 |
+
"lstrip": false,
|
2663 |
+
"normalized": false,
|
2664 |
+
"rstrip": false,
|
2665 |
+
"single_word": false,
|
2666 |
+
"special": true
|
2667 |
+
},
|
2668 |
+
"151976": {
|
2669 |
+
"content": "|<EXTRA_TOKENS_330>|",
|
2670 |
+
"lstrip": false,
|
2671 |
+
"normalized": false,
|
2672 |
+
"rstrip": false,
|
2673 |
+
"single_word": false,
|
2674 |
+
"special": true
|
2675 |
+
},
|
2676 |
+
"151977": {
|
2677 |
+
"content": "|<EXTRA_TOKENS_331>|",
|
2678 |
+
"lstrip": false,
|
2679 |
+
"normalized": false,
|
2680 |
+
"rstrip": false,
|
2681 |
+
"single_word": false,
|
2682 |
+
"special": true
|
2683 |
+
},
|
2684 |
+
"151978": {
|
2685 |
+
"content": "|<EXTRA_TOKENS_332>|",
|
2686 |
+
"lstrip": false,
|
2687 |
+
"normalized": false,
|
2688 |
+
"rstrip": false,
|
2689 |
+
"single_word": false,
|
2690 |
+
"special": true
|
2691 |
+
},
|
2692 |
+
"151979": {
|
2693 |
+
"content": "|<EXTRA_TOKENS_333>|",
|
2694 |
+
"lstrip": false,
|
2695 |
+
"normalized": false,
|
2696 |
+
"rstrip": false,
|
2697 |
+
"single_word": false,
|
2698 |
+
"special": true
|
2699 |
+
},
|
2700 |
+
"151980": {
|
2701 |
+
"content": "|<EXTRA_TOKENS_334>|",
|
2702 |
+
"lstrip": false,
|
2703 |
+
"normalized": false,
|
2704 |
+
"rstrip": false,
|
2705 |
+
"single_word": false,
|
2706 |
+
"special": true
|
2707 |
+
},
|
2708 |
+
"151981": {
|
2709 |
+
"content": "|<EXTRA_TOKENS_335>|",
|
2710 |
+
"lstrip": false,
|
2711 |
+
"normalized": false,
|
2712 |
+
"rstrip": false,
|
2713 |
+
"single_word": false,
|
2714 |
+
"special": true
|
2715 |
+
},
|
2716 |
+
"151982": {
|
2717 |
+
"content": "|<EXTRA_TOKENS_336>|",
|
2718 |
+
"lstrip": false,
|
2719 |
+
"normalized": false,
|
2720 |
+
"rstrip": false,
|
2721 |
+
"single_word": false,
|
2722 |
+
"special": true
|
2723 |
+
},
|
2724 |
+
"151983": {
|
2725 |
+
"content": "|<EXTRA_TOKENS_337>|",
|
2726 |
+
"lstrip": false,
|
2727 |
+
"normalized": false,
|
2728 |
+
"rstrip": false,
|
2729 |
+
"single_word": false,
|
2730 |
+
"special": true
|
2731 |
+
},
|
2732 |
+
"151984": {
|
2733 |
+
"content": "|<EXTRA_TOKENS_338>|",
|
2734 |
+
"lstrip": false,
|
2735 |
+
"normalized": false,
|
2736 |
+
"rstrip": false,
|
2737 |
+
"single_word": false,
|
2738 |
+
"special": true
|
2739 |
+
},
|
2740 |
+
"151985": {
|
2741 |
+
"content": "|<EXTRA_TOKENS_339>|",
|
2742 |
+
"lstrip": false,
|
2743 |
+
"normalized": false,
|
2744 |
+
"rstrip": false,
|
2745 |
+
"single_word": false,
|
2746 |
+
"special": true
|
2747 |
+
},
|
2748 |
+
"151986": {
|
2749 |
+
"content": "|<EXTRA_TOKENS_340>|",
|
2750 |
+
"lstrip": false,
|
2751 |
+
"normalized": false,
|
2752 |
+
"rstrip": false,
|
2753 |
+
"single_word": false,
|
2754 |
+
"special": true
|
2755 |
+
},
|
2756 |
+
"151987": {
|
2757 |
+
"content": "|<EXTRA_TOKENS_341>|",
|
2758 |
+
"lstrip": false,
|
2759 |
+
"normalized": false,
|
2760 |
+
"rstrip": false,
|
2761 |
+
"single_word": false,
|
2762 |
+
"special": true
|
2763 |
+
},
|
2764 |
+
"151988": {
|
2765 |
+
"content": "|<EXTRA_TOKENS_342>|",
|
2766 |
+
"lstrip": false,
|
2767 |
+
"normalized": false,
|
2768 |
+
"rstrip": false,
|
2769 |
+
"single_word": false,
|
2770 |
+
"special": true
|
2771 |
+
},
|
2772 |
+
"151989": {
|
2773 |
+
"content": "|<EXTRA_TOKENS_343>|",
|
2774 |
+
"lstrip": false,
|
2775 |
+
"normalized": false,
|
2776 |
+
"rstrip": false,
|
2777 |
+
"single_word": false,
|
2778 |
+
"special": true
|
2779 |
+
},
|
2780 |
+
"151990": {
|
2781 |
+
"content": "|<EXTRA_TOKENS_344>|",
|
2782 |
+
"lstrip": false,
|
2783 |
+
"normalized": false,
|
2784 |
+
"rstrip": false,
|
2785 |
+
"single_word": false,
|
2786 |
+
"special": true
|
2787 |
+
},
|
2788 |
+
"151991": {
|
2789 |
+
"content": "|<EXTRA_TOKENS_345>|",
|
2790 |
+
"lstrip": false,
|
2791 |
+
"normalized": false,
|
2792 |
+
"rstrip": false,
|
2793 |
+
"single_word": false,
|
2794 |
+
"special": true
|
2795 |
+
},
|
2796 |
+
"151992": {
|
2797 |
+
"content": "|<EXTRA_TOKENS_346>|",
|
2798 |
+
"lstrip": false,
|
2799 |
+
"normalized": false,
|
2800 |
+
"rstrip": false,
|
2801 |
+
"single_word": false,
|
2802 |
+
"special": true
|
2803 |
+
},
|
2804 |
+
"151993": {
|
2805 |
+
"content": "|<EXTRA_TOKENS_347>|",
|
2806 |
+
"lstrip": false,
|
2807 |
+
"normalized": false,
|
2808 |
+
"rstrip": false,
|
2809 |
+
"single_word": false,
|
2810 |
+
"special": true
|
2811 |
+
},
|
2812 |
+
"151994": {
|
2813 |
+
"content": "|<EXTRA_TOKENS_348>|",
|
2814 |
+
"lstrip": false,
|
2815 |
+
"normalized": false,
|
2816 |
+
"rstrip": false,
|
2817 |
+
"single_word": false,
|
2818 |
+
"special": true
|
2819 |
+
},
|
2820 |
+
"151995": {
|
2821 |
+
"content": "|<EXTRA_TOKENS_349>|",
|
2822 |
+
"lstrip": false,
|
2823 |
+
"normalized": false,
|
2824 |
+
"rstrip": false,
|
2825 |
+
"single_word": false,
|
2826 |
+
"special": true
|
2827 |
+
},
|
2828 |
+
"151996": {
|
2829 |
+
"content": "|<EXTRA_TOKENS_350>|",
|
2830 |
+
"lstrip": false,
|
2831 |
+
"normalized": false,
|
2832 |
+
"rstrip": false,
|
2833 |
+
"single_word": false,
|
2834 |
+
"special": true
|
2835 |
+
},
|
2836 |
+
"151997": {
|
2837 |
+
"content": "|<EXTRA_TOKENS_351>|",
|
2838 |
+
"lstrip": false,
|
2839 |
+
"normalized": false,
|
2840 |
+
"rstrip": false,
|
2841 |
+
"single_word": false,
|
2842 |
+
"special": true
|
2843 |
+
},
|
2844 |
+
"151998": {
|
2845 |
+
"content": "|<EXTRA_TOKENS_352>|",
|
2846 |
+
"lstrip": false,
|
2847 |
+
"normalized": false,
|
2848 |
+
"rstrip": false,
|
2849 |
+
"single_word": false,
|
2850 |
+
"special": true
|
2851 |
+
},
|
2852 |
+
"151999": {
|
2853 |
+
"content": "|<EXTRA_TOKENS_353>|",
|
2854 |
+
"lstrip": false,
|
2855 |
+
"normalized": false,
|
2856 |
+
"rstrip": false,
|
2857 |
+
"single_word": false,
|
2858 |
+
"special": true
|
2859 |
+
},
|
2860 |
+
"152000": {
|
2861 |
+
"content": "|<EXTRA_TOKENS_354>|",
|
2862 |
+
"lstrip": false,
|
2863 |
+
"normalized": false,
|
2864 |
+
"rstrip": false,
|
2865 |
+
"single_word": false,
|
2866 |
+
"special": true
|
2867 |
+
},
|
2868 |
+
"152001": {
|
2869 |
+
"content": "|<EXTRA_TOKENS_355>|",
|
2870 |
+
"lstrip": false,
|
2871 |
+
"normalized": false,
|
2872 |
+
"rstrip": false,
|
2873 |
+
"single_word": false,
|
2874 |
+
"special": true
|
2875 |
+
},
|
2876 |
+
"152002": {
|
2877 |
+
"content": "|<EXTRA_TOKENS_356>|",
|
2878 |
+
"lstrip": false,
|
2879 |
+
"normalized": false,
|
2880 |
+
"rstrip": false,
|
2881 |
+
"single_word": false,
|
2882 |
+
"special": true
|
2883 |
+
},
|
2884 |
+
"152003": {
|
2885 |
+
"content": "|<EXTRA_TOKENS_357>|",
|
2886 |
+
"lstrip": false,
|
2887 |
+
"normalized": false,
|
2888 |
+
"rstrip": false,
|
2889 |
+
"single_word": false,
|
2890 |
+
"special": true
|
2891 |
+
},
|
2892 |
+
"152004": {
|
2893 |
+
"content": "|<EXTRA_TOKENS_358>|",
|
2894 |
+
"lstrip": false,
|
2895 |
+
"normalized": false,
|
2896 |
+
"rstrip": false,
|
2897 |
+
"single_word": false,
|
2898 |
+
"special": true
|
2899 |
+
},
|
2900 |
+
"152005": {
|
2901 |
+
"content": "|<EXTRA_TOKENS_359>|",
|
2902 |
+
"lstrip": false,
|
2903 |
+
"normalized": false,
|
2904 |
+
"rstrip": false,
|
2905 |
+
"single_word": false,
|
2906 |
+
"special": true
|
2907 |
+
},
|
2908 |
+
"152006": {
|
2909 |
+
"content": "|<EXTRA_TOKENS_360>|",
|
2910 |
+
"lstrip": false,
|
2911 |
+
"normalized": false,
|
2912 |
+
"rstrip": false,
|
2913 |
+
"single_word": false,
|
2914 |
+
"special": true
|
2915 |
+
},
|
2916 |
+
"152007": {
|
2917 |
+
"content": "|<EXTRA_TOKENS_361>|",
|
2918 |
+
"lstrip": false,
|
2919 |
+
"normalized": false,
|
2920 |
+
"rstrip": false,
|
2921 |
+
"single_word": false,
|
2922 |
+
"special": true
|
2923 |
+
},
|
2924 |
+
"152008": {
|
2925 |
+
"content": "|<EXTRA_TOKENS_362>|",
|
2926 |
+
"lstrip": false,
|
2927 |
+
"normalized": false,
|
2928 |
+
"rstrip": false,
|
2929 |
+
"single_word": false,
|
2930 |
+
"special": true
|
2931 |
+
},
|
2932 |
+
"152009": {
|
2933 |
+
"content": "|<EXTRA_TOKENS_363>|",
|
2934 |
+
"lstrip": false,
|
2935 |
+
"normalized": false,
|
2936 |
+
"rstrip": false,
|
2937 |
+
"single_word": false,
|
2938 |
+
"special": true
|
2939 |
+
},
|
2940 |
+
"152010": {
|
2941 |
+
"content": "|<EXTRA_TOKENS_364>|",
|
2942 |
+
"lstrip": false,
|
2943 |
+
"normalized": false,
|
2944 |
+
"rstrip": false,
|
2945 |
+
"single_word": false,
|
2946 |
+
"special": true
|
2947 |
+
},
|
2948 |
+
"152011": {
|
2949 |
+
"content": "|<EXTRA_TOKENS_365>|",
|
2950 |
+
"lstrip": false,
|
2951 |
+
"normalized": false,
|
2952 |
+
"rstrip": false,
|
2953 |
+
"single_word": false,
|
2954 |
+
"special": true
|
2955 |
+
},
|
2956 |
+
"152012": {
|
2957 |
+
"content": "|<EXTRA_TOKENS_366>|",
|
2958 |
+
"lstrip": false,
|
2959 |
+
"normalized": false,
|
2960 |
+
"rstrip": false,
|
2961 |
+
"single_word": false,
|
2962 |
+
"special": true
|
2963 |
+
},
|
2964 |
+
"152013": {
|
2965 |
+
"content": "|<EXTRA_TOKENS_367>|",
|
2966 |
+
"lstrip": false,
|
2967 |
+
"normalized": false,
|
2968 |
+
"rstrip": false,
|
2969 |
+
"single_word": false,
|
2970 |
+
"special": true
|
2971 |
+
},
|
2972 |
+
"152014": {
|
2973 |
+
"content": "|<EXTRA_TOKENS_368>|",
|
2974 |
+
"lstrip": false,
|
2975 |
+
"normalized": false,
|
2976 |
+
"rstrip": false,
|
2977 |
+
"single_word": false,
|
2978 |
+
"special": true
|
2979 |
+
},
|
2980 |
+
"152015": {
|
2981 |
+
"content": "|<EXTRA_TOKENS_369>|",
|
2982 |
+
"lstrip": false,
|
2983 |
+
"normalized": false,
|
2984 |
+
"rstrip": false,
|
2985 |
+
"single_word": false,
|
2986 |
+
"special": true
|
2987 |
+
},
|
2988 |
+
"152016": {
|
2989 |
+
"content": "|<EXTRA_TOKENS_370>|",
|
2990 |
+
"lstrip": false,
|
2991 |
+
"normalized": false,
|
2992 |
+
"rstrip": false,
|
2993 |
+
"single_word": false,
|
2994 |
+
"special": true
|
2995 |
+
},
|
2996 |
+
"152017": {
|
2997 |
+
"content": "|<EXTRA_TOKENS_371>|",
|
2998 |
+
"lstrip": false,
|
2999 |
+
"normalized": false,
|
3000 |
+
"rstrip": false,
|
3001 |
+
"single_word": false,
|
3002 |
+
"special": true
|
3003 |
+
},
|
3004 |
+
"152018": {
|
3005 |
+
"content": "|<EXTRA_TOKENS_372>|",
|
3006 |
+
"lstrip": false,
|
3007 |
+
"normalized": false,
|
3008 |
+
"rstrip": false,
|
3009 |
+
"single_word": false,
|
3010 |
+
"special": true
|
3011 |
+
},
|
3012 |
+
"152019": {
|
3013 |
+
"content": "|<EXTRA_TOKENS_373>|",
|
3014 |
+
"lstrip": false,
|
3015 |
+
"normalized": false,
|
3016 |
+
"rstrip": false,
|
3017 |
+
"single_word": false,
|
3018 |
+
"special": true
|
3019 |
+
},
|
3020 |
+
"152020": {
|
3021 |
+
"content": "|<EXTRA_TOKENS_374>|",
|
3022 |
+
"lstrip": false,
|
3023 |
+
"normalized": false,
|
3024 |
+
"rstrip": false,
|
3025 |
+
"single_word": false,
|
3026 |
+
"special": true
|
3027 |
+
},
|
3028 |
+
"152021": {
|
3029 |
+
"content": "|<EXTRA_TOKENS_375>|",
|
3030 |
+
"lstrip": false,
|
3031 |
+
"normalized": false,
|
3032 |
+
"rstrip": false,
|
3033 |
+
"single_word": false,
|
3034 |
+
"special": true
|
3035 |
+
},
|
3036 |
+
"152022": {
|
3037 |
+
"content": "|<EXTRA_TOKENS_376>|",
|
3038 |
+
"lstrip": false,
|
3039 |
+
"normalized": false,
|
3040 |
+
"rstrip": false,
|
3041 |
+
"single_word": false,
|
3042 |
+
"special": true
|
3043 |
+
},
|
3044 |
+
"152023": {
|
3045 |
+
"content": "|<EXTRA_TOKENS_377>|",
|
3046 |
+
"lstrip": false,
|
3047 |
+
"normalized": false,
|
3048 |
+
"rstrip": false,
|
3049 |
+
"single_word": false,
|
3050 |
+
"special": true
|
3051 |
+
},
|
3052 |
+
"152024": {
|
3053 |
+
"content": "|<EXTRA_TOKENS_378>|",
|
3054 |
+
"lstrip": false,
|
3055 |
+
"normalized": false,
|
3056 |
+
"rstrip": false,
|
3057 |
+
"single_word": false,
|
3058 |
+
"special": true
|
3059 |
+
},
|
3060 |
+
"152025": {
|
3061 |
+
"content": "|<EXTRA_TOKENS_379>|",
|
3062 |
+
"lstrip": false,
|
3063 |
+
"normalized": false,
|
3064 |
+
"rstrip": false,
|
3065 |
+
"single_word": false,
|
3066 |
+
"special": true
|
3067 |
+
},
|
3068 |
+
"152026": {
|
3069 |
+
"content": "|<EXTRA_TOKENS_380>|",
|
3070 |
+
"lstrip": false,
|
3071 |
+
"normalized": false,
|
3072 |
+
"rstrip": false,
|
3073 |
+
"single_word": false,
|
3074 |
+
"special": true
|
3075 |
+
},
|
3076 |
+
"152027": {
|
3077 |
+
"content": "|<EXTRA_TOKENS_381>|",
|
3078 |
+
"lstrip": false,
|
3079 |
+
"normalized": false,
|
3080 |
+
"rstrip": false,
|
3081 |
+
"single_word": false,
|
3082 |
+
"special": true
|
3083 |
+
},
|
3084 |
+
"152028": {
|
3085 |
+
"content": "|<EXTRA_TOKENS_382>|",
|
3086 |
+
"lstrip": false,
|
3087 |
+
"normalized": false,
|
3088 |
+
"rstrip": false,
|
3089 |
+
"single_word": false,
|
3090 |
+
"special": true
|
3091 |
+
},
|
3092 |
+
"152029": {
|
3093 |
+
"content": "|<EXTRA_TOKENS_383>|",
|
3094 |
+
"lstrip": false,
|
3095 |
+
"normalized": false,
|
3096 |
+
"rstrip": false,
|
3097 |
+
"single_word": false,
|
3098 |
+
"special": true
|
3099 |
+
},
|
3100 |
+
"152030": {
|
3101 |
+
"content": "|<EXTRA_TOKENS_384>|",
|
3102 |
+
"lstrip": false,
|
3103 |
+
"normalized": false,
|
3104 |
+
"rstrip": false,
|
3105 |
+
"single_word": false,
|
3106 |
+
"special": true
|
3107 |
+
},
|
3108 |
+
"152031": {
|
3109 |
+
"content": "|<EXTRA_TOKENS_385>|",
|
3110 |
+
"lstrip": false,
|
3111 |
+
"normalized": false,
|
3112 |
+
"rstrip": false,
|
3113 |
+
"single_word": false,
|
3114 |
+
"special": true
|
3115 |
+
},
|
3116 |
+
"152032": {
|
3117 |
+
"content": "|<EXTRA_TOKENS_386>|",
|
3118 |
+
"lstrip": false,
|
3119 |
+
"normalized": false,
|
3120 |
+
"rstrip": false,
|
3121 |
+
"single_word": false,
|
3122 |
+
"special": true
|
3123 |
+
},
|
3124 |
+
"152033": {
|
3125 |
+
"content": "|<EXTRA_TOKENS_387>|",
|
3126 |
+
"lstrip": false,
|
3127 |
+
"normalized": false,
|
3128 |
+
"rstrip": false,
|
3129 |
+
"single_word": false,
|
3130 |
+
"special": true
|
3131 |
+
},
|
3132 |
+
"152034": {
|
3133 |
+
"content": "|<EXTRA_TOKENS_388>|",
|
3134 |
+
"lstrip": false,
|
3135 |
+
"normalized": false,
|
3136 |
+
"rstrip": false,
|
3137 |
+
"single_word": false,
|
3138 |
+
"special": true
|
3139 |
+
},
|
3140 |
+
"152035": {
|
3141 |
+
"content": "|<EXTRA_TOKENS_389>|",
|
3142 |
+
"lstrip": false,
|
3143 |
+
"normalized": false,
|
3144 |
+
"rstrip": false,
|
3145 |
+
"single_word": false,
|
3146 |
+
"special": true
|
3147 |
+
},
|
3148 |
+
"152036": {
|
3149 |
+
"content": "|<EXTRA_TOKENS_390>|",
|
3150 |
+
"lstrip": false,
|
3151 |
+
"normalized": false,
|
3152 |
+
"rstrip": false,
|
3153 |
+
"single_word": false,
|
3154 |
+
"special": true
|
3155 |
+
},
|
3156 |
+
"152037": {
|
3157 |
+
"content": "|<EXTRA_TOKENS_391>|",
|
3158 |
+
"lstrip": false,
|
3159 |
+
"normalized": false,
|
3160 |
+
"rstrip": false,
|
3161 |
+
"single_word": false,
|
3162 |
+
"special": true
|
3163 |
+
},
|
3164 |
+
"152038": {
|
3165 |
+
"content": "|<EXTRA_TOKENS_392>|",
|
3166 |
+
"lstrip": false,
|
3167 |
+
"normalized": false,
|
3168 |
+
"rstrip": false,
|
3169 |
+
"single_word": false,
|
3170 |
+
"special": true
|
3171 |
+
},
|
3172 |
+
"152039": {
|
3173 |
+
"content": "|<EXTRA_TOKENS_393>|",
|
3174 |
+
"lstrip": false,
|
3175 |
+
"normalized": false,
|
3176 |
+
"rstrip": false,
|
3177 |
+
"single_word": false,
|
3178 |
+
"special": true
|
3179 |
+
},
|
3180 |
+
"152040": {
|
3181 |
+
"content": "|<EXTRA_TOKENS_394>|",
|
3182 |
+
"lstrip": false,
|
3183 |
+
"normalized": false,
|
3184 |
+
"rstrip": false,
|
3185 |
+
"single_word": false,
|
3186 |
+
"special": true
|
3187 |
+
},
|
3188 |
+
"152041": {
|
3189 |
+
"content": "|<EXTRA_TOKENS_395>|",
|
3190 |
+
"lstrip": false,
|
3191 |
+
"normalized": false,
|
3192 |
+
"rstrip": false,
|
3193 |
+
"single_word": false,
|
3194 |
+
"special": true
|
3195 |
+
},
|
3196 |
+
"152042": {
|
3197 |
+
"content": "|<EXTRA_TOKENS_396>|",
|
3198 |
+
"lstrip": false,
|
3199 |
+
"normalized": false,
|
3200 |
+
"rstrip": false,
|
3201 |
+
"single_word": false,
|
3202 |
+
"special": true
|
3203 |
+
},
|
3204 |
+
"152043": {
|
3205 |
+
"content": "|<EXTRA_TOKENS_397>|",
|
3206 |
+
"lstrip": false,
|
3207 |
+
"normalized": false,
|
3208 |
+
"rstrip": false,
|
3209 |
+
"single_word": false,
|
3210 |
+
"special": true
|
3211 |
+
},
|
3212 |
+
"152044": {
|
3213 |
+
"content": "|<EXTRA_TOKENS_398>|",
|
3214 |
+
"lstrip": false,
|
3215 |
+
"normalized": false,
|
3216 |
+
"rstrip": false,
|
3217 |
+
"single_word": false,
|
3218 |
+
"special": true
|
3219 |
+
},
|
3220 |
+
"152045": {
|
3221 |
+
"content": "|<EXTRA_TOKENS_399>|",
|
3222 |
+
"lstrip": false,
|
3223 |
+
"normalized": false,
|
3224 |
+
"rstrip": false,
|
3225 |
+
"single_word": false,
|
3226 |
+
"special": true
|
3227 |
+
},
|
3228 |
+
"152046": {
|
3229 |
+
"content": "|<EXTRA_TOKENS_400>|",
|
3230 |
+
"lstrip": false,
|
3231 |
+
"normalized": false,
|
3232 |
+
"rstrip": false,
|
3233 |
+
"single_word": false,
|
3234 |
+
"special": true
|
3235 |
+
},
|
3236 |
+
"152047": {
|
3237 |
+
"content": "|<EXTRA_TOKENS_401>|",
|
3238 |
+
"lstrip": false,
|
3239 |
+
"normalized": false,
|
3240 |
+
"rstrip": false,
|
3241 |
+
"single_word": false,
|
3242 |
+
"special": true
|
3243 |
+
},
|
3244 |
+
"152048": {
|
3245 |
+
"content": "|<EXTRA_TOKENS_402>|",
|
3246 |
+
"lstrip": false,
|
3247 |
+
"normalized": false,
|
3248 |
+
"rstrip": false,
|
3249 |
+
"single_word": false,
|
3250 |
+
"special": true
|
3251 |
+
},
|
3252 |
+
"152049": {
|
3253 |
+
"content": "|<EXTRA_TOKENS_403>|",
|
3254 |
+
"lstrip": false,
|
3255 |
+
"normalized": false,
|
3256 |
+
"rstrip": false,
|
3257 |
+
"single_word": false,
|
3258 |
+
"special": true
|
3259 |
+
},
|
3260 |
+
"152050": {
|
3261 |
+
"content": "|<EXTRA_TOKENS_404>|",
|
3262 |
+
"lstrip": false,
|
3263 |
+
"normalized": false,
|
3264 |
+
"rstrip": false,
|
3265 |
+
"single_word": false,
|
3266 |
+
"special": true
|
3267 |
+
},
|
3268 |
+
"152051": {
|
3269 |
+
"content": "|<EXTRA_TOKENS_405>|",
|
3270 |
+
"lstrip": false,
|
3271 |
+
"normalized": false,
|
3272 |
+
"rstrip": false,
|
3273 |
+
"single_word": false,
|
3274 |
+
"special": true
|
3275 |
+
},
|
3276 |
+
"152052": {
|
3277 |
+
"content": "|<EXTRA_TOKENS_406>|",
|
3278 |
+
"lstrip": false,
|
3279 |
+
"normalized": false,
|
3280 |
+
"rstrip": false,
|
3281 |
+
"single_word": false,
|
3282 |
+
"special": true
|
3283 |
+
},
|
3284 |
+
"152053": {
|
3285 |
+
"content": "|<EXTRA_TOKENS_407>|",
|
3286 |
+
"lstrip": false,
|
3287 |
+
"normalized": false,
|
3288 |
+
"rstrip": false,
|
3289 |
+
"single_word": false,
|
3290 |
+
"special": true
|
3291 |
+
},
|
3292 |
+
"152054": {
|
3293 |
+
"content": "|<EXTRA_TOKENS_408>|",
|
3294 |
+
"lstrip": false,
|
3295 |
+
"normalized": false,
|
3296 |
+
"rstrip": false,
|
3297 |
+
"single_word": false,
|
3298 |
+
"special": true
|
3299 |
+
},
|
3300 |
+
"152055": {
|
3301 |
+
"content": "|<EXTRA_TOKENS_409>|",
|
3302 |
+
"lstrip": false,
|
3303 |
+
"normalized": false,
|
3304 |
+
"rstrip": false,
|
3305 |
+
"single_word": false,
|
3306 |
+
"special": true
|
3307 |
+
},
|
3308 |
+
"152056": {
|
3309 |
+
"content": "|<EXTRA_TOKENS_410>|",
|
3310 |
+
"lstrip": false,
|
3311 |
+
"normalized": false,
|
3312 |
+
"rstrip": false,
|
3313 |
+
"single_word": false,
|
3314 |
+
"special": true
|
3315 |
+
},
|
3316 |
+
"152057": {
|
3317 |
+
"content": "|<EXTRA_TOKENS_411>|",
|
3318 |
+
"lstrip": false,
|
3319 |
+
"normalized": false,
|
3320 |
+
"rstrip": false,
|
3321 |
+
"single_word": false,
|
3322 |
+
"special": true
|
3323 |
+
},
|
3324 |
+
"152058": {
|
3325 |
+
"content": "|<EXTRA_TOKENS_412>|",
|
3326 |
+
"lstrip": false,
|
3327 |
+
"normalized": false,
|
3328 |
+
"rstrip": false,
|
3329 |
+
"single_word": false,
|
3330 |
+
"special": true
|
3331 |
+
},
|
3332 |
+
"152059": {
|
3333 |
+
"content": "|<EXTRA_TOKENS_413>|",
|
3334 |
+
"lstrip": false,
|
3335 |
+
"normalized": false,
|
3336 |
+
"rstrip": false,
|
3337 |
+
"single_word": false,
|
3338 |
+
"special": true
|
3339 |
+
},
|
3340 |
+
"152060": {
|
3341 |
+
"content": "|<EXTRA_TOKENS_414>|",
|
3342 |
+
"lstrip": false,
|
3343 |
+
"normalized": false,
|
3344 |
+
"rstrip": false,
|
3345 |
+
"single_word": false,
|
3346 |
+
"special": true
|
3347 |
+
},
|
3348 |
+
"152061": {
|
3349 |
+
"content": "|<EXTRA_TOKENS_415>|",
|
3350 |
+
"lstrip": false,
|
3351 |
+
"normalized": false,
|
3352 |
+
"rstrip": false,
|
3353 |
+
"single_word": false,
|
3354 |
+
"special": true
|
3355 |
+
},
|
3356 |
+
"152062": {
|
3357 |
+
"content": "|<EXTRA_TOKENS_416>|",
|
3358 |
+
"lstrip": false,
|
3359 |
+
"normalized": false,
|
3360 |
+
"rstrip": false,
|
3361 |
+
"single_word": false,
|
3362 |
+
"special": true
|
3363 |
+
},
|
3364 |
+
"152063": {
|
3365 |
+
"content": "|<EXTRA_TOKENS_417>|",
|
3366 |
+
"lstrip": false,
|
3367 |
+
"normalized": false,
|
3368 |
+
"rstrip": false,
|
3369 |
+
"single_word": false,
|
3370 |
+
"special": true
|
3371 |
+
},
|
3372 |
+
"152064": {
|
3373 |
+
"content": "<im_start>",
|
3374 |
+
"lstrip": false,
|
3375 |
+
"normalized": false,
|
3376 |
+
"rstrip": false,
|
3377 |
+
"single_word": false,
|
3378 |
+
"special": true
|
3379 |
+
},
|
3380 |
+
"152065": {
|
3381 |
+
"content": "<im_end>",
|
3382 |
+
"lstrip": false,
|
3383 |
+
"normalized": false,
|
3384 |
+
"rstrip": false,
|
3385 |
+
"single_word": false,
|
3386 |
+
"special": true
|
3387 |
+
},
|
3388 |
+
"152066": {
|
3389 |
+
"content": "<im_patch>",
|
3390 |
+
"lstrip": false,
|
3391 |
+
"normalized": false,
|
3392 |
+
"rstrip": false,
|
3393 |
+
"single_word": false,
|
3394 |
+
"special": true
|
3395 |
+
},
|
3396 |
+
"152067": {
|
3397 |
+
"content": "<im_col>",
|
3398 |
+
"lstrip": false,
|
3399 |
+
"normalized": false,
|
3400 |
+
"rstrip": false,
|
3401 |
+
"single_word": false,
|
3402 |
+
"special": true
|
3403 |
+
},
|
3404 |
+
"152068": {
|
3405 |
+
"content": "<|image|>",
|
3406 |
+
"lstrip": false,
|
3407 |
+
"normalized": false,
|
3408 |
+
"rstrip": false,
|
3409 |
+
"single_word": false,
|
3410 |
+
"special": true
|
3411 |
+
}
|
3412 |
+
},
|
3413 |
+
"additional_special_tokens": [
|
3414 |
+
"|<EXTRA_TOKENS_0>|",
|
3415 |
+
"|<EXTRA_TOKENS_1>|",
|
3416 |
+
"|<EXTRA_TOKENS_2>|",
|
3417 |
+
"|<EXTRA_TOKENS_3>|",
|
3418 |
+
"|<EXTRA_TOKENS_4>|",
|
3419 |
+
"|<EXTRA_TOKENS_5>|",
|
3420 |
+
"|<EXTRA_TOKENS_6>|",
|
3421 |
+
"|<EXTRA_TOKENS_7>|",
|
3422 |
+
"|<EXTRA_TOKENS_8>|",
|
3423 |
+
"|<EXTRA_TOKENS_9>|",
|
3424 |
+
"|<EXTRA_TOKENS_10>|",
|
3425 |
+
"|<EXTRA_TOKENS_11>|",
|
3426 |
+
"|<EXTRA_TOKENS_12>|",
|
3427 |
+
"|<EXTRA_TOKENS_13>|",
|
3428 |
+
"|<EXTRA_TOKENS_14>|",
|
3429 |
+
"|<EXTRA_TOKENS_15>|",
|
3430 |
+
"|<EXTRA_TOKENS_16>|",
|
3431 |
+
"|<EXTRA_TOKENS_17>|",
|
3432 |
+
"|<EXTRA_TOKENS_18>|",
|
3433 |
+
"|<EXTRA_TOKENS_19>|",
|
3434 |
+
"|<EXTRA_TOKENS_20>|",
|
3435 |
+
"|<EXTRA_TOKENS_21>|",
|
3436 |
+
"|<EXTRA_TOKENS_22>|",
|
3437 |
+
"|<EXTRA_TOKENS_23>|",
|
3438 |
+
"|<EXTRA_TOKENS_24>|",
|
3439 |
+
"|<EXTRA_TOKENS_25>|",
|
3440 |
+
"|<EXTRA_TOKENS_26>|",
|
3441 |
+
"|<EXTRA_TOKENS_27>|",
|
3442 |
+
"|<EXTRA_TOKENS_28>|",
|
3443 |
+
"|<EXTRA_TOKENS_29>|",
|
3444 |
+
"|<EXTRA_TOKENS_30>|",
|
3445 |
+
"|<EXTRA_TOKENS_31>|",
|
3446 |
+
"|<EXTRA_TOKENS_32>|",
|
3447 |
+
"|<EXTRA_TOKENS_33>|",
|
3448 |
+
"|<EXTRA_TOKENS_34>|",
|
3449 |
+
"|<EXTRA_TOKENS_35>|",
|
3450 |
+
"|<EXTRA_TOKENS_36>|",
|
3451 |
+
"|<EXTRA_TOKENS_37>|",
|
3452 |
+
"|<EXTRA_TOKENS_38>|",
|
3453 |
+
"|<EXTRA_TOKENS_39>|",
|
3454 |
+
"|<EXTRA_TOKENS_40>|",
|
3455 |
+
"|<EXTRA_TOKENS_41>|",
|
3456 |
+
"|<EXTRA_TOKENS_42>|",
|
3457 |
+
"|<EXTRA_TOKENS_43>|",
|
3458 |
+
"|<EXTRA_TOKENS_44>|",
|
3459 |
+
"|<EXTRA_TOKENS_45>|",
|
3460 |
+
"|<EXTRA_TOKENS_46>|",
|
3461 |
+
"|<EXTRA_TOKENS_47>|",
|
3462 |
+
"|<EXTRA_TOKENS_48>|",
|
3463 |
+
"|<EXTRA_TOKENS_49>|",
|
3464 |
+
"|<EXTRA_TOKENS_50>|",
|
3465 |
+
"|<EXTRA_TOKENS_51>|",
|
3466 |
+
"|<EXTRA_TOKENS_52>|",
|
3467 |
+
"|<EXTRA_TOKENS_53>|",
|
3468 |
+
"|<EXTRA_TOKENS_54>|",
|
3469 |
+
"|<EXTRA_TOKENS_55>|",
|
3470 |
+
"|<EXTRA_TOKENS_56>|",
|
3471 |
+
"|<EXTRA_TOKENS_57>|",
|
3472 |
+
"|<EXTRA_TOKENS_58>|",
|
3473 |
+
"|<EXTRA_TOKENS_59>|",
|
3474 |
+
"|<EXTRA_TOKENS_60>|",
|
3475 |
+
"|<EXTRA_TOKENS_61>|",
|
3476 |
+
"|<EXTRA_TOKENS_62>|",
|
3477 |
+
"|<EXTRA_TOKENS_63>|",
|
3478 |
+
"|<EXTRA_TOKENS_64>|",
|
3479 |
+
"|<EXTRA_TOKENS_65>|",
|
3480 |
+
"|<EXTRA_TOKENS_66>|",
|
3481 |
+
"|<EXTRA_TOKENS_67>|",
|
3482 |
+
"|<EXTRA_TOKENS_68>|",
|
3483 |
+
"|<EXTRA_TOKENS_69>|",
|
3484 |
+
"|<EXTRA_TOKENS_70>|",
|
3485 |
+
"|<EXTRA_TOKENS_71>|",
|
3486 |
+
"|<EXTRA_TOKENS_72>|",
|
3487 |
+
"|<EXTRA_TOKENS_73>|",
|
3488 |
+
"|<EXTRA_TOKENS_74>|",
|
3489 |
+
"|<EXTRA_TOKENS_75>|",
|
3490 |
+
"|<EXTRA_TOKENS_76>|",
|
3491 |
+
"|<EXTRA_TOKENS_77>|",
|
3492 |
+
"|<EXTRA_TOKENS_78>|",
|
3493 |
+
"|<EXTRA_TOKENS_79>|",
|
3494 |
+
"|<EXTRA_TOKENS_80>|",
|
3495 |
+
"|<EXTRA_TOKENS_81>|",
|
3496 |
+
"|<EXTRA_TOKENS_82>|",
|
3497 |
+
"|<EXTRA_TOKENS_83>|",
|
3498 |
+
"|<EXTRA_TOKENS_84>|",
|
3499 |
+
"|<EXTRA_TOKENS_85>|",
|
3500 |
+
"|<EXTRA_TOKENS_86>|",
|
3501 |
+
"|<EXTRA_TOKENS_87>|",
|
3502 |
+
"|<EXTRA_TOKENS_88>|",
|
3503 |
+
"|<EXTRA_TOKENS_89>|",
|
3504 |
+
"|<EXTRA_TOKENS_90>|",
|
3505 |
+
"|<EXTRA_TOKENS_91>|",
|
3506 |
+
"|<EXTRA_TOKENS_92>|",
|
3507 |
+
"|<EXTRA_TOKENS_93>|",
|
3508 |
+
"|<EXTRA_TOKENS_94>|",
|
3509 |
+
"|<EXTRA_TOKENS_95>|",
|
3510 |
+
"|<EXTRA_TOKENS_96>|",
|
3511 |
+
"|<EXTRA_TOKENS_97>|",
|
3512 |
+
"|<EXTRA_TOKENS_98>|",
|
3513 |
+
"|<EXTRA_TOKENS_99>|",
|
3514 |
+
"|<EXTRA_TOKENS_100>|",
|
3515 |
+
"|<EXTRA_TOKENS_101>|",
|
3516 |
+
"|<EXTRA_TOKENS_102>|",
|
3517 |
+
"|<EXTRA_TOKENS_103>|",
|
3518 |
+
"|<EXTRA_TOKENS_104>|",
|
3519 |
+
"|<EXTRA_TOKENS_105>|",
|
3520 |
+
"|<EXTRA_TOKENS_106>|",
|
3521 |
+
"|<EXTRA_TOKENS_107>|",
|
3522 |
+
"|<EXTRA_TOKENS_108>|",
|
3523 |
+
"|<EXTRA_TOKENS_109>|",
|
3524 |
+
"|<EXTRA_TOKENS_110>|",
|
3525 |
+
"|<EXTRA_TOKENS_111>|",
|
3526 |
+
"|<EXTRA_TOKENS_112>|",
|
3527 |
+
"|<EXTRA_TOKENS_113>|",
|
3528 |
+
"|<EXTRA_TOKENS_114>|",
|
3529 |
+
"|<EXTRA_TOKENS_115>|",
|
3530 |
+
"|<EXTRA_TOKENS_116>|",
|
3531 |
+
"|<EXTRA_TOKENS_117>|",
|
3532 |
+
"|<EXTRA_TOKENS_118>|",
|
3533 |
+
"|<EXTRA_TOKENS_119>|",
|
3534 |
+
"|<EXTRA_TOKENS_120>|",
|
3535 |
+
"|<EXTRA_TOKENS_121>|",
|
3536 |
+
"|<EXTRA_TOKENS_122>|",
|
3537 |
+
"|<EXTRA_TOKENS_123>|",
|
3538 |
+
"|<EXTRA_TOKENS_124>|",
|
3539 |
+
"|<EXTRA_TOKENS_125>|",
|
3540 |
+
"|<EXTRA_TOKENS_126>|",
|
3541 |
+
"|<EXTRA_TOKENS_127>|",
|
3542 |
+
"|<EXTRA_TOKENS_128>|",
|
3543 |
+
"|<EXTRA_TOKENS_129>|",
|
3544 |
+
"|<EXTRA_TOKENS_130>|",
|
3545 |
+
"|<EXTRA_TOKENS_131>|",
|
3546 |
+
"|<EXTRA_TOKENS_132>|",
|
3547 |
+
"|<EXTRA_TOKENS_133>|",
|
3548 |
+
"|<EXTRA_TOKENS_134>|",
|
3549 |
+
"|<EXTRA_TOKENS_135>|",
|
3550 |
+
"|<EXTRA_TOKENS_136>|",
|
3551 |
+
"|<EXTRA_TOKENS_137>|",
|
3552 |
+
"|<EXTRA_TOKENS_138>|",
|
3553 |
+
"|<EXTRA_TOKENS_139>|",
|
3554 |
+
"|<EXTRA_TOKENS_140>|",
|
3555 |
+
"|<EXTRA_TOKENS_141>|",
|
3556 |
+
"|<EXTRA_TOKENS_142>|",
|
3557 |
+
"|<EXTRA_TOKENS_143>|",
|
3558 |
+
"|<EXTRA_TOKENS_144>|",
|
3559 |
+
"|<EXTRA_TOKENS_145>|",
|
3560 |
+
"|<EXTRA_TOKENS_146>|",
|
3561 |
+
"|<EXTRA_TOKENS_147>|",
|
3562 |
+
"|<EXTRA_TOKENS_148>|",
|
3563 |
+
"|<EXTRA_TOKENS_149>|",
|
3564 |
+
"|<EXTRA_TOKENS_150>|",
|
3565 |
+
"|<EXTRA_TOKENS_151>|",
|
3566 |
+
"|<EXTRA_TOKENS_152>|",
|
3567 |
+
"|<EXTRA_TOKENS_153>|",
|
3568 |
+
"|<EXTRA_TOKENS_154>|",
|
3569 |
+
"|<EXTRA_TOKENS_155>|",
|
3570 |
+
"|<EXTRA_TOKENS_156>|",
|
3571 |
+
"|<EXTRA_TOKENS_157>|",
|
3572 |
+
"|<EXTRA_TOKENS_158>|",
|
3573 |
+
"|<EXTRA_TOKENS_159>|",
|
3574 |
+
"|<EXTRA_TOKENS_160>|",
|
3575 |
+
"|<EXTRA_TOKENS_161>|",
|
3576 |
+
"|<EXTRA_TOKENS_162>|",
|
3577 |
+
"|<EXTRA_TOKENS_163>|",
|
3578 |
+
"|<EXTRA_TOKENS_164>|",
|
3579 |
+
"|<EXTRA_TOKENS_165>|",
|
3580 |
+
"|<EXTRA_TOKENS_166>|",
|
3581 |
+
"|<EXTRA_TOKENS_167>|",
|
3582 |
+
"|<EXTRA_TOKENS_168>|",
|
3583 |
+
"|<EXTRA_TOKENS_169>|",
|
3584 |
+
"|<EXTRA_TOKENS_170>|",
|
3585 |
+
"|<EXTRA_TOKENS_171>|",
|
3586 |
+
"|<EXTRA_TOKENS_172>|",
|
3587 |
+
"|<EXTRA_TOKENS_173>|",
|
3588 |
+
"|<EXTRA_TOKENS_174>|",
|
3589 |
+
"|<EXTRA_TOKENS_175>|",
|
3590 |
+
"|<EXTRA_TOKENS_176>|",
|
3591 |
+
"|<EXTRA_TOKENS_177>|",
|
3592 |
+
"|<EXTRA_TOKENS_178>|",
|
3593 |
+
"|<EXTRA_TOKENS_179>|",
|
3594 |
+
"|<EXTRA_TOKENS_180>|",
|
3595 |
+
"|<EXTRA_TOKENS_181>|",
|
3596 |
+
"|<EXTRA_TOKENS_182>|",
|
3597 |
+
"|<EXTRA_TOKENS_183>|",
|
3598 |
+
"|<EXTRA_TOKENS_184>|",
|
3599 |
+
"|<EXTRA_TOKENS_185>|",
|
3600 |
+
"|<EXTRA_TOKENS_186>|",
|
3601 |
+
"|<EXTRA_TOKENS_187>|",
|
3602 |
+
"|<EXTRA_TOKENS_188>|",
|
3603 |
+
"|<EXTRA_TOKENS_189>|",
|
3604 |
+
"|<EXTRA_TOKENS_190>|",
|
3605 |
+
"|<EXTRA_TOKENS_191>|",
|
3606 |
+
"|<EXTRA_TOKENS_192>|",
|
3607 |
+
"|<EXTRA_TOKENS_193>|",
|
3608 |
+
"|<EXTRA_TOKENS_194>|",
|
3609 |
+
"|<EXTRA_TOKENS_195>|",
|
3610 |
+
"|<EXTRA_TOKENS_196>|",
|
3611 |
+
"|<EXTRA_TOKENS_197>|",
|
3612 |
+
"|<EXTRA_TOKENS_198>|",
|
3613 |
+
"|<EXTRA_TOKENS_199>|",
|
3614 |
+
"|<EXTRA_TOKENS_200>|",
|
3615 |
+
"|<EXTRA_TOKENS_201>|",
|
3616 |
+
"|<EXTRA_TOKENS_202>|",
|
3617 |
+
"|<EXTRA_TOKENS_203>|",
|
3618 |
+
"|<EXTRA_TOKENS_204>|",
|
3619 |
+
"|<EXTRA_TOKENS_205>|",
|
3620 |
+
"|<EXTRA_TOKENS_206>|",
|
3621 |
+
"|<EXTRA_TOKENS_207>|",
|
3622 |
+
"|<EXTRA_TOKENS_208>|",
|
3623 |
+
"|<EXTRA_TOKENS_209>|",
|
3624 |
+
"|<EXTRA_TOKENS_210>|",
|
3625 |
+
"|<EXTRA_TOKENS_211>|",
|
3626 |
+
"|<EXTRA_TOKENS_212>|",
|
3627 |
+
"|<EXTRA_TOKENS_213>|",
|
3628 |
+
"|<EXTRA_TOKENS_214>|",
|
3629 |
+
"|<EXTRA_TOKENS_215>|",
|
3630 |
+
"|<EXTRA_TOKENS_216>|",
|
3631 |
+
"|<EXTRA_TOKENS_217>|",
|
3632 |
+
"|<EXTRA_TOKENS_218>|",
|
3633 |
+
"|<EXTRA_TOKENS_219>|",
|
3634 |
+
"|<EXTRA_TOKENS_220>|",
|
3635 |
+
"|<EXTRA_TOKENS_221>|",
|
3636 |
+
"|<EXTRA_TOKENS_222>|",
|
3637 |
+
"|<EXTRA_TOKENS_223>|",
|
3638 |
+
"|<EXTRA_TOKENS_224>|",
|
3639 |
+
"|<EXTRA_TOKENS_225>|",
|
3640 |
+
"|<EXTRA_TOKENS_226>|",
|
3641 |
+
"|<EXTRA_TOKENS_227>|",
|
3642 |
+
"|<EXTRA_TOKENS_228>|",
|
3643 |
+
"|<EXTRA_TOKENS_229>|",
|
3644 |
+
"|<EXTRA_TOKENS_230>|",
|
3645 |
+
"|<EXTRA_TOKENS_231>|",
|
3646 |
+
"|<EXTRA_TOKENS_232>|",
|
3647 |
+
"|<EXTRA_TOKENS_233>|",
|
3648 |
+
"|<EXTRA_TOKENS_234>|",
|
3649 |
+
"|<EXTRA_TOKENS_235>|",
|
3650 |
+
"|<EXTRA_TOKENS_236>|",
|
3651 |
+
"|<EXTRA_TOKENS_237>|",
|
3652 |
+
"|<EXTRA_TOKENS_238>|",
|
3653 |
+
"|<EXTRA_TOKENS_239>|",
|
3654 |
+
"|<EXTRA_TOKENS_240>|",
|
3655 |
+
"|<EXTRA_TOKENS_241>|",
|
3656 |
+
"|<EXTRA_TOKENS_242>|",
|
3657 |
+
"|<EXTRA_TOKENS_243>|",
|
3658 |
+
"|<EXTRA_TOKENS_244>|",
|
3659 |
+
"|<EXTRA_TOKENS_245>|",
|
3660 |
+
"|<EXTRA_TOKENS_246>|",
|
3661 |
+
"|<EXTRA_TOKENS_247>|",
|
3662 |
+
"|<EXTRA_TOKENS_248>|",
|
3663 |
+
"|<EXTRA_TOKENS_249>|",
|
3664 |
+
"|<EXTRA_TOKENS_250>|",
|
3665 |
+
"|<EXTRA_TOKENS_251>|",
|
3666 |
+
"|<EXTRA_TOKENS_252>|",
|
3667 |
+
"|<EXTRA_TOKENS_253>|",
|
3668 |
+
"|<EXTRA_TOKENS_254>|",
|
3669 |
+
"|<EXTRA_TOKENS_255>|",
|
3670 |
+
"|<EXTRA_TOKENS_256>|",
|
3671 |
+
"|<EXTRA_TOKENS_257>|",
|
3672 |
+
"|<EXTRA_TOKENS_258>|",
|
3673 |
+
"|<EXTRA_TOKENS_259>|",
|
3674 |
+
"|<EXTRA_TOKENS_260>|",
|
3675 |
+
"|<EXTRA_TOKENS_261>|",
|
3676 |
+
"|<EXTRA_TOKENS_262>|",
|
3677 |
+
"|<EXTRA_TOKENS_263>|",
|
3678 |
+
"|<EXTRA_TOKENS_264>|",
|
3679 |
+
"|<EXTRA_TOKENS_265>|",
|
3680 |
+
"|<EXTRA_TOKENS_266>|",
|
3681 |
+
"|<EXTRA_TOKENS_267>|",
|
3682 |
+
"|<EXTRA_TOKENS_268>|",
|
3683 |
+
"|<EXTRA_TOKENS_269>|",
|
3684 |
+
"|<EXTRA_TOKENS_270>|",
|
3685 |
+
"|<EXTRA_TOKENS_271>|",
|
3686 |
+
"|<EXTRA_TOKENS_272>|",
|
3687 |
+
"|<EXTRA_TOKENS_273>|",
|
3688 |
+
"|<EXTRA_TOKENS_274>|",
|
3689 |
+
"|<EXTRA_TOKENS_275>|",
|
3690 |
+
"|<EXTRA_TOKENS_276>|",
|
3691 |
+
"|<EXTRA_TOKENS_277>|",
|
3692 |
+
"|<EXTRA_TOKENS_278>|",
|
3693 |
+
"|<EXTRA_TOKENS_279>|",
|
3694 |
+
"|<EXTRA_TOKENS_280>|",
|
3695 |
+
"|<EXTRA_TOKENS_281>|",
|
3696 |
+
"|<EXTRA_TOKENS_282>|",
|
3697 |
+
"|<EXTRA_TOKENS_283>|",
|
3698 |
+
"|<EXTRA_TOKENS_284>|",
|
3699 |
+
"|<EXTRA_TOKENS_285>|",
|
3700 |
+
"|<EXTRA_TOKENS_286>|",
|
3701 |
+
"|<EXTRA_TOKENS_287>|",
|
3702 |
+
"|<EXTRA_TOKENS_288>|",
|
3703 |
+
"|<EXTRA_TOKENS_289>|",
|
3704 |
+
"|<EXTRA_TOKENS_290>|",
|
3705 |
+
"|<EXTRA_TOKENS_291>|",
|
3706 |
+
"|<EXTRA_TOKENS_292>|",
|
3707 |
+
"|<EXTRA_TOKENS_293>|",
|
3708 |
+
"|<EXTRA_TOKENS_294>|",
|
3709 |
+
"|<EXTRA_TOKENS_295>|",
|
3710 |
+
"|<EXTRA_TOKENS_296>|",
|
3711 |
+
"|<EXTRA_TOKENS_297>|",
|
3712 |
+
"|<EXTRA_TOKENS_298>|",
|
3713 |
+
"|<EXTRA_TOKENS_299>|",
|
3714 |
+
"|<EXTRA_TOKENS_300>|",
|
3715 |
+
"|<EXTRA_TOKENS_301>|",
|
3716 |
+
"|<EXTRA_TOKENS_302>|",
|
3717 |
+
"|<EXTRA_TOKENS_303>|",
|
3718 |
+
"|<EXTRA_TOKENS_304>|",
|
3719 |
+
"|<EXTRA_TOKENS_305>|",
|
3720 |
+
"|<EXTRA_TOKENS_306>|",
|
3721 |
+
"|<EXTRA_TOKENS_307>|",
|
3722 |
+
"|<EXTRA_TOKENS_308>|",
|
3723 |
+
"|<EXTRA_TOKENS_309>|",
|
3724 |
+
"|<EXTRA_TOKENS_310>|",
|
3725 |
+
"|<EXTRA_TOKENS_311>|",
|
3726 |
+
"|<EXTRA_TOKENS_312>|",
|
3727 |
+
"|<EXTRA_TOKENS_313>|",
|
3728 |
+
"|<EXTRA_TOKENS_314>|",
|
3729 |
+
"|<EXTRA_TOKENS_315>|",
|
3730 |
+
"|<EXTRA_TOKENS_316>|",
|
3731 |
+
"|<EXTRA_TOKENS_317>|",
|
3732 |
+
"|<EXTRA_TOKENS_318>|",
|
3733 |
+
"|<EXTRA_TOKENS_319>|",
|
3734 |
+
"|<EXTRA_TOKENS_320>|",
|
3735 |
+
"|<EXTRA_TOKENS_321>|",
|
3736 |
+
"|<EXTRA_TOKENS_322>|",
|
3737 |
+
"|<EXTRA_TOKENS_323>|",
|
3738 |
+
"|<EXTRA_TOKENS_324>|",
|
3739 |
+
"|<EXTRA_TOKENS_325>|",
|
3740 |
+
"|<EXTRA_TOKENS_326>|",
|
3741 |
+
"|<EXTRA_TOKENS_327>|",
|
3742 |
+
"|<EXTRA_TOKENS_328>|",
|
3743 |
+
"|<EXTRA_TOKENS_329>|",
|
3744 |
+
"|<EXTRA_TOKENS_330>|",
|
3745 |
+
"|<EXTRA_TOKENS_331>|",
|
3746 |
+
"|<EXTRA_TOKENS_332>|",
|
3747 |
+
"|<EXTRA_TOKENS_333>|",
|
3748 |
+
"|<EXTRA_TOKENS_334>|",
|
3749 |
+
"|<EXTRA_TOKENS_335>|",
|
3750 |
+
"|<EXTRA_TOKENS_336>|",
|
3751 |
+
"|<EXTRA_TOKENS_337>|",
|
3752 |
+
"|<EXTRA_TOKENS_338>|",
|
3753 |
+
"|<EXTRA_TOKENS_339>|",
|
3754 |
+
"|<EXTRA_TOKENS_340>|",
|
3755 |
+
"|<EXTRA_TOKENS_341>|",
|
3756 |
+
"|<EXTRA_TOKENS_342>|",
|
3757 |
+
"|<EXTRA_TOKENS_343>|",
|
3758 |
+
"|<EXTRA_TOKENS_344>|",
|
3759 |
+
"|<EXTRA_TOKENS_345>|",
|
3760 |
+
"|<EXTRA_TOKENS_346>|",
|
3761 |
+
"|<EXTRA_TOKENS_347>|",
|
3762 |
+
"|<EXTRA_TOKENS_348>|",
|
3763 |
+
"|<EXTRA_TOKENS_349>|",
|
3764 |
+
"|<EXTRA_TOKENS_350>|",
|
3765 |
+
"|<EXTRA_TOKENS_351>|",
|
3766 |
+
"|<EXTRA_TOKENS_352>|",
|
3767 |
+
"|<EXTRA_TOKENS_353>|",
|
3768 |
+
"|<EXTRA_TOKENS_354>|",
|
3769 |
+
"|<EXTRA_TOKENS_355>|",
|
3770 |
+
"|<EXTRA_TOKENS_356>|",
|
3771 |
+
"|<EXTRA_TOKENS_357>|",
|
3772 |
+
"|<EXTRA_TOKENS_358>|",
|
3773 |
+
"|<EXTRA_TOKENS_359>|",
|
3774 |
+
"|<EXTRA_TOKENS_360>|",
|
3775 |
+
"|<EXTRA_TOKENS_361>|",
|
3776 |
+
"|<EXTRA_TOKENS_362>|",
|
3777 |
+
"|<EXTRA_TOKENS_363>|",
|
3778 |
+
"|<EXTRA_TOKENS_364>|",
|
3779 |
+
"|<EXTRA_TOKENS_365>|",
|
3780 |
+
"|<EXTRA_TOKENS_366>|",
|
3781 |
+
"|<EXTRA_TOKENS_367>|",
|
3782 |
+
"|<EXTRA_TOKENS_368>|",
|
3783 |
+
"|<EXTRA_TOKENS_369>|",
|
3784 |
+
"|<EXTRA_TOKENS_370>|",
|
3785 |
+
"|<EXTRA_TOKENS_371>|",
|
3786 |
+
"|<EXTRA_TOKENS_372>|",
|
3787 |
+
"|<EXTRA_TOKENS_373>|",
|
3788 |
+
"|<EXTRA_TOKENS_374>|",
|
3789 |
+
"|<EXTRA_TOKENS_375>|",
|
3790 |
+
"|<EXTRA_TOKENS_376>|",
|
3791 |
+
"|<EXTRA_TOKENS_377>|",
|
3792 |
+
"|<EXTRA_TOKENS_378>|",
|
3793 |
+
"|<EXTRA_TOKENS_379>|",
|
3794 |
+
"|<EXTRA_TOKENS_380>|",
|
3795 |
+
"|<EXTRA_TOKENS_381>|",
|
3796 |
+
"|<EXTRA_TOKENS_382>|",
|
3797 |
+
"|<EXTRA_TOKENS_383>|",
|
3798 |
+
"|<EXTRA_TOKENS_384>|",
|
3799 |
+
"|<EXTRA_TOKENS_385>|",
|
3800 |
+
"|<EXTRA_TOKENS_386>|",
|
3801 |
+
"|<EXTRA_TOKENS_387>|",
|
3802 |
+
"|<EXTRA_TOKENS_388>|",
|
3803 |
+
"|<EXTRA_TOKENS_389>|",
|
3804 |
+
"|<EXTRA_TOKENS_390>|",
|
3805 |
+
"|<EXTRA_TOKENS_391>|",
|
3806 |
+
"|<EXTRA_TOKENS_392>|",
|
3807 |
+
"|<EXTRA_TOKENS_393>|",
|
3808 |
+
"|<EXTRA_TOKENS_394>|",
|
3809 |
+
"|<EXTRA_TOKENS_395>|",
|
3810 |
+
"|<EXTRA_TOKENS_396>|",
|
3811 |
+
"|<EXTRA_TOKENS_397>|",
|
3812 |
+
"|<EXTRA_TOKENS_398>|",
|
3813 |
+
"|<EXTRA_TOKENS_399>|",
|
3814 |
+
"|<EXTRA_TOKENS_400>|",
|
3815 |
+
"|<EXTRA_TOKENS_401>|",
|
3816 |
+
"|<EXTRA_TOKENS_402>|",
|
3817 |
+
"|<EXTRA_TOKENS_403>|",
|
3818 |
+
"|<EXTRA_TOKENS_404>|",
|
3819 |
+
"|<EXTRA_TOKENS_405>|",
|
3820 |
+
"|<EXTRA_TOKENS_406>|",
|
3821 |
+
"|<EXTRA_TOKENS_407>|",
|
3822 |
+
"|<EXTRA_TOKENS_408>|",
|
3823 |
+
"|<EXTRA_TOKENS_409>|",
|
3824 |
+
"|<EXTRA_TOKENS_410>|",
|
3825 |
+
"|<EXTRA_TOKENS_411>|",
|
3826 |
+
"|<EXTRA_TOKENS_412>|",
|
3827 |
+
"|<EXTRA_TOKENS_413>|",
|
3828 |
+
"|<EXTRA_TOKENS_414>|",
|
3829 |
+
"|<EXTRA_TOKENS_415>|",
|
3830 |
+
"|<EXTRA_TOKENS_416>|",
|
3831 |
+
"|<EXTRA_TOKENS_417>|",
|
3832 |
+
"<im_start>",
|
3833 |
+
"<im_end>",
|
3834 |
+
"<im_patch>",
|
3835 |
+
"<im_col>",
|
3836 |
+
"<|image|>"
|
3837 |
+
],
|
3838 |
+
"auto_map": {
|
3839 |
+
"AutoProcessor": "preprocessing_molmo.MolmoProcessor"
|
3840 |
+
},
|
3841 |
+
"bos_token": null,
|
3842 |
+
"chat_template": "{% for message in messages -%}\n {%- if (loop.index % 2 == 1 and message['role'] != 'user') or \n (loop.index % 2 == 0 and message['role'].lower() != 'assistant') -%}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {%- endif -%}\n {{ message['role'].capitalize() + ': ' + message['content'] }}\n {%- if not loop.last -%}\n {{ ' ' }}\n {%- endif %}\n {%- endfor -%}\n {%- if add_generation_prompt -%}\n {{ ' Assistant:' }}\n {%- endif %}",
|
3843 |
+
"clean_up_tokenization_spaces": false,
|
3844 |
+
"eos_token": "<|endoftext|>",
|
3845 |
+
"errors": "replace",
|
3846 |
+
"model_max_length": 32768,
|
3847 |
+
"pad_token": "<|endoftext|>",
|
3848 |
+
"processor_class": "MolmoProcessor",
|
3849 |
+
"split_special_tokens": false,
|
3850 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
3851 |
+
"unk_token": null
|
3852 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|