File size: 1,501 Bytes
74b3ebb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
base_model: EVA-UNIT-01/EVA-Qwen2.5-72B-v0.0
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Nopm/Opus_WritingStruct
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Gryphe/ChatGPT-4o-Writing-Prompts
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
- allura-org/Celeste-1.x-data-mixture
library_name: transformers
license: other
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
tags:
- generated_from_trainer
- mlx
model-index:
- name: EVA-Qwen2.5-72B-SFFT-v0.0
results: []
---
# mlx-community/EVA-Qwen2.5-72B-v0.0-8bit
The Model [mlx-community/EVA-Qwen2.5-72B-v0.0-8bit](https://huggingface.co/mlx-community/EVA-Qwen2.5-72B-v0.0-8bit) was converted to MLX format from [EVA-UNIT-01/EVA-Qwen2.5-72B-v0.0](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-72B-v0.0) using mlx-lm version **0.19.0**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/EVA-Qwen2.5-72B-v0.0-8bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|