Update README.md
Browse files
README.md
CHANGED
@@ -64,15 +64,15 @@ from model import KenlmModel
|
|
64 |
|
65 |
|
66 |
# Load the model
|
67 |
-
model = KenlmModel.from_pretrained("
|
68 |
|
69 |
# Get perplexity
|
70 |
print(model.perplexity("من در را بستم"))
|
71 |
-
# Outputs:
|
72 |
|
73 |
# Get score
|
74 |
print(model.score("من در را بستم"))
|
75 |
-
# Outputs: -
|
76 |
```
|
77 |
|
78 |
# What are the different files you can find in this repository?
|
@@ -124,3 +124,9 @@ using the `build_binary` program, as shown below:
|
|
124 |
```
|
125 |
build_binary -T /tmp -S 80% probing jomleh-sp-32000-o5-prune01111.arpa jomleh-sp-32000-o5-prune01111.probing
|
126 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
# Load the model
|
67 |
+
model = KenlmModel.from_pretrained("57218", "3", "011")
|
68 |
|
69 |
# Get perplexity
|
70 |
print(model.perplexity("من در را بستم"))
|
71 |
+
# Outputs: 72.5
|
72 |
|
73 |
# Get score
|
74 |
print(model.score("من در را بستم"))
|
75 |
+
# Outputs: -11.160577774047852
|
76 |
```
|
77 |
|
78 |
# What are the different files you can find in this repository?
|
|
|
124 |
```
|
125 |
build_binary -T /tmp -S 80% probing jomleh-sp-32000-o5-prune01111.arpa jomleh-sp-32000-o5-prune01111.probing
|
126 |
```
|
127 |
+
|
128 |
+
# Which model to use?
|
129 |
+
|
130 |
+
Based on my personal evaluation, I recommend using the `jomleh-sp-57218-o3-prune011.probing`.
|
131 |
+
It's the perfect balanced between file size (6GB) and accuracy (80%). But if you have no concern for file
|
132 |
+
size, then go for the largest model, `jomleh-sp-57218-o5-prune00011.probing` (size: 36GB, accuracy: 82%).
|