Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import kenlm
|
3 |
+
import sentencepiece as spm
|
4 |
+
from tokenizers import normalizers
|
5 |
+
|
6 |
+
|
7 |
+
class KenlmModel:
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocabulary_size: str,
|
11 |
+
ngram: str,
|
12 |
+
pruning: str,
|
13 |
+
normalize_nfd: bool = True,
|
14 |
+
normalize_numbers: bool = True,
|
15 |
+
normalize_puctuation: bool = True,
|
16 |
+
):
|
17 |
+
self.model = kenlm.Model(os.path.join("files", f"jomleh-sp-{vocabulary_size}-o{ngram}-prune{pruning}.probing"))
|
18 |
+
self.tokenizer = spm.SentencePieceProcessor(os.path.join("files", f"jomleh-sp-{vocabulary_size}.model"))
|
19 |
+
|
20 |
+
norm_list = []
|
21 |
+
if normalize_numbers:
|
22 |
+
norm_list += [normalizers.Replace("۱", "۰"),
|
23 |
+
normalizers.Replace("۲", "۰"),
|
24 |
+
normalizers.Replace("۳", "۰"),
|
25 |
+
normalizers.Replace("۴", "۰"),
|
26 |
+
normalizers.Replace("۵", "۰"),
|
27 |
+
normalizers.Replace("۶", "۰"),
|
28 |
+
normalizers.Replace("۷", "۰"),
|
29 |
+
normalizers.Replace("۸", "۰"),
|
30 |
+
normalizers.Replace("۹", "۰"),
|
31 |
+
normalizers.Replace(".", "")]
|
32 |
+
if normalize_puctuation:
|
33 |
+
norm_list += [normalizers.Replace(".", ""),
|
34 |
+
normalizers.Replace("!", ""),
|
35 |
+
normalizers.Replace("؛", ""),
|
36 |
+
normalizers.Replace("،", ""),
|
37 |
+
normalizers.Replace("؟", "")]
|
38 |
+
if normalize_nfd:
|
39 |
+
norm_list += [normalizers.NFD()]
|
40 |
+
norm_list += [normalizers.Strip()]
|
41 |
+
|
42 |
+
self.normalizer = normalizers.Sequence(norm_list)
|
43 |
+
|
44 |
+
@classmethod
|
45 |
+
def from_pretrained(
|
46 |
+
cls,
|
47 |
+
vocabulary_size: str,
|
48 |
+
ngram: str,
|
49 |
+
pruning: str,
|
50 |
+
):
|
51 |
+
return cls(vocabulary_size, ngram, pruning)
|
52 |
+
|
53 |
+
def score(self, doc: str):
|
54 |
+
doc = self.normalizer.normalize_str(doc)
|
55 |
+
doc = ' '.join(self.tokenizer.encode(doc, out_type=str))
|
56 |
+
return self.model.score(doc)
|
57 |
+
|
58 |
+
def perplexity(self, doc: str):
|
59 |
+
doc = self.normalizer.normalize_str(doc)
|
60 |
+
doc = ' '.join(self.tokenizer.encode(doc, out_type=str))
|
61 |
+
log_score = self.model.score(doc)
|
62 |
+
length = len(doc.split()) + 1
|
63 |
+
return round(10.0 ** (-log_score / length), 1)
|