File size: 3,397 Bytes
53df4ff 18f53fd 53df4ff 18f53fd 53df4ff ba3070e 18f53fd 33ec66b 53df4ff 92807a3 3327831 f0c130e 18f53fd 53df4ff 8cd7fb4 18f53fd 53df4ff 18f53fd 53df4ff 18f53fd 3327831 18f53fd 3327831 18f53fd 5bb3816 18f53fd 4cc9818 e745f7b 18f53fd 53df4ff 4cc9818 53df4ff 18f53fd 53df4ff 18f53fd 53df4ff ba3070e 18f53fd 8cd7fb4 18f53fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
tags:
- abliterated
- uncensored
- mergekit
---
# 🦙 Llama-3.1-70B-Instruct-lorablated
![](https://i.imgur.com/5Y0Riis.png)
<center>🦙 <a href="https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated"><i>Llama 3.1 8B Instruct abliterated</i></a></center>
This is an uncensored version of [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it) using [@grimjim](https://huggingface.co/grimjim)'s recipe.
More precisely, this is a **LoRA-abliterated** (lorablated) model:
1. **Extraction**: We extract a LoRA adapter by comparing two models: a censored Llama 3 and an abliterated Llama 3
2. **Merge**: We merge this new LoRA adapter using [task arithmetic](https://arxiv.org/abs/2212.04089) to a censored Llama 3.1 to abliterate it.
I adapted this recipe to Llama 3.1 70B using [failspy/Meta-Llama-3-70B-Instruct-abliterated-v3.5](https://huggingface.co/failspy/Meta-Llama-3-70B-Instruct-abliterated-v3.5) and optimized the LoRA rank.
The model is fully uncensored in my tests and maintains a high level of quality. A more rigorous evaluation is still needed to measure the impact of this process on benchmarks.
Special thanks to [@grimjim](https://huggingface.co/grimjim) for this technique (see his [8B model](https://huggingface.co/grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter)) and [@FailSpy](https://huggingface.co/failspy) for his [70B abliterated model](https://huggingface.co/failspy/Meta-Llama-3-70B-Instruct-abliterated-v3.5). Please follow them if you're interested in abliterated models.
In addition, thanks to [brev.dev](https://brev.dev/) for providing me with compute!
## 🔍 Applications
General-purpose, role-play (see feedback from [McUH](https://huggingface.co/mlabonne/Llama-3.1-70B-Instruct-lorablated/discussions/7)). Use the Llama 3 chat template.
## ⚡️ Quantization
* **GGUF**: https://huggingface.co/mlabonne/Llama-3.1-70B-Instruct-lorablated-GGUF
* **Bartowski**: https://huggingface.co/bartowski/Llama-3.1-70B-Instruct-lorablated-GGUF (with IQ quants)
## 🧩 Configuration
This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using ./meta-llama/Meta-Llama-3.1-70B-Instruct + Llama-3-70B-Instruct-abliterated-LORA as a base.
The following YAML configuration was used to produce this model:
```yaml
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct+Llama-3-70B-Instruct-abliterated-LORA
dtype: bfloat16
merge_method: task_arithmetic
parameters:
normalize: false
slices:
- sources:
- layer_range: [0, 80]
model: meta-llama/Meta-Llama-3.1-70B-Instruct+Llama-3-70B-Instruct-abliterated-LORA
parameters:
weight: 1.0
```
You can reproduce this model using the following commands:
```bash
# Setup
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit && pip install -e .
pip install bitsandbytes
# Extraction
mergekit-extract-lora failspy/Meta-Llama-3-70B-Instruct-abliterated-v3.5 meta-llama/Meta-Llama-3-70B-Instruct Llama-3-70B-Instruct-abliterated-LORA --rank=64
# Merge using previous config
mergekit-yaml config.yaml Llama-3.1-70B-Instruct-lorablated --allow-crimes --lora-merge-cache=./cache
``` |