mlabonne commited on
Commit
166a05e
1 Parent(s): eaf93f9

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-nc-4.0
5
+ tags:
6
+ - merge
7
+ - lazymergekit
8
+ - dpo
9
+ - rlhf
10
+ - autoquant
11
+ - gptq
12
+ dataset:
13
+ - mlabonne/truthy-dpo-v0.1
14
+ - mlabonne/distilabel-intel-orca-dpo-pairs
15
+ - mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
16
+ base_model:
17
+ - mlabonne/NeuralMonarch-7B
18
+ model-index:
19
+ - name: AlphaMonarch-7B
20
+ results:
21
+ - task:
22
+ type: text-generation
23
+ name: Text Generation
24
+ dataset:
25
+ name: AI2 Reasoning Challenge (25-Shot)
26
+ type: ai2_arc
27
+ config: ARC-Challenge
28
+ split: test
29
+ args:
30
+ num_few_shot: 25
31
+ metrics:
32
+ - type: acc_norm
33
+ value: 73.04
34
+ name: normalized accuracy
35
+ source:
36
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
37
+ name: Open LLM Leaderboard
38
+ - task:
39
+ type: text-generation
40
+ name: Text Generation
41
+ dataset:
42
+ name: HellaSwag (10-Shot)
43
+ type: hellaswag
44
+ split: validation
45
+ args:
46
+ num_few_shot: 10
47
+ metrics:
48
+ - type: acc_norm
49
+ value: 89.18
50
+ name: normalized accuracy
51
+ source:
52
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
53
+ name: Open LLM Leaderboard
54
+ - task:
55
+ type: text-generation
56
+ name: Text Generation
57
+ dataset:
58
+ name: MMLU (5-Shot)
59
+ type: cais/mmlu
60
+ config: all
61
+ split: test
62
+ args:
63
+ num_few_shot: 5
64
+ metrics:
65
+ - type: acc
66
+ value: 64.4
67
+ name: accuracy
68
+ source:
69
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
70
+ name: Open LLM Leaderboard
71
+ - task:
72
+ type: text-generation
73
+ name: Text Generation
74
+ dataset:
75
+ name: TruthfulQA (0-shot)
76
+ type: truthful_qa
77
+ config: multiple_choice
78
+ split: validation
79
+ args:
80
+ num_few_shot: 0
81
+ metrics:
82
+ - type: mc2
83
+ value: 77.91
84
+ source:
85
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
86
+ name: Open LLM Leaderboard
87
+ - task:
88
+ type: text-generation
89
+ name: Text Generation
90
+ dataset:
91
+ name: Winogrande (5-shot)
92
+ type: winogrande
93
+ config: winogrande_xl
94
+ split: validation
95
+ args:
96
+ num_few_shot: 5
97
+ metrics:
98
+ - type: acc
99
+ value: 84.69
100
+ name: accuracy
101
+ source:
102
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
103
+ name: Open LLM Leaderboard
104
+ - task:
105
+ type: text-generation
106
+ name: Text Generation
107
+ dataset:
108
+ name: GSM8k (5-shot)
109
+ type: gsm8k
110
+ config: main
111
+ split: test
112
+ args:
113
+ num_few_shot: 5
114
+ metrics:
115
+ - type: acc
116
+ value: 66.72
117
+ name: accuracy
118
+ source:
119
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/AlphaMonarch-7B
120
+ name: Open LLM Leaderboard
121
+ ---
122
+
123
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/TI7C8F2gk43gmI9U2L0uk.jpeg)
124
+
125
+ # 👑 AlphaMonarch-7B
126
+
127
+ **tl;dr: AlphaMonarch-7B is a new DPO merge that retains all the reasoning abilities of the very best merges and significantly improves its conversational abilities. Kind of the best of both worlds in a 7B model. 🎉**
128
+
129
+ AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
130
+
131
+ It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
132
+ * [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0)
133
+ * [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B)
134
+ * [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)
135
+
136
+ Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), [Argilla](https://huggingface.co/argilla), and [Teknium](https://huggingface.co/teknium) for the preference datasets.
137
+
138
+ **Try the demo**: https://huggingface.co/spaces/mlabonne/AlphaMonarch-7B-GGUF-Chat
139
+
140
+ ## 🔍 Applications
141
+
142
+ This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio).
143
+
144
+ If you use SillyTavern, you might want to tweak the inference parameters. Here's what LM Studio uses as a reference: `temp` 0.8, `top_k` 40, `top_p` 0.95, `min_p` 0.05, `repeat_penalty` 1.1.
145
+
146
+ It is one of the very best 7B models in terms of instructing following and reasoning abilities and can be used for conversations, RP, and storytelling. Note that it tends to have a quite formal and sophisticated style, but it can be changed by modifying the prompt.
147
+
148
+ ## ⚡ Quantized models
149
+
150
+ Thanks to [LoneStriker](https://huggingface.co/LoneStriker) for the GPTQ, AWQ, and EXL2 quants.
151
+
152
+ * **GGUF**: https://huggingface.co/mlabonne/AlphaMonarch-7B-GGUF
153
+ * **GPTQ**: https://huggingface.co/LoneStriker/AlphaMonarch-7B-GPTQ
154
+ * **AWQ**: https://huggingface.co/LoneStriker/AlphaMonarch-7B-AWQ
155
+ * **mlx**: https://huggingface.co/mlx-community/AlphaMonarch-7B-mlx
156
+ * **EXL2**:
157
+ * https://huggingface.co/LoneStriker/AlphaMonarch-7B-3.0bpw-h6-exl2
158
+ * https://huggingface.co/LoneStriker/AlphaMonarch-7B-4.0bpw-h6-exl2
159
+ * https://huggingface.co/LoneStriker/AlphaMonarch-7B-5.0bpw-h6-exl2
160
+ * https://huggingface.co/LoneStriker/AlphaMonarch-7B-6.0bpw-h6-exl2
161
+ * https://huggingface.co/LoneStriker/AlphaMonarch-7B-8.0bpw-h6-exl2
162
+
163
+ ## 🏆 Evaluation
164
+
165
+ ### Nous
166
+
167
+ AlphaMonarch-7B is the best-performing 7B model on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
168
+
169
+ | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
170
+ |---|---:|---:|---:|---:|---:|
171
+ | [**AlphaMonarch-7B**](https://huggingface.co/mlabonne/AlphaMonarch-7B) [📄](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | **62.74** | **45.37** | **77.01** | **78.39** | **50.2** |
172
+ | [NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B) [📄](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | 62.73 | 45.31 | 76.99 | 78.35 | 50.28 |
173
+ | [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [📄](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
174
+ | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
175
+ | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
176
+ | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [📄](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
177
+ | [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) [📄](https://gist.github.com/mlabonne/0e49d591787185fa5ae92ca5d9d4a1fd) | 62.3 | 45.85 | 77.26 | 76.06 | 50.03 |
178
+ | [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [📄](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
179
+ | [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [📄](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
180
+
181
+ ### EQ-bench
182
+
183
+ AlphaMonarch-7B is also outperforming 70B and 120B parameter models on [EQ-bench](https://eqbench.com/) by [Samuel J. Paech](https://twitter.com/sam_paech), who kindly ran the evaluations.
184
+
185
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/dnCFxieqLiAC3Ll6CfdZW.png)
186
+
187
+ ### MT-Bench
188
+
189
+ ```
190
+ ########## First turn ##########
191
+ score
192
+ model turn
193
+ gpt-4 1 8.95625
194
+ OmniBeagle-7B 1 8.31250
195
+ AlphaMonarch-7B 1 8.23750
196
+ claude-v1 1 8.15000
197
+ NeuralMonarch-7B 1 8.09375
198
+ gpt-3.5-turbo 1 8.07500
199
+ claude-instant-v1 1 7.80000
200
+
201
+ ########## Second turn ##########
202
+ score
203
+ model turn
204
+ gpt-4 2 9.025000
205
+ claude-instant-v1 2 8.012658
206
+ OmniBeagle-7B 2 7.837500
207
+ gpt-3.5-turbo 2 7.812500
208
+ claude-v1 2 7.650000
209
+ AlphaMonarch-7B 2 7.618750
210
+ NeuralMonarch-7B 2 7.375000
211
+
212
+ ########## Average ##########
213
+ score
214
+ model
215
+ gpt-4 8.990625
216
+ OmniBeagle-7B 8.075000
217
+ gpt-3.5-turbo 7.943750
218
+ AlphaMonarch-7B 7.928125
219
+ claude-instant-v1 7.905660
220
+ claude-v1 7.900000
221
+ NeuralMonarch-7B 7.734375
222
+ NeuralBeagle14-7B 7.628125
223
+ ```
224
+
225
+ ### Open LLM Leaderboard
226
+
227
+ AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:
228
+
229
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png)
230
+
231
+ ## 🌳 Model Family Tree
232
+
233
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/IMAE6DpzkUN6YaEhOX2wA.png)
234
+
235
+ ## 💻 Usage
236
+
237
+ ```python
238
+ !pip install -qU transformers accelerate
239
+
240
+ from transformers import AutoTokenizer
241
+ import transformers
242
+ import torch
243
+
244
+ model = "mlabonne/AlphaMonarch-7B"
245
+ messages = [{"role": "user", "content": "What is a large language model?"}]
246
+
247
+ tokenizer = AutoTokenizer.from_pretrained(model)
248
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
249
+ pipeline = transformers.pipeline(
250
+ "text-generation",
251
+ model=model,
252
+ torch_dtype=torch.float16,
253
+ device_map="auto",
254
+ )
255
+
256
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
257
+ print(outputs[0]["generated_text"])
258
+ ```
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mlabonne/AlphaMonarch-7B",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "quantization_config": {
19
+ "batch_size": 1,
20
+ "bits": 4,
21
+ "block_name_to_quantize": null,
22
+ "cache_block_outputs": true,
23
+ "damp_percent": 0.1,
24
+ "dataset": "c4",
25
+ "desc_act": false,
26
+ "exllama_config": {
27
+ "version": 1
28
+ },
29
+ "group_size": 128,
30
+ "max_input_length": null,
31
+ "model_seqlen": null,
32
+ "module_name_preceding_first_block": null,
33
+ "modules_in_block_to_quantize": null,
34
+ "pad_token_id": null,
35
+ "quant_method": "gptq",
36
+ "sym": true,
37
+ "tokenizer": null,
38
+ "true_sequential": true,
39
+ "use_cuda_fp16": false,
40
+ "use_exllama": true
41
+ },
42
+ "rms_norm_eps": 1e-05,
43
+ "rope_theta": 10000.0,
44
+ "sliding_window": 4096,
45
+ "tie_word_embeddings": false,
46
+ "torch_dtype": "float16",
47
+ "transformers_version": "4.38.2",
48
+ "use_cache": true,
49
+ "vocab_size": 32000
50
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.38.2"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c3b38dd11a9b2abf3c251ec87f75fb27a178a5629827d2e6e7eba708fe06d6f
3
+ size 4158662096
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<unk>",
32
+ "<s>",
33
+ "</s>"
34
+ ],
35
+ "bos_token": "<s>",
36
+ "chat_template": "{% for message in messages %}{{bos_token + message['role'] + '\n' + message['content'] + eos_token + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ bos_token + 'assistant\n' }}{% endif %}",
37
+ "clean_up_tokenization_spaces": false,
38
+ "eos_token": "</s>",
39
+ "legacy": true,
40
+ "model_max_length": 8192,
41
+ "pad_token": "</s>",
42
+ "padding_side": "left",
43
+ "sp_model_kwargs": {},
44
+ "spaces_between_special_tokens": false,
45
+ "split_special_tokens": false,
46
+ "tokenizer_class": "LlamaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": true
49
+ }