pszemraj commited on
Commit
414d7a3
·
1 Parent(s): 3563bbb

update files

Browse files
Files changed (1) hide show
  1. README.md +19 -40
README.md CHANGED
@@ -1,24 +1,3 @@
1
- ---
2
- language:
3
- - en
4
- datasets:
5
- - pubmed
6
- metrics:
7
- - f1
8
- pipeline_tag: text-classification
9
- widget:
10
- - text: "Many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions."
11
- example_title: "BACKGROUND example"
12
- - text: "A total of 192 MI patients and 140 control persons were included."
13
- example_title: "METHODS example"
14
- - text: "MI patients had 18 % higher plasma levels of MAp44 (IQR 11-25 %) as compared to the healthy control group (p < 0. 001.)"
15
- example_title: "RESULTS example"
16
- - text: "The finding that a brief CB group intervention delivered by real-world providers significantly reduced MDD onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression."
17
- example_title: "CONCLUSIONS example"
18
- - text: "In order to understand and update the prevalence of myopia in Taiwan, a nationwide survey was performed in 1995."
19
- example_title: "OBJECTIVE example"
20
- ---
21
-
22
  # scibert-scivocab-cased_pub_section
23
  - original model file name: textclassifer_scibert_scivocab_cased_pubmed_20k
24
  - This is a fine-tuned checkpoint of `allenai/scibert_scivocab_cased` for document section text classification
@@ -29,40 +8,40 @@ widget:
29
 
30
  ### training_metrics
31
 
32
- - val_accuracy: 0.8489672541618347
33
 
34
- - val_matthewscorrcoef: 0.7956399321556091
35
 
36
- - val_f1score: 0.8465128540992737
37
 
38
- - val_cross_entropy: 0.4199986457824707
39
 
40
- - epoch: 4.0
41
 
42
- - train_accuracy_step: 0.859375
43
 
44
- - train_matthewscorrcoef_step: 0.809939980506897
45
 
46
- - train_f1score_step: 0.8563070297241211
47
 
48
- - train_cross_entropy_step: 0.4379327893257141
49
 
50
- - train_accuracy_epoch: 0.8273193836212158
51
 
52
- - train_matthewscorrcoef_epoch: 0.7671003341674805
53
 
54
- - train_f1score_epoch: 0.824897050857544
55
 
56
- - train_cross_entropy_epoch: 0.4835580885410309
57
 
58
- - test_accuracy: 0.8423759937286377
59
 
60
- - test_matthewscorrcoef: 0.7873286604881287
61
 
62
- - test_f1score: 0.8399338126182556
63
 
64
- - test_cross_entropy: 0.4428141117095947
65
 
66
- - date_run: Apr-22-2022_t-01
67
 
68
- - huggingface_tag: allenai/scibert_scivocab_cased
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # scibert-scivocab-cased_pub_section
2
  - original model file name: textclassifer_scibert_scivocab_cased_pubmed_20k
3
  - This is a fine-tuned checkpoint of `allenai/scibert_scivocab_cased` for document section text classification
 
8
 
9
  ### training_metrics
10
 
11
+ - date_run: Apr-26-2022_t-13
12
 
13
+ - huggingface_tag: allenai/scibert_scivocab_cased
14
 
15
+ - test_set: [{'test_accuracy': 0.8313589096069336, 'test_matthewscorrcoef': 0.7736952900886536, 'test_f1score': 0.8317078948020935, 'test_cross_entropy': 0.5242752432823181}]
16
 
17
+ ### training_parameters
18
 
19
+ - NUM_EPOCHS: 12
20
 
21
+ - BATCH_SIZE: 32
22
 
23
+ - MAX_INPUT_LENGTH: 256
24
 
25
+ - TRAIN_FP16: True
26
 
27
+ - TRAIN_STRATEGY: freeze
28
 
29
+ - LR_SCHEDULE: reducelronplateau
30
 
31
+ - LR_INITIAL: 0.001
32
 
33
+ - WEIGHT_DECAY: 0.05
34
 
35
+ - UNFREEZE_EPOCH: 4
36
 
37
+ - hf_tag: allenai/scibert_scivocab_cased
38
 
39
+ - lowercased_input: False
40
 
41
+ - input_text_colname: description
42
 
43
+ - target_cls_colname: target
44
 
45
+ - num_classes: 5
46
 
47
+ - model_shortname: scibert_scivocab_cased