Update README.md
Browse files
README.md
CHANGED
@@ -21,6 +21,8 @@ Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Ra
|
|
21 |
|
22 |
## How to use the model
|
23 |
|
|
|
|
|
24 |
The model can be loaded with the `zero-shot-classification` pipeline like so:
|
25 |
|
26 |
```python
|
@@ -43,6 +45,31 @@ If more than one candidate label can be correct, pass `multi_class=True` to calc
|
|
43 |
candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
|
44 |
classifier(sequence_to_classify, candidate_labels, multi_class=True)
|
45 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
### Eval results
|
48 |
The model was evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
|
|
|
21 |
|
22 |
## How to use the model
|
23 |
|
24 |
+
### With the zero-shot classification pipeline
|
25 |
+
|
26 |
The model can be loaded with the `zero-shot-classification` pipeline like so:
|
27 |
|
28 |
```python
|
|
|
45 |
candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
|
46 |
classifier(sequence_to_classify, candidate_labels, multi_class=True)
|
47 |
```
|
48 |
+
### With manual PyTorch
|
49 |
+
|
50 |
+
The model can also be applied on NLI tasks like so:
|
51 |
+
|
52 |
+
```python
|
53 |
+
import torch
|
54 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
55 |
+
|
56 |
+
# device = "cuda:0" or "cpu"
|
57 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
58 |
+
|
59 |
+
model_name = "mjwong/e5-large-v2-mnli"
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
61 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
62 |
+
|
63 |
+
premise = "But I thought you'd sworn off coffee."
|
64 |
+
hypothesis = "I thought that you vowed to drink more coffee."
|
65 |
+
|
66 |
+
input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
|
67 |
+
output = model(input["input_ids"].to(device))
|
68 |
+
prediction = torch.softmax(output["logits"][0], -1).tolist()
|
69 |
+
label_names = ["entailment", "neutral", "contradiction"]
|
70 |
+
prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)}
|
71 |
+
print(prediction)
|
72 |
+
```
|
73 |
|
74 |
### Eval results
|
75 |
The model was evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
|