Upload config
Browse files- config.json +2 -6
- configuration_mamba.py +26 -87
config.json
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
{
|
2 |
-
"architectures": [
|
3 |
-
"MambaLMHeadModel"
|
4 |
-
],
|
5 |
"auto_map": {
|
6 |
-
"AutoConfig": "configuration_mamba.MambaConfig"
|
7 |
-
"AutoModelForCausalLM": "modeling_mamba.MambaLMHeadModel"
|
8 |
},
|
9 |
"bias": false,
|
10 |
"conv_bias": true,
|
@@ -14,10 +10,10 @@
|
|
14 |
"d_state": 16,
|
15 |
"dt_rank": 48,
|
16 |
"expand": 2,
|
|
|
17 |
"model_type": "mamba",
|
18 |
"n_layer": 24,
|
19 |
"pad_vocab_size_multiple": 8,
|
20 |
-
"torch_dtype": "float32",
|
21 |
"transformers_version": "4.37.2",
|
22 |
"vocab_size": 50280
|
23 |
}
|
|
|
1 |
{
|
|
|
|
|
|
|
2 |
"auto_map": {
|
3 |
+
"AutoConfig": "configuration_mamba.MambaConfig"
|
|
|
4 |
},
|
5 |
"bias": false,
|
6 |
"conv_bias": true,
|
|
|
10 |
"d_state": 16,
|
11 |
"dt_rank": 48,
|
12 |
"expand": 2,
|
13 |
+
"initializer_range": 0.02,
|
14 |
"model_type": "mamba",
|
15 |
"n_layer": 24,
|
16 |
"pad_vocab_size_multiple": 8,
|
|
|
17 |
"transformers_version": "4.37.2",
|
18 |
"vocab_size": 50280
|
19 |
}
|
configuration_mamba.py
CHANGED
@@ -4,106 +4,45 @@ from typing import Union
|
|
4 |
from transformers import PretrainedConfig
|
5 |
|
6 |
|
7 |
-
# Inspired by:
|
8 |
-
# - https://huggingface.co/docs/transformers/custom_models#writing-a-custom-configuration
|
9 |
-
# - https://huggingface.co/Q-bert/Mamba-130M/blob/9fad7fb5fb9c9416fab4f70ecd62498478be2074/configuration_mamba.py#L5
|
10 |
-
# - https://github.com/johnma2006/mamba-minimal/blob/03de542a36d873f6e6c4057ad687278cc6ae944d/model.py#L33
|
11 |
-
# - https://github.com/state-spaces/mamba/blob/009bec5ee37f586844a3fc89c040a9c1a9d8badf/mamba_ssm/models/config_mamba.py#L5
|
12 |
class MambaConfig(PretrainedConfig):
|
13 |
-
model_type
|
14 |
|
15 |
def __init__(
|
16 |
self,
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# pad_vocab_size_multiple: int = 8,
|
29 |
-
# residual_in_fp32: bool = True,
|
30 |
-
# rms_norm: bool = True,
|
31 |
-
# ssm_config: dict = {},
|
32 |
-
# vocab_size: int = 50277,
|
33 |
-
|
34 |
-
d_model: int = 2560,
|
35 |
-
n_layer: int = 64,
|
36 |
-
vocab_size: int = 50277,
|
37 |
-
d_state: int = 16,
|
38 |
-
expand: int = 2,
|
39 |
-
dt_rank: Union[int, str] = 'auto',
|
40 |
-
d_conv: int = 4,
|
41 |
-
pad_vocab_size_multiple: int = 8,
|
42 |
-
conv_bias: bool = True,
|
43 |
-
bias: bool = False,
|
44 |
**kwargs,
|
45 |
):
|
46 |
-
# self.bias = bias
|
47 |
-
# self.conv_bias = conv_bias
|
48 |
-
# self.d_conv = d_conv
|
49 |
-
# self.d_model = d_model
|
50 |
-
# self.d_state = d_state
|
51 |
-
# self.dt_rank = dt_rank
|
52 |
-
# self.expand = expand
|
53 |
-
# self.fused_add_norm = fused_add_norm
|
54 |
-
# self.n_layer = n_layer
|
55 |
-
# self.norm_epsilon = norm_epsilon
|
56 |
-
# self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
57 |
-
# self.residual_in_fp32 = residual_in_fp32
|
58 |
-
# self.rms_norm = rms_norm
|
59 |
-
# self.ssm_config = ssm_config
|
60 |
-
# self.vocab_size = vocab_size
|
61 |
-
|
62 |
-
# d_model: int
|
63 |
-
# n_layer: int
|
64 |
-
# vocab_size: int
|
65 |
-
# d_state: int = 16
|
66 |
-
# expand: int = 2
|
67 |
-
# dt_rank: Union[int, str] = 'auto'
|
68 |
-
# d_conv: int = 4
|
69 |
-
# pad_vocab_size_multiple: int = 8
|
70 |
-
# conv_bias: bool = True
|
71 |
-
# bias: bool = False
|
72 |
-
|
73 |
-
self.d_model = d_model
|
74 |
-
self.n_layer = n_layer
|
75 |
self.vocab_size = vocab_size
|
76 |
-
self.
|
|
|
77 |
self.expand = expand
|
78 |
-
self.dt_rank = dt_rank
|
79 |
-
self.d_conv = d_conv
|
80 |
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
81 |
-
self.
|
82 |
-
self.
|
83 |
-
|
84 |
self.d_inner = int(self.expand * self.d_model)
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
if self.dt_rank == 'auto':
|
89 |
self.dt_rank = math.ceil(self.d_model / 16)
|
90 |
-
|
91 |
-
if self.vocab_size % self.pad_vocab_size_multiple != 0:
|
92 |
-
self.vocab_size += (self.pad_vocab_size_multiple
|
93 |
-
- self.vocab_size % self.pad_vocab_size_multiple)
|
94 |
-
|
95 |
-
# if self.dt_rank == "auto":
|
96 |
-
# self.dt_rank = math.ceil(self.d_model / 16) # TODO: 16 is self.d_state?
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# # TODO: According to https://huggingface.co/docs/transformers/create_a_model#configuration,
|
105 |
-
# # "all NLP models have the hidden_size, num_attention_heads, num_hidden_layers and vocab_size attributes in common."
|
106 |
-
# self.hidden_size = self.d_model
|
107 |
|
108 |
super().__init__(
|
109 |
**kwargs,
|
|
|
4 |
from transformers import PretrainedConfig
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
class MambaConfig(PretrainedConfig):
|
8 |
+
model_type = "mamba"
|
9 |
|
10 |
def __init__(
|
11 |
self,
|
12 |
+
vocab_size=50277,
|
13 |
+
d_state=16,
|
14 |
+
d_model=2560,
|
15 |
+
d_conv=4,
|
16 |
+
expand=2,
|
17 |
+
conv_bias=True,
|
18 |
+
bias=False,
|
19 |
+
n_layer=64,
|
20 |
+
dt_rank: Union[int, str] = "auto",
|
21 |
+
pad_vocab_size_multiple=8,
|
22 |
+
initializer_range=0.02,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
**kwargs,
|
24 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
self.vocab_size = vocab_size
|
26 |
+
self.n_layer = n_layer
|
27 |
+
self.conv_bias = conv_bias
|
28 |
self.expand = expand
|
|
|
|
|
29 |
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
30 |
+
self.d_conv = d_conv
|
31 |
+
self.d_model = d_model
|
32 |
+
self.d_state = d_state
|
33 |
self.d_inner = int(self.expand * self.d_model)
|
34 |
+
self.dt_rank = dt_rank
|
35 |
+
self.initializer_range = initializer_range
|
36 |
+
self.bias = bias
|
37 |
|
38 |
+
if self.dt_rank == "auto":
|
|
|
|
|
39 |
self.dt_rank = math.ceil(self.d_model / 16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
if self.vocab_size % self.pad_vocab_size_multiple != 0:
|
42 |
+
self.vocab_size += (
|
43 |
+
self.pad_vocab_size_multiple
|
44 |
+
- self.vocab_size % self.pad_vocab_size_multiple
|
45 |
+
)
|
|
|
|
|
|
|
|
|
46 |
|
47 |
super().__init__(
|
48 |
**kwargs,
|