jiwan-chung
commited on
Commit
•
fd6d4b1
1
Parent(s):
61fd251
Update README.md
Browse files
README.md
CHANGED
@@ -5,8 +5,8 @@ license: other
|
|
5 |
license_name: llama3
|
6 |
license_link: LICENSE
|
7 |
language:
|
8 |
-
- en
|
9 |
- ko
|
|
|
10 |
tags:
|
11 |
- meta
|
12 |
- llama
|
@@ -20,6 +20,7 @@ library_name: transformers
|
|
20 |
|
21 |
|
22 |
# AKALLAMA
|
|
|
23 |
We introduce AKALLAMA-70B, korean focused opensource 70b large language model.
|
24 |
It demonstrate considerable improvement in korean fluence, specially compared to base llama 3 model.
|
25 |
To our knowledge, this is one of the first 70b opensource Korean-speaking language models.
|
@@ -28,30 +29,77 @@ To our knowledge, this is one of the first 70b opensource Korean-speaking langua
|
|
28 |
|
29 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub.
|
30 |
|
31 |
-
- **Developed by:** [
|
32 |
- **Language(s) (NLP):** Korean, English
|
33 |
- **License:** llama3
|
34 |
-
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
## Training Details
|
42 |
### Training Procedure
|
43 |
|
44 |
-
We
|
|
|
45 |
Please check out Huggingface's [alignment handbook](https://github.com/huggingface/alignment-handbook?tab=readme-ov-file) for further details, including the chat template.
|
46 |
|
47 |
### Training Data
|
48 |
|
49 |
-
Detailed descriptions regarding training data will be announced later.
|
50 |
|
51 |
### Examples
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
-
|
57 |
|
|
|
|
5 |
license_name: llama3
|
6 |
license_link: LICENSE
|
7 |
language:
|
|
|
8 |
- ko
|
9 |
+
- en
|
10 |
tags:
|
11 |
- meta
|
12 |
- llama
|
|
|
20 |
|
21 |
|
22 |
# AKALLAMA
|
23 |
+
|
24 |
We introduce AKALLAMA-70B, korean focused opensource 70b large language model.
|
25 |
It demonstrate considerable improvement in korean fluence, specially compared to base llama 3 model.
|
26 |
To our knowledge, this is one of the first 70b opensource Korean-speaking language models.
|
|
|
29 |
|
30 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub.
|
31 |
|
32 |
+
- **Developed by:** [Yonsei MIRLab](https://mirlab.yonsei.ac.kr/)
|
33 |
- **Language(s) (NLP):** Korean, English
|
34 |
- **License:** llama3
|
35 |
+
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)
|
36 |
+
|
37 |
+
## How to use
|
38 |
+
|
39 |
+
This repo provides full model weight files for AkaLlama-70B-v0.1.
|
40 |
+
|
41 |
+
# Use with transformers
|
42 |
+
|
43 |
+
See the snippet below for usage with Transformers:
|
44 |
+
|
45 |
+
```
|
46 |
+
import transformers
|
47 |
+
import torch
|
48 |
+
|
49 |
+
model_id = "mirlab/AkaLlama-llama3-70b-v0.1"
|
50 |
+
|
51 |
+
pipeline = transformers.pipeline(
|
52 |
+
"text-generation",
|
53 |
+
model=model_id,
|
54 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
55 |
+
device="auto",
|
56 |
+
)
|
57 |
+
|
58 |
+
system_prompt = """
|
59 |
+
"""
|
60 |
+
|
61 |
+
messages = [
|
62 |
+
{"role": "system", "content": "system_prompt"},
|
63 |
+
{"role": "user", "content": "네 이름은 뭐야?"},
|
64 |
+
]
|
65 |
+
|
66 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
67 |
+
messages,
|
68 |
+
tokenize=False,
|
69 |
+
add_generation_prompt=True
|
70 |
+
)
|
71 |
|
72 |
+
terminators = [
|
73 |
+
pipeline.tokenizer.eos_token_id,
|
74 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
75 |
+
]
|
76 |
|
77 |
+
outputs = pipeline(
|
78 |
+
prompt,
|
79 |
+
max_new_tokens=256,
|
80 |
+
eos_token_id=terminators,
|
81 |
+
do_sample=True,
|
82 |
+
temperature=0.6,
|
83 |
+
top_p=0.9,
|
84 |
+
)
|
85 |
+
print(outputs[0]["generated_text"][len(prompt):])
|
86 |
+
```
|
87 |
|
88 |
## Training Details
|
89 |
### Training Procedure
|
90 |
|
91 |
+
We trained AkaLlama using a preference learning alignment algorithm called [Odds Ratio Preference Optimization (ORPO)](https://huggingface.co/papers/2403.07691).
|
92 |
+
Our training pipeline is almost identical to that of [HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1), aside from minor hyperparameter changes.
|
93 |
Please check out Huggingface's [alignment handbook](https://github.com/huggingface/alignment-handbook?tab=readme-ov-file) for further details, including the chat template.
|
94 |
|
95 |
### Training Data
|
96 |
|
97 |
+
Detailed descriptions regarding training data will be announced later.
|
98 |
|
99 |
### Examples
|
100 |
|
101 |
+
WIP
|
102 |
|
103 |
+
## Special Thanks
|
|
|
104 |
|
105 |
+
- Data Center of the Department of Artificial Intelligence at Yonsei University for the computation resources
|