jiwan-chung commited on
Commit
fd6d4b1
1 Parent(s): 61fd251

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -11
README.md CHANGED
@@ -5,8 +5,8 @@ license: other
5
  license_name: llama3
6
  license_link: LICENSE
7
  language:
8
- - en
9
  - ko
 
10
  tags:
11
  - meta
12
  - llama
@@ -20,6 +20,7 @@ library_name: transformers
20
 
21
 
22
  # AKALLAMA
 
23
  We introduce AKALLAMA-70B, korean focused opensource 70b large language model.
24
  It demonstrate considerable improvement in korean fluence, specially compared to base llama 3 model.
25
  To our knowledge, this is one of the first 70b opensource Korean-speaking language models.
@@ -28,30 +29,77 @@ To our knowledge, this is one of the first 70b opensource Korean-speaking langua
28
 
29
  This is the model card of a 🤗 transformers model that has been pushed on the Hub.
30
 
31
- - **Developed by:** [mirlab](https://mirlab.yonsei.ac.kr/)
32
  - **Language(s) (NLP):** Korean, English
33
  - **License:** llama3
34
- - **Finetuned from model:** [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- ## Evaluation
 
 
 
37
 
38
- For local inferencing and evaluation, we highly recommend using the Ollama library.
39
- Check _Customize a model section_ of [Ollama github page](https://github.com/ollama/ollama)
 
 
 
 
 
 
 
 
40
 
41
  ## Training Details
42
  ### Training Procedure
43
 
44
- We closely followed training procedure of Zephyr ORPO model.
 
45
  Please check out Huggingface's [alignment handbook](https://github.com/huggingface/alignment-handbook?tab=readme-ov-file) for further details, including the chat template.
46
 
47
  ### Training Data
48
 
49
- Detailed descriptions regarding training data will be announced later.
50
 
51
  ### Examples
52
 
53
- ## Thanks to
54
 
55
- - A100 클러스터를 제공해주신, 연세대학교 인공지능학과 데이터센터
56
- -
57
 
 
 
5
  license_name: llama3
6
  license_link: LICENSE
7
  language:
 
8
  - ko
9
+ - en
10
  tags:
11
  - meta
12
  - llama
 
20
 
21
 
22
  # AKALLAMA
23
+
24
  We introduce AKALLAMA-70B, korean focused opensource 70b large language model.
25
  It demonstrate considerable improvement in korean fluence, specially compared to base llama 3 model.
26
  To our knowledge, this is one of the first 70b opensource Korean-speaking language models.
 
29
 
30
  This is the model card of a 🤗 transformers model that has been pushed on the Hub.
31
 
32
+ - **Developed by:** [Yonsei MIRLab](https://mirlab.yonsei.ac.kr/)
33
  - **Language(s) (NLP):** Korean, English
34
  - **License:** llama3
35
+ - **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)
36
+
37
+ ## How to use
38
+
39
+ This repo provides full model weight files for AkaLlama-70B-v0.1.
40
+
41
+ # Use with transformers
42
+
43
+ See the snippet below for usage with Transformers:
44
+
45
+ ```
46
+ import transformers
47
+ import torch
48
+
49
+ model_id = "mirlab/AkaLlama-llama3-70b-v0.1"
50
+
51
+ pipeline = transformers.pipeline(
52
+ "text-generation",
53
+ model=model_id,
54
+ model_kwargs={"torch_dtype": torch.bfloat16},
55
+ device="auto",
56
+ )
57
+
58
+ system_prompt = """
59
+ """
60
+
61
+ messages = [
62
+ {"role": "system", "content": "system_prompt"},
63
+ {"role": "user", "content": "네 이름은 뭐야?"},
64
+ ]
65
+
66
+ prompt = pipeline.tokenizer.apply_chat_template(
67
+ messages,
68
+ tokenize=False,
69
+ add_generation_prompt=True
70
+ )
71
 
72
+ terminators = [
73
+ pipeline.tokenizer.eos_token_id,
74
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
75
+ ]
76
 
77
+ outputs = pipeline(
78
+ prompt,
79
+ max_new_tokens=256,
80
+ eos_token_id=terminators,
81
+ do_sample=True,
82
+ temperature=0.6,
83
+ top_p=0.9,
84
+ )
85
+ print(outputs[0]["generated_text"][len(prompt):])
86
+ ```
87
 
88
  ## Training Details
89
  ### Training Procedure
90
 
91
+ We trained AkaLlama using a preference learning alignment algorithm called [Odds Ratio Preference Optimization (ORPO)](https://huggingface.co/papers/2403.07691).
92
+ Our training pipeline is almost identical to that of [HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1), aside from minor hyperparameter changes.
93
  Please check out Huggingface's [alignment handbook](https://github.com/huggingface/alignment-handbook?tab=readme-ov-file) for further details, including the chat template.
94
 
95
  ### Training Data
96
 
97
+ Detailed descriptions regarding training data will be announced later.
98
 
99
  ### Examples
100
 
101
+ WIP
102
 
103
+ ## Special Thanks
 
104
 
105
+ - Data Center of the Department of Artificial Intelligence at Yonsei University for the computation resources