File size: 2,822 Bytes
57034b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from typing import Any, Dict, Tuple
from transformers import Pipeline
from transformers.pipelines.base import GenericTensor
from transformers.utils import ModelOutput
from typing import Union,List
import torch

class EncodePipeline(Pipeline):
    def __init__(self, max_length=256,*args, **kwargs):
        super().__init__(*args, **kwargs)
        self.max_length = max_length

    def _sanitize_parameters(self, **pipeline_parameters):
        return {},{},{}

    def preprocess(self, input: Union[Tuple[str],List[Tuple[str]]], **preprocess_parameters: Dict) -> Dict[str, GenericTensor]:  
        tensors = self.tokenizer(
            input,
            max_length=self.max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        )
        return tensors
    
    def _forward(self, input_tensors: Dict[str, GenericTensor], **forward_parameters: Dict) -> ModelOutput:
        logits = self.model.encode(**input_tensors)
        return logits.tolist()
    
    def postprocess(
            self, 
            model_outputs: ModelOutput, 
            **postprocess_parameters: Dict
        ) -> Any:
        return model_outputs


class SimilarPipeline(Pipeline):
    def __init__(self, max_length=256,*args, **kwargs):
        super().__init__(*args, **kwargs)
        self.max_length = max_length

    def _sanitize_parameters(self, **pipeline_parameters):
        return {},{},{}

    def preprocess(self, input: Union[Tuple[str],List[Tuple[str]]], **preprocess_parameters: Dict) -> Dict[str, GenericTensor]:
        if isinstance(input, list):
            a = list(map(lambda x: x[0], input))
            b = list(map(lambda x: x[1], input))
        else:
            a = input[0]
            b = input[1]    
        tensors = self.tokenizer(
            a,
            max_length=self.max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        )
        tensors_b = self.tokenizer(
            b,
            max_length=self.max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        )
        for key in tensors:
            tensors[key] = torch.cat((tensors[key],tensors_b[key]),dim=0)
        return tensors
    
    def _forward(self, input_tensors: Dict[str, GenericTensor], **forward_parameters: Dict) -> ModelOutput:
        _,logits = self.model(**input_tensors)
        logits_a = logits[:logits.size(0)//2]
        logits_b = logits[logits.size(0)//2:]
        logits = torch.nn.functional.cosine_similarity(logits_a, logits_b)
        return logits.tolist()
    
    def postprocess(
            self, 
            model_outputs: ModelOutput, 
            **postprocess_parameters: Dict
        ) -> Any:
        return model_outputs