File size: 31,371 Bytes
a1eab01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
---
base_model: klue/roberta-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 트위저맨 포인트 트위저 Pretty in Pink (#M)홈>화장품/미용>뷰티소품>페이스소품>기타페이스소품 Naverstore > 화장품/미용
    > 뷰티소품 > 페이스소품 > 기타페이스소품
- text: 에스쁘아 에어 퍼프 5개입 소프트 터치 에어퍼프 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프 LotteOn >
    뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬
- text: 더툴랩 더스타일 래쉬 - 리얼(TSL001) x 1 리얼(TSL001) × 1 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품
    > 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리
- text: 미용재료/셀프파마/롯드/헤어롤/미용용품/파지/귀마개/염색볼/집게핀/샤워캡/헤어밴드 41.다용도 공병 2 홈>펌,염색,미용소도구;홈>파마용품;(#M)홈>파마
    소도구>파마용품 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 기타헤어소품
- text: 에스쁘아 비글로우 에어 퍼프 5개입(22AD)  (#M)홈>화장품/미용>뷰티소품>페이스소품>기타페이스소품 Naverstore > 화장품/미용
    > 뷰티소품 > 페이스소품 > 기타페이스소품
inference: true
model-index:
- name: SetFit with klue/roberta-base
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9419292632686155
      name: Accuracy
---

# SetFit with klue/roberta-base

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 8 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                           |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7     | <ul><li>'[JAJU/자주] 원형 리필 공병 통 110ml  ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품;ssg > 뷰티 > 헤어/바디/미용/구강 > 미용기기 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품'</li><li>'세맘스 아기랑 + 엄마랑 파우치 세트 핑크스마일_엄마(가로 11.5cm x 세로 13cm),  아기(가로 8cm x 세로 10.5cm) (#M)쿠팡 홈>여행용품>여행파우치>화장품파우치 Coupang > 뷰티 > 뷰티소품 > 용기/거울/기타소품 > 파우치'</li><li>'라인 프린팅 파스텔컬러 롤온공병 10ml 6종 세트 흰색(뚜껑) × 1세트 (#M)쿠팡 홈>뷰티>뷰티소품>용기/거울/기타소품>기타소품 Coupang > 뷰티 > 뷰티소품 > 용기/거울/기타소품 > 기타소품'</li></ul> |
| 3     | <ul><li>'트위저맨 슬랜트 트위저 족집게 베이비 핑크 × 9개 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li><li>'트위저맨 미니 슬랜트 트위저 로즈골드 265161 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션'</li><li>'트위저맨 클래식 슬랜트 트위저 베이비핑크, 1개  LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬'</li></ul>                                                                            |
| 6     | <ul><li>'천일 매직 롯드 10P 1호~6호 뿌리볼륨롯드 파마롯드 매직롯드 5호_1개 홈>화장품/미용>뷰티소품>헤어소품>헤어롤;홈>전체상품;(#M)홈>롯드 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 헤어롤'</li><li>'다이슨 45mm 35mm 롤브러쉬 대왕롤빗 엉킴방지빗 니켈블랙 (#M)홈>미용건강 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 헤어브러시'</li><li>'프리시전 섀이더 브러쉬 스몰 단품없음 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품'</li></ul>                                                                                        |
| 0     | <ul><li>'천연 자초 립밤 만들기 키트 diy 향 선택(8개) 사과+에탄올20ml (#M)홈>비누&립밤&세제 만들기>만들기키트 Naverstore > 화장품/미용 > 색조메이크업 > 립케어'</li></ul>                                                                                                                                                                                                                                                                                                            |
| 5     | <ul><li>'프로 피니쉬 스폰지 단품없음 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품 LotteOn > 뷰티 > 뷰티기기 > 액세서리/소모품'</li><li>'JAJU 사각 면봉_화장 겸용 200P 기타_FR LotteOn > 뷰티 > 뷰티기기/소품 > 위생용품 > 면봉 LotteOn > 뷰티 > 뷰티기기/소품 > 위생용품 > 면봉'</li><li>'mts 롤러 기계 MTS 스탬프 앰플 바르는 도구 니들 빠른흡수 상품선택_2-더마롤러-0.3mm LotteOn > 뷰티 > 뷰티기기/소품 > 피부케어기 > 피부케어기 LotteOn > 뷰티 > 뷰티기기/소품 > 피부케어기 > 피부케어기'</li></ul>                                                                        |
| 1     | <ul><li>'더툴랩 101B 베이비태스커 파운데이션 베이스 메이크업 브러쉬 쿠션브러쉬 236097  (#M)홈>화장품/미용>뷰티소품>메이크업브러시>브러시세트 Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 브러시세트'</li><li>'더툴랩 204 블렌딩 아이섀도우 스몰 총알 브러쉬  (#M)화장품/미용>뷰티소품>페이스소품>코털제거기 AD > Naverstore > 화장품/미용 > 뷰티소품 > 페이스소품 > 코털제거기'</li><li>'더툴랩 브러쉬 231 컨실러 파운데이션  (#M)화장품/미용>뷰티소품>메이크업브러시>페이스브러시 LO > Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 페이스브러시'</li></ul>                                            |
| 2     | <ul><li>'요들가운 미용실 LC 커트보 어깨보 컷트보 인쇄가능 15.모델210T커트보_블랙 (#M)홈>가운,유니폼>컷트보 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 기타헤어소품'</li><li>'요들가운 미용실 LC 커트보 어깨보 컷트보 인쇄가능 12.듀스포체크 커트보_퍼플 (#M)홈>가운,유니폼>컷트보 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 기타헤어소품'</li><li>'[백화점][JPClarisse] 장폴클라리쎄 거미 왕대 집게핀 JPSA0001 진베이지 (#M)GSSHOP>뷰티>뷰티소품>헤어소품 GSSHOP > 뷰티 > 뷰티소품 > 헤어소품 > 헤어집게'</li></ul>                                                                |
| 4     | <ul><li>'레터링 쇄골 현아 타투 스티커 30장 마스크 판박이 3타투세트30장-수채화 LotteOn > 뷰티 > 마스크/팩 > 기타패치 LotteOn > 뷰티 > 마스크/팩 > 기타패치'</li><li>'산리오 캐릭터 타투 스티커 어린이 문신 마스크판박이 5.헬로키티(2매입) 홈>패션잡화🛍>잡화🐱\u200d💻;(#M)홈>캐릭터🙂>산리오 Naverstore > 화장품/미용 > 뷰티소품 > 타투'</li><li>'문신 타투 스티커 바디 형 쇄골 반팔 레터링 흉터 커버__개성 다이소 헤나 다목적 노출 패션 미용 다용도 추천 패셔니스타 여름 A type 타투스티커 30종세트 (#M)SSG.COM/헤어/바디/슬리밍/푸드/기타용품/타투 ssg > 뷰티 > 헤어/바디 > 슬리밍/푸드/기타용품 > 타투'</li></ul>                |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9419   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_top_bt6")
# Run inference
preds = model("에스쁘아 에어 퍼프 5개입 소프트 터치 에어퍼프 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 12  | 22.0313 | 72  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 1                     |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |
| 4     | 50                    |
| 5     | 50                    |
| 6     | 50                    |
| 7     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step  | Training Loss | Validation Loss |
|:-------:|:-----:|:-------------:|:---------------:|
| 0.0018  | 1     | 0.4099        | -               |
| 0.0911  | 50    | 0.3973        | -               |
| 0.1821  | 100   | 0.3456        | -               |
| 0.2732  | 150   | 0.2947        | -               |
| 0.3643  | 200   | 0.2369        | -               |
| 0.4554  | 250   | 0.1705        | -               |
| 0.5464  | 300   | 0.107         | -               |
| 0.6375  | 350   | 0.0696        | -               |
| 0.7286  | 400   | 0.0494        | -               |
| 0.8197  | 450   | 0.0488        | -               |
| 0.9107  | 500   | 0.0307        | -               |
| 1.0018  | 550   | 0.0259        | -               |
| 1.0929  | 600   | 0.0247        | -               |
| 1.1840  | 650   | 0.022         | -               |
| 1.2750  | 700   | 0.0215        | -               |
| 1.3661  | 750   | 0.005         | -               |
| 1.4572  | 800   | 0.0007        | -               |
| 1.5483  | 850   | 0.0004        | -               |
| 1.6393  | 900   | 0.0002        | -               |
| 1.7304  | 950   | 0.0001        | -               |
| 1.8215  | 1000  | 0.0001        | -               |
| 1.9126  | 1050  | 0.0001        | -               |
| 2.0036  | 1100  | 0.0001        | -               |
| 2.0947  | 1150  | 0.0001        | -               |
| 2.1858  | 1200  | 0.0001        | -               |
| 2.2769  | 1250  | 0.0           | -               |
| 2.3679  | 1300  | 0.0           | -               |
| 2.4590  | 1350  | 0.0           | -               |
| 2.5501  | 1400  | 0.0           | -               |
| 2.6412  | 1450  | 0.0           | -               |
| 2.7322  | 1500  | 0.0           | -               |
| 2.8233  | 1550  | 0.0           | -               |
| 2.9144  | 1600  | 0.0           | -               |
| 3.0055  | 1650  | 0.0           | -               |
| 3.0965  | 1700  | 0.0           | -               |
| 3.1876  | 1750  | 0.0           | -               |
| 3.2787  | 1800  | 0.0           | -               |
| 3.3698  | 1850  | 0.0           | -               |
| 3.4608  | 1900  | 0.0           | -               |
| 3.5519  | 1950  | 0.0           | -               |
| 3.6430  | 2000  | 0.0           | -               |
| 3.7341  | 2050  | 0.0           | -               |
| 3.8251  | 2100  | 0.0           | -               |
| 3.9162  | 2150  | 0.0           | -               |
| 4.0073  | 2200  | 0.0           | -               |
| 4.0984  | 2250  | 0.0           | -               |
| 4.1894  | 2300  | 0.0           | -               |
| 4.2805  | 2350  | 0.0           | -               |
| 4.3716  | 2400  | 0.0           | -               |
| 4.4627  | 2450  | 0.0           | -               |
| 4.5537  | 2500  | 0.0           | -               |
| 4.6448  | 2550  | 0.0           | -               |
| 4.7359  | 2600  | 0.0           | -               |
| 4.8270  | 2650  | 0.0           | -               |
| 4.9180  | 2700  | 0.0           | -               |
| 5.0091  | 2750  | 0.0           | -               |
| 5.1002  | 2800  | 0.0           | -               |
| 5.1913  | 2850  | 0.0           | -               |
| 5.2823  | 2900  | 0.0           | -               |
| 5.3734  | 2950  | 0.0           | -               |
| 5.4645  | 3000  | 0.0           | -               |
| 5.5556  | 3050  | 0.0           | -               |
| 5.6466  | 3100  | 0.0           | -               |
| 5.7377  | 3150  | 0.0           | -               |
| 5.8288  | 3200  | 0.0           | -               |
| 5.9199  | 3250  | 0.0           | -               |
| 6.0109  | 3300  | 0.0           | -               |
| 6.1020  | 3350  | 0.0           | -               |
| 6.1931  | 3400  | 0.0           | -               |
| 6.2842  | 3450  | 0.0           | -               |
| 6.3752  | 3500  | 0.0           | -               |
| 6.4663  | 3550  | 0.0           | -               |
| 6.5574  | 3600  | 0.0           | -               |
| 6.6485  | 3650  | 0.0           | -               |
| 6.7395  | 3700  | 0.0           | -               |
| 6.8306  | 3750  | 0.0           | -               |
| 6.9217  | 3800  | 0.0           | -               |
| 7.0128  | 3850  | 0.0           | -               |
| 7.1038  | 3900  | 0.0           | -               |
| 7.1949  | 3950  | 0.0           | -               |
| 7.2860  | 4000  | 0.0           | -               |
| 7.3770  | 4050  | 0.0           | -               |
| 7.4681  | 4100  | 0.0           | -               |
| 7.5592  | 4150  | 0.0           | -               |
| 7.6503  | 4200  | 0.0           | -               |
| 7.7413  | 4250  | 0.0           | -               |
| 7.8324  | 4300  | 0.0           | -               |
| 7.9235  | 4350  | 0.0           | -               |
| 8.0146  | 4400  | 0.0           | -               |
| 8.1056  | 4450  | 0.0           | -               |
| 8.1967  | 4500  | 0.0           | -               |
| 8.2878  | 4550  | 0.0           | -               |
| 8.3789  | 4600  | 0.0           | -               |
| 8.4699  | 4650  | 0.0           | -               |
| 8.5610  | 4700  | 0.0           | -               |
| 8.6521  | 4750  | 0.0           | -               |
| 8.7432  | 4800  | 0.0           | -               |
| 8.8342  | 4850  | 0.0           | -               |
| 8.9253  | 4900  | 0.0           | -               |
| 9.0164  | 4950  | 0.0           | -               |
| 9.1075  | 5000  | 0.0           | -               |
| 9.1985  | 5050  | 0.0           | -               |
| 9.2896  | 5100  | 0.0           | -               |
| 9.3807  | 5150  | 0.0           | -               |
| 9.4718  | 5200  | 0.0           | -               |
| 9.5628  | 5250  | 0.0           | -               |
| 9.6539  | 5300  | 0.0           | -               |
| 9.7450  | 5350  | 0.0           | -               |
| 9.8361  | 5400  | 0.0           | -               |
| 9.9271  | 5450  | 0.0           | -               |
| 10.0182 | 5500  | 0.0           | -               |
| 10.1093 | 5550  | 0.0           | -               |
| 10.2004 | 5600  | 0.0           | -               |
| 10.2914 | 5650  | 0.0           | -               |
| 10.3825 | 5700  | 0.0           | -               |
| 10.4736 | 5750  | 0.0           | -               |
| 10.5647 | 5800  | 0.0           | -               |
| 10.6557 | 5850  | 0.0           | -               |
| 10.7468 | 5900  | 0.0           | -               |
| 10.8379 | 5950  | 0.0           | -               |
| 10.9290 | 6000  | 0.0           | -               |
| 11.0200 | 6050  | 0.0           | -               |
| 11.1111 | 6100  | 0.0           | -               |
| 11.2022 | 6150  | 0.0           | -               |
| 11.2933 | 6200  | 0.0           | -               |
| 11.3843 | 6250  | 0.0           | -               |
| 11.4754 | 6300  | 0.0           | -               |
| 11.5665 | 6350  | 0.0           | -               |
| 11.6576 | 6400  | 0.0           | -               |
| 11.7486 | 6450  | 0.0           | -               |
| 11.8397 | 6500  | 0.0           | -               |
| 11.9308 | 6550  | 0.0           | -               |
| 12.0219 | 6600  | 0.0           | -               |
| 12.1129 | 6650  | 0.0           | -               |
| 12.2040 | 6700  | 0.0           | -               |
| 12.2951 | 6750  | 0.0           | -               |
| 12.3862 | 6800  | 0.0           | -               |
| 12.4772 | 6850  | 0.0           | -               |
| 12.5683 | 6900  | 0.0           | -               |
| 12.6594 | 6950  | 0.0           | -               |
| 12.7505 | 7000  | 0.0           | -               |
| 12.8415 | 7050  | 0.0           | -               |
| 12.9326 | 7100  | 0.0           | -               |
| 13.0237 | 7150  | 0.0           | -               |
| 13.1148 | 7200  | 0.0           | -               |
| 13.2058 | 7250  | 0.0           | -               |
| 13.2969 | 7300  | 0.0           | -               |
| 13.3880 | 7350  | 0.0           | -               |
| 13.4791 | 7400  | 0.0           | -               |
| 13.5701 | 7450  | 0.0           | -               |
| 13.6612 | 7500  | 0.0           | -               |
| 13.7523 | 7550  | 0.0           | -               |
| 13.8434 | 7600  | 0.0           | -               |
| 13.9344 | 7650  | 0.0           | -               |
| 14.0255 | 7700  | 0.0           | -               |
| 14.1166 | 7750  | 0.0           | -               |
| 14.2077 | 7800  | 0.0           | -               |
| 14.2987 | 7850  | 0.0           | -               |
| 14.3898 | 7900  | 0.0           | -               |
| 14.4809 | 7950  | 0.0           | -               |
| 14.5719 | 8000  | 0.0           | -               |
| 14.6630 | 8050  | 0.0           | -               |
| 14.7541 | 8100  | 0.0           | -               |
| 14.8452 | 8150  | 0.0           | -               |
| 14.9362 | 8200  | 0.0           | -               |
| 15.0273 | 8250  | 0.0           | -               |
| 15.1184 | 8300  | 0.0           | -               |
| 15.2095 | 8350  | 0.0           | -               |
| 15.3005 | 8400  | 0.0           | -               |
| 15.3916 | 8450  | 0.0           | -               |
| 15.4827 | 8500  | 0.0           | -               |
| 15.5738 | 8550  | 0.012         | -               |
| 15.6648 | 8600  | 0.0012        | -               |
| 15.7559 | 8650  | 0.0003        | -               |
| 15.8470 | 8700  | 0.0           | -               |
| 15.9381 | 8750  | 0.0           | -               |
| 16.0291 | 8800  | 0.0           | -               |
| 16.1202 | 8850  | 0.0           | -               |
| 16.2113 | 8900  | 0.0           | -               |
| 16.3024 | 8950  | 0.0           | -               |
| 16.3934 | 9000  | 0.0           | -               |
| 16.4845 | 9050  | 0.0           | -               |
| 16.5756 | 9100  | 0.0           | -               |
| 16.6667 | 9150  | 0.0           | -               |
| 16.7577 | 9200  | 0.0           | -               |
| 16.8488 | 9250  | 0.0           | -               |
| 16.9399 | 9300  | 0.0           | -               |
| 17.0310 | 9350  | 0.0           | -               |
| 17.1220 | 9400  | 0.0           | -               |
| 17.2131 | 9450  | 0.0           | -               |
| 17.3042 | 9500  | 0.0           | -               |
| 17.3953 | 9550  | 0.0           | -               |
| 17.4863 | 9600  | 0.0           | -               |
| 17.5774 | 9650  | 0.0           | -               |
| 17.6685 | 9700  | 0.0           | -               |
| 17.7596 | 9750  | 0.0           | -               |
| 17.8506 | 9800  | 0.0           | -               |
| 17.9417 | 9850  | 0.0           | -               |
| 18.0328 | 9900  | 0.0           | -               |
| 18.1239 | 9950  | 0.0           | -               |
| 18.2149 | 10000 | 0.0           | -               |
| 18.3060 | 10050 | 0.0           | -               |
| 18.3971 | 10100 | 0.0           | -               |
| 18.4882 | 10150 | 0.0           | -               |
| 18.5792 | 10200 | 0.0           | -               |
| 18.6703 | 10250 | 0.0           | -               |
| 18.7614 | 10300 | 0.0           | -               |
| 18.8525 | 10350 | 0.0           | -               |
| 18.9435 | 10400 | 0.0           | -               |
| 19.0346 | 10450 | 0.0           | -               |
| 19.1257 | 10500 | 0.0           | -               |
| 19.2168 | 10550 | 0.0           | -               |
| 19.3078 | 10600 | 0.0           | -               |
| 19.3989 | 10650 | 0.0           | -               |
| 19.4900 | 10700 | 0.0           | -               |
| 19.5811 | 10750 | 0.0           | -               |
| 19.6721 | 10800 | 0.0           | -               |
| 19.7632 | 10850 | 0.0           | -               |
| 19.8543 | 10900 | 0.0           | -               |
| 19.9454 | 10950 | 0.0           | -               |
| 20.0364 | 11000 | 0.0           | -               |
| 20.1275 | 11050 | 0.0           | -               |
| 20.2186 | 11100 | 0.0           | -               |
| 20.3097 | 11150 | 0.0           | -               |
| 20.4007 | 11200 | 0.0           | -               |
| 20.4918 | 11250 | 0.0           | -               |
| 20.5829 | 11300 | 0.0           | -               |
| 20.6740 | 11350 | 0.0           | -               |
| 20.7650 | 11400 | 0.0           | -               |
| 20.8561 | 11450 | 0.0           | -               |
| 20.9472 | 11500 | 0.0           | -               |
| 21.0383 | 11550 | 0.0           | -               |
| 21.1293 | 11600 | 0.0           | -               |
| 21.2204 | 11650 | 0.0           | -               |
| 21.3115 | 11700 | 0.0           | -               |
| 21.4026 | 11750 | 0.0           | -               |
| 21.4936 | 11800 | 0.0           | -               |
| 21.5847 | 11850 | 0.0           | -               |
| 21.6758 | 11900 | 0.0           | -               |
| 21.7668 | 11950 | 0.0           | -               |
| 21.8579 | 12000 | 0.0           | -               |
| 21.9490 | 12050 | 0.0           | -               |
| 22.0401 | 12100 | 0.0           | -               |
| 22.1311 | 12150 | 0.0           | -               |
| 22.2222 | 12200 | 0.0           | -               |
| 22.3133 | 12250 | 0.0           | -               |
| 22.4044 | 12300 | 0.0           | -               |
| 22.4954 | 12350 | 0.0           | -               |
| 22.5865 | 12400 | 0.0           | -               |
| 22.6776 | 12450 | 0.0           | -               |
| 22.7687 | 12500 | 0.0           | -               |
| 22.8597 | 12550 | 0.0           | -               |
| 22.9508 | 12600 | 0.0           | -               |
| 23.0419 | 12650 | 0.0           | -               |
| 23.1330 | 12700 | 0.0           | -               |
| 23.2240 | 12750 | 0.0           | -               |
| 23.3151 | 12800 | 0.0           | -               |
| 23.4062 | 12850 | 0.0           | -               |
| 23.4973 | 12900 | 0.0           | -               |
| 23.5883 | 12950 | 0.0           | -               |
| 23.6794 | 13000 | 0.0           | -               |
| 23.7705 | 13050 | 0.0           | -               |
| 23.8616 | 13100 | 0.0           | -               |
| 23.9526 | 13150 | 0.0           | -               |
| 24.0437 | 13200 | 0.0           | -               |
| 24.1348 | 13250 | 0.0           | -               |
| 24.2259 | 13300 | 0.0           | -               |
| 24.3169 | 13350 | 0.0           | -               |
| 24.4080 | 13400 | 0.0           | -               |
| 24.4991 | 13450 | 0.0           | -               |
| 24.5902 | 13500 | 0.0           | -               |
| 24.6812 | 13550 | 0.0           | -               |
| 24.7723 | 13600 | 0.0           | -               |
| 24.8634 | 13650 | 0.0           | -               |
| 24.9545 | 13700 | 0.0           | -               |
| 25.0455 | 13750 | 0.0           | -               |
| 25.1366 | 13800 | 0.0           | -               |
| 25.2277 | 13850 | 0.0           | -               |
| 25.3188 | 13900 | 0.0           | -               |
| 25.4098 | 13950 | 0.0           | -               |
| 25.5009 | 14000 | 0.0           | -               |
| 25.5920 | 14050 | 0.0           | -               |
| 25.6831 | 14100 | 0.0           | -               |
| 25.7741 | 14150 | 0.0           | -               |
| 25.8652 | 14200 | 0.0           | -               |
| 25.9563 | 14250 | 0.0           | -               |
| 26.0474 | 14300 | 0.0           | -               |
| 26.1384 | 14350 | 0.0           | -               |
| 26.2295 | 14400 | 0.0           | -               |
| 26.3206 | 14450 | 0.0           | -               |
| 26.4117 | 14500 | 0.0           | -               |
| 26.5027 | 14550 | 0.0           | -               |
| 26.5938 | 14600 | 0.0           | -               |
| 26.6849 | 14650 | 0.0           | -               |
| 26.7760 | 14700 | 0.0           | -               |
| 26.8670 | 14750 | 0.0           | -               |
| 26.9581 | 14800 | 0.0           | -               |
| 27.0492 | 14850 | 0.0           | -               |
| 27.1403 | 14900 | 0.0           | -               |
| 27.2313 | 14950 | 0.0           | -               |
| 27.3224 | 15000 | 0.0           | -               |
| 27.4135 | 15050 | 0.0           | -               |
| 27.5046 | 15100 | 0.0           | -               |
| 27.5956 | 15150 | 0.0           | -               |
| 27.6867 | 15200 | 0.0           | -               |
| 27.7778 | 15250 | 0.0           | -               |
| 27.8689 | 15300 | 0.0           | -               |
| 27.9599 | 15350 | 0.0           | -               |
| 28.0510 | 15400 | 0.0           | -               |
| 28.1421 | 15450 | 0.0           | -               |
| 28.2332 | 15500 | 0.0           | -               |
| 28.3242 | 15550 | 0.0           | -               |
| 28.4153 | 15600 | 0.0           | -               |
| 28.5064 | 15650 | 0.0           | -               |
| 28.5974 | 15700 | 0.0           | -               |
| 28.6885 | 15750 | 0.0           | -               |
| 28.7796 | 15800 | 0.0           | -               |
| 28.8707 | 15850 | 0.0           | -               |
| 28.9617 | 15900 | 0.0           | -               |
| 29.0528 | 15950 | 0.0           | -               |
| 29.1439 | 16000 | 0.0           | -               |
| 29.2350 | 16050 | 0.0           | -               |
| 29.3260 | 16100 | 0.0           | -               |
| 29.4171 | 16150 | 0.0           | -               |
| 29.5082 | 16200 | 0.0           | -               |
| 29.5993 | 16250 | 0.0           | -               |
| 29.6903 | 16300 | 0.0           | -               |
| 29.7814 | 16350 | 0.0           | -               |
| 29.8725 | 16400 | 0.0           | -               |
| 29.9636 | 16450 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->