mini1013 commited on
Commit
bd65d2a
·
verified ·
1 Parent(s): 347fdd3

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 맥퀸뉴욕 페이크 업 3색 쉐딩+쉐딩브러쉬 컨투어링 섀딩(신규색상 출시!) 쉐딩세트(뉴트럴브라운) 주식회사 웃는생각컴퍼니
14
+ - text: LOMA 너리싱 컨디셔너 1L 옵션없음 엠브로(M.bro)
15
+ - text: KYTRSTX face Towels 옵션없음 부자오타쿠
16
+ - text: 바이레도 블랑쉬 헤어미스트 퍼퓸 75ml 75ml 피제이인터내셔날(주)
17
+ - text: 쏘내추럴 시그니처 페이스 오일 30ml 1개 옵션없음 건강드림
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with klue/roberta-base
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.494948348280168
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with klue/roberta-base
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 13 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1.0 | <ul><li>'셀프 젤네일 세트 홈 키트 로나네일'</li><li>'네일팁패디팁겸용 양면테이프 24p 1장 말랑팁전용 네일파츠대장'</li><li>'뷰젤 오빠탑젤 5개 세트 논와이프 오빠탑 옵션없음 더 뷰티 (THE BEAUTY)'</li></ul> |
66
+ | 7.0 | <ul><li>'엘로엘 2024 시즌8 팡팡 빅선쿠션 S8 스마일썬쿠션 본품 25g 옵션없음 더블아이'</li><li>'바나나보트 에프터썬 알로에젤 수딩젤 473ml 3개입 바나나보트 알로에젤 473ml/3개입 스테디세일러'</li><li>'PGA TOUR 선몬랩 피토 워터 선스프레이 80ML A07 옵션없음 장희스토어'</li></ul> |
67
+ | 12.0 | <ul><li>'톤28 머리감을거리 S21 검은콩 참숯 약산성 고체샴푸 100g 1개 100g × 옵션없음 지엘디'</li><li>'[클렌징대전(클렌징밤 )] 로픈 바오밥 세라마이드LPP 프리미엄 헤어트리트먼트 베이비파우더향 1000g 옵션없음 (주)우신뷰티'</li><li>'닥터그라프트 스칼프 탈모 토닉 100ml 탈모 두피 케어 옵션없음 인터넷시장'</li></ul> |
68
+ | 2.0 | <ul><li>'한율 달빛유자 수면팩 100ml (튜브형) 옵션없음 고마이플로'</li><li>'골프 피부진정 패치 5매 아이패치 하이드로겔 등산 옵션없음 아이템코리아주식회사(Item KOREA Inc.)'</li><li>'[1+1] 아나프노 스포츠 마사지 크림 온열찜질 근육완화 100ml 옵션없음 윈드샵(WIND SHOP)'</li></ul> |
69
+ | 8.0 | <ul><li>'정품 달바 화이트 트러플 로얄 인텐시브 세럼 160ml 1개 옵션없음 (주)준광아이티'</li><li>'스킨푸드 미나리 패드 토너 닥토 닦토 60매 옵션없음 찬이네마켓'</li><li>'슈슈블리 맥 MAC 프렙 프라임 픽스 픽서 플러스 미스트 100ml 1021720 일반형 메가랜드'</li></ul> |
70
+ | 6.0 | <ul><li>'(유통기한 임박)투쿨포스쿨 아트 클래스 매지컬 픽싱 마스카라 7g 2호 다크브라운(24.04까지) 리앤햇'</li><li>'누즈 무스 케어 치크 16ml 1021961 02핑크타퍼_동의합니다. 굿데이'</li><li>'하트퍼센트 도트 온 무드 립펜슬 20 Colors, 03 오트베이지, 1개 옵션없음 어바웃팩토리'</li></ul> |
71
+ | 0.0 | <ul><li>'사타구니 가려움 습진 연고 약 백선 완선 연고 낭습증 20ml 2개 옵션없음 비솔루션'</li><li>'니베아 맨 센서티브 쉐이빙 젤 200ml 옵션없음 네고장터'</li><li>'AHC 온리포맨 스킨케어 2종세트(토너+로션) AHC 공식스토어'</li></ul> |
72
+ | 4.0 | <ul><li>'미샤 골드토핑 모이스트 레이어링 스타터 30ml 옵션없음 위너플렉스'</li><li>'레브론 컬러 스테이 프레스토 파우더 N820 1개(x1) 옵션없음 Thanks Auction'</li><li>'[국내매장판] 베네피트 프라이머 모공프라이머 더포어페셔널 모공 커버 지우개 7.5ml 프라이머 미니 + 슈퍼세터 미니 + 파우치 하이블랭크'</li></ul> |
73
+ | 9.0 | <ul><li>'아임프롬 피그 스크럽 마스크 120g 5개 옵션없음 건강드림'</li><li>'바이오더마 센시비오 H2O 500ml 옵션없음 브이브이에스'</li><li>'바이오더마 센시비오 H2O 500ml (펌프형) 옵션없음 나오스코리아 유한회사'</li></ul> |
74
+ | 10.0 | <ul><li>'소소모소 디퓨저리필 500ml_프레쉬라벤더 _salestrNo:2449_지점명:emartNE.O.002 (주)리빙탑스/해당사항 없음'</li><li>'[로에베](신세계 강남점)아구아 마이애미 오 드 뚜왈렛 100ML 옵션없음 주식회사 에스에스지닷컴'</li><li>'인센스 홀더 미니화병 황동 향 피우기 나그참파 꽂이 (WBC1E2F) 본상품선택 기타/해당사항 없음'</li></ul> |
75
+ | 11.0 | <ul><li>'미쟝센 올뉴 쉽고빠른 거품 염색약 5N 갈색 1개 옵션없음 트레이딩제이'</li><li>'다슈 울트라 홀딩 스칼프 탈모증상완화 헤어스프레이, 50ml, 1개 50ml × 1개 오케이라이딩'</li><li>'한국미용 피앙코 울트라 하드젤 550ml 옵션없음 (주)수유종합유통'</li></ul> |
76
+ | 5.0 | <ul><li>'실리콘 플라스틱뷰러 속눈썹 파마 패드 리프팅 로드 쉴드 3D 컬러 액세서리 어플리케이터 Mgreen 1 pair 카이산몰208'</li><li>'쪽집게 전문 스테인리스 스틸 고품질 보석 족집게, DIY 다이아몬드 주얼리 제작 도구 02 elbow 마이나인쓰'</li><li>'괄사마사지기 원목 코 빗 얼굴 두피 경락 괄사안마기 옵션없음 운호'</li></ul> |
77
+ | 3.0 | <ul><li>'상떼 아줄렌 수더 겔 500ml 진정 수분 마사지겔 💚아카토너 500ml+버블공병+패드200매_아카마스크2장+상떼체험분최다💗 달링태그(Darling_Tag)'</li><li>'일본 규슈 벳푸 명반온천 가마도지옥 천연입욕제 대자연의편안함 500ml 250ml 유노하나 유황 입욕제 대자연의편안함500ml 명품산업'</li><li>'닥터블리 멍게발팩 발 각질제거 필링 풋마스크 뒤꿈치 갈라짐 제거 1박스(3개입) 주식회사제이에이치코퍼레이션'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Accuracy |
83
+ |:--------|:---------|
84
+ | **all** | 0.4949 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("mini1013/master_item_bt_test")
103
+ # Run inference
104
+ preds = model("KYTRSTX face Towels 옵션없음 부자오타쿠")
105
+ ```
106
+
107
+ <!--
108
+ ### Downstream Use
109
+
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
112
+
113
+ <!--
114
+ ### Out-of-Scope Use
115
+
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
+
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
+
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
+
125
+ <!--
126
+ ### Recommendations
127
+
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
130
+
131
+ ## Training Details
132
+
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:-------|:----|
136
+ | Word count | 3 | 9.3971 | 26 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | 0.0 | 242 |
141
+ | 1.0 | 134 |
142
+ | 2.0 | 161 |
143
+ | 3.0 | 324 |
144
+ | 4.0 | 141 |
145
+ | 5.0 | 130 |
146
+ | 6.0 | 267 |
147
+ | 7.0 | 133 |
148
+ | 8.0 | 257 |
149
+ | 9.0 | 251 |
150
+ | 10.0 | 63 |
151
+ | 11.0 | 117 |
152
+ | 12.0 | 152 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (512, 512)
156
+ - num_epochs: (1, 1)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - num_iterations: 10
160
+ - body_learning_rate: (2e-05, 1e-05)
161
+ - head_learning_rate: 0.01
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: False
167
+ - warmup_proportion: 0.1
168
+ - l2_weight: 0.01
169
+ - seed: 42
170
+ - eval_max_steps: -1
171
+ - load_best_model_at_end: False
172
+
173
+ ### Training Results
174
+ | Epoch | Step | Training Loss | Validation Loss |
175
+ |:------:|:----:|:-------------:|:---------------:|
176
+ | 0.0213 | 1 | 0.4192 | - |
177
+
178
+ ### Framework Versions
179
+ - Python: 3.10.12
180
+ - SetFit: 1.1.0
181
+ - Sentence Transformers: 3.3.1
182
+ - Transformers: 4.44.2
183
+ - PyTorch: 2.2.0a0+81ea7a4
184
+ - Datasets: 3.2.0
185
+ - Tokenizers: 0.19.1
186
+
187
+ ## Citation
188
+
189
+ ### BibTeX
190
+ ```bibtex
191
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
192
+ doi = {10.48550/ARXIV.2209.11055},
193
+ url = {https://arxiv.org/abs/2209.11055},
194
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
195
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
196
+ title = {Efficient Few-Shot Learning Without Prompts},
197
+ publisher = {arXiv},
198
+ year = {2022},
199
+ copyright = {Creative Commons Attribution 4.0 International}
200
+ }
201
+ ```
202
+
203
+ <!--
204
+ ## Glossary
205
+
206
+ *Clearly define terms in order to be accessible across audiences.*
207
+ -->
208
+
209
+ <!--
210
+ ## Model Card Authors
211
+
212
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
213
+ -->
214
+
215
+ <!--
216
+ ## Model Card Contact
217
+
218
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
219
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_domain",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:820eb225807accee327570b317c8b03235ebd89bcf549189365dfc1ea20cc879
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:144c11dd92d17857642e761e1e619642ecbe3dc2d095972e5d4300c74c6fda26
3
+ size 80895
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff