File size: 10,262 Bytes
86d67ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 스타스포츠 스타 루카스 스포츠용품 운동신발 족구화 스포츠/레저>족구>족구화
- text: 스텝 레더 축구 연습 훈련 사다리 순발력 족구 연습기 스포츠/레저>족구>기타족구용품
- text: 낫소 족구공 큐스팩트A T패널 적용 EVA FORM 쿠션감 스포츠/레저>족구>족구공
- text: 더블레이어 고탄력 터치감 족구공 족구동호회 족구볼 스포츠/레저>족구>족구공
- text: 라인기 운동장 경기장 선긋기 트랙 축구장 족구장 주차장 스포츠/레저>족구>기타족구용품
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                       |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.0   | <ul><li>'족구화 발볼넓은 JOMA 호머 축구 신발 남성 MG 짧은 손톱 조마 학생 성인 프리스비 스포츠/레저>족구>족구화'</li><li>'신신상사 스타스포츠 스타 에너제틱 족구화 선수용 JS6200-03 245 스포츠/레저>족구>족구화'</li><li>'스타스포츠 스타 레독스R 족구화 입문자 동호회용 JS5970 스포츠/레저>족구>족구화'</li></ul>  |
| 1.0   | <ul><li>'신신상사 스타스포츠 스타스포츠 족구공 사인볼 하이브리드 8판넬방식 스포츠/레저>족구>족구공'</li><li>'신신상사 스타스포츠 족구공 풋살공 축구공 족구공 더 윙 태극 8판넬 JB435 스포츠/레저>족구>족구공'</li><li>'스타스포츠 스타스포츠 태극 족구공 동계용 방수코팅 족구 시합구 스포츠/레저>족구>족구공'</li></ul>          |
| 0.0   | <ul><li>'족구타격기 발차기 훈련 스탠드 연습 운동 레슨 스포츠/레저>족구>기타족구용품'</li><li>'스타 족구 심판대 의자 심판 발판대 라인기 코트경계망 스코어보드 지주세트 네트 번호판 스포츠/레저>족구>기타족구용품'</li><li>'ZIPPO 라이터 Figurehead GD 신명글로빅스 ZPM3MA007R 스포츠/레저>족구>기타족구용품'</li></ul> |
| 3.0   | <ul><li>'브럼비 족구유니폼 사이트 21시즌 디자인 피오드 - 2 스포츠/레저>족구>족구의류'</li><li>'브럼비 축구유니폼 사이트 24시즌 디자인 로마-2 스포츠/레저>족구>족구의류'</li><li>'족구 유니폼제작 전사팀복 221007 스포츠/레저>족구>족구의류'</li></ul>                                           |
| 2.0   | <ul><li>'낫소 일반형 족구네트 NSJ-N105 스포츠/레저>족구>족구네트'</li><li>'오레인 족구 네트 OJG-N224 스포츠/레저>족구>족구네트'</li><li>'엔포유 N4U-B500 배드민턴 족구 다용도네트 스포츠/레저>족구>족구네트'</li></ul>                                                        |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl26")
# Run inference
preds = model("스타스포츠 스타 루카스 스포츠용품 운동신발 족구화 스포츠/레저>족구>족구화")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 2   | 8.0441 | 19  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 70                    |
| 1.0   | 70                    |
| 2.0   | 15                    |
| 3.0   | 70                    |
| 4.0   | 70                    |

### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0172  | 1    | 0.4882        | -               |
| 0.8621  | 50   | 0.4668        | -               |
| 1.7241  | 100  | 0.1034        | -               |
| 2.5862  | 150  | 0.0002        | -               |
| 3.4483  | 200  | 0.0           | -               |
| 4.3103  | 250  | 0.0           | -               |
| 5.1724  | 300  | 0.0           | -               |
| 6.0345  | 350  | 0.0           | -               |
| 6.8966  | 400  | 0.0           | -               |
| 7.7586  | 450  | 0.0           | -               |
| 8.6207  | 500  | 0.0           | -               |
| 9.4828  | 550  | 0.0           | -               |
| 10.3448 | 600  | 0.0           | -               |
| 11.2069 | 650  | 0.0           | -               |
| 12.0690 | 700  | 0.0           | -               |
| 12.9310 | 750  | 0.0           | -               |
| 13.7931 | 800  | 0.0           | -               |
| 14.6552 | 850  | 0.0           | -               |
| 15.5172 | 900  | 0.0           | -               |
| 16.3793 | 950  | 0.0           | -               |
| 17.2414 | 1000 | 0.0           | -               |
| 18.1034 | 1050 | 0.0           | -               |
| 18.9655 | 1100 | 0.0           | -               |
| 19.8276 | 1150 | 0.0           | -               |
| 20.6897 | 1200 | 0.0           | -               |
| 21.5517 | 1250 | 0.0           | -               |
| 22.4138 | 1300 | 0.0           | -               |
| 23.2759 | 1350 | 0.0           | -               |
| 24.1379 | 1400 | 0.0           | -               |
| 25.0    | 1450 | 0.0           | -               |
| 25.8621 | 1500 | 0.0           | -               |
| 26.7241 | 1550 | 0.0           | -               |
| 27.5862 | 1600 | 0.0           | -               |
| 28.4483 | 1650 | 0.0           | -               |
| 29.3103 | 1700 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->