File size: 11,474 Bytes
00df84b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 삼성 노트북 NT450R5E K81S K82P K82W K83S K85S 정품 어댑터 아답터 아답타 충전기 AD-6019R 19V 3.16A 뉴
스마트 전자
- text: 인트존 205X 노트북 파우치 13인치 15인치 핸디 가방 13인치_스모키블랙 크로니시스템
- text: 엑토(ACTTO) NBL-04 노트북 도난방지 케이블/(화이트) 국진컴퓨터
- text: 삼성 정품어댑터AD-4019A/19V2.1A/NT930X5J-K82S/4019P 엔티와이
- text: LG 그램 17Z90SP & 17ZD90SP 17인치 퓨어 저반사 지문방지 액정보호필름 제트비컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9272844272844273
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | <ul><li>'MSI 프레스티지 16 AI Evo B1MG 노트북 키스킨 커버 무소음 키보드 올유어리브'</li><li>'맥북 에어 15인치 키스킨 M2 실리콘 키보드덮개 (주)스코코'</li><li>'삼성갤럭시북3 Go 키스킨 NT345XPA-KC04S 키스킨 키커버 14인치 실리스킨 문자인쇄 키스킨(블랙) 에이플'</li></ul> |
| 0 | <ul><li>'칼디짓 엘레멘트독 CalDigit Element Dock 썬더볼트4 독 멀티허브 맥북프로 Element Dock (주)디엔에이치'</li><li>'마하링크 2.5인치 SATA 멀티부스트 ML-MBS127 디메이드 (DMADE)'</li><li>'AA-AE2N12B usb 젠더 컴퓨터 인터넷 설치 랜 포트 에스아이'</li></ul> |
| 3 | <ul><li>'잘만 ZM-NS1000 정품/노트북 받침대/쿨링패드 주식회사보성닷컴'</li><li>'-잘만 ZM-NS1 (블랙)- 주식회사 케이에이치몰'</li><li>'잘만 노트북 쿨링 받침대 ZM-NS2000 (주)아싸컴'</li></ul> |
| 5 | <ul><li>'W01 HP Omen 17-ANxxxTX 시리즈용 Crystal액정보호필름 더블유공일'</li><li>'맥북 에어 15인치 필름 M2 무광 하판 외부 1매 무광 상판 1매 (주)스코코'</li><li>'맥북에어 M3 2024 15인치 외부보호필름 3종세트 에이엠스토어'</li></ul> |
| 1 | <ul><li>'이지엘 국산 가벼운 손잡이 노트북 파우치 케이스 13.3인치 For 13.3인치_스모키블랙 이지엘'</li><li>'[에버키] Titan 타이탄 EKP120 18.4인치 비투비마스터'</li><li>'LG 그램 14인치 전용 가죽 파우치 (주) 티앤티정보 용산전자랜드지점'</li></ul> |
| 6 | <ul><li>'[프라임디렉트] 아답터, 220V / 19V 3.42A [내경2.1~2.5mm/외경5.5mm] 전원 케이블 미포함 [비닐포장] (주)컴퓨존'</li><li>'삼성 정품 노트북 NT-RV720 / 19V 3.16A AD-6019S AD-6019R 정품 전원 어댑터 고다'</li><li>'EFM ipTIME 어댑터 48V-0.5A (ipTIME 제품군 호환용) [ 아이피타임 ] (주)클럽라이더'</li></ul> |
| 7 | <ul><li>'HP 노트북배터리 14 15 TPN-Q207 Q208 HT03XL 호환용배터리 라온하람몰'</li><li>'(AA-PB9NC6B)삼성 정품 노트북 배터리/NT-RF410 RF411 RF510 RF511 RF710 RF711 전용 엔티와이'</li><li>'삼성 정품 배터리 AA-PB9NC6B/NT-R530 R540 전용 노트북 배터리/ NTY 엔티와이'</li></ul> |
| 2 | <ul><li>'강원전자 넷메이트 노트북 도난방지 USB포트 와이어 잠금장치 키 타입 NM-SLL05M 보다넷'</li><li>'노트북 도난방지 와이어 잠금장치 NM-SLL03 주식회사 루피하루'</li><li>'엑토(ACTTO) NBL-01 노트북 도난방지 케이블/잠금장치 국진컴퓨터'</li></ul> |
| 4 | <ul><li>'ASUS 비보북 15 X1504ZA 노트북보안필름 프라이버시 사생활보호 거치형 거치형보안필름_1장 한성'</li><li>'[1300K] HP 빅터스 16-SxxxxAN 거치식 양면 사생활보호필터F 엔에이치엔위투 주식회사'</li><li>'삼성전자 갤럭시북4 NT750XGL-XC51S 노트북보안필름 프라이버시 사생활보호 부착형 부착형보안필름_1장 원일'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9273 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el7")
# Run inference
preds = model("엑토(ACTTO) NBL-04 노트북 도난방지 케이블/(화이트) 국진컴퓨터")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 4 | 10.3626 | 23 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
| 4 | 22 |
| 5 | 50 |
| 6 | 50 |
| 7 | 50 |
| 8 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0152 | 1 | 0.4966 | - |
| 0.7576 | 50 | 0.184 | - |
| 1.5152 | 100 | 0.037 | - |
| 2.2727 | 150 | 0.0256 | - |
| 3.0303 | 200 | 0.0014 | - |
| 3.7879 | 250 | 0.0002 | - |
| 4.5455 | 300 | 0.0006 | - |
| 5.3030 | 350 | 0.0001 | - |
| 6.0606 | 400 | 0.0001 | - |
| 6.8182 | 450 | 0.0001 | - |
| 7.5758 | 500 | 0.0001 | - |
| 8.3333 | 550 | 0.0001 | - |
| 9.0909 | 600 | 0.0001 | - |
| 9.8485 | 650 | 0.0001 | - |
| 10.6061 | 700 | 0.0001 | - |
| 11.3636 | 750 | 0.0001 | - |
| 12.1212 | 800 | 0.0001 | - |
| 12.8788 | 850 | 0.0001 | - |
| 13.6364 | 900 | 0.0001 | - |
| 14.3939 | 950 | 0.0001 | - |
| 15.1515 | 1000 | 0.0001 | - |
| 15.9091 | 1050 | 0.0001 | - |
| 16.6667 | 1100 | 0.0001 | - |
| 17.4242 | 1150 | 0.0 | - |
| 18.1818 | 1200 | 0.0 | - |
| 18.9394 | 1250 | 0.0 | - |
| 19.6970 | 1300 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |