|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: '[PS5] 딥 어스 디스크에디션 콘솔 커버 코발트 블루 오진상사(주)' |
|
- text: '[PS5] 플레이스테이션5 디스크 에디션 오진상사(주)' |
|
- text: PS4 그란투리스모 스포트 한글판 PlaystationHits 조이게임 |
|
- text: PS4 아이돌마스터 스탈릿 시즌 일반판 새제품 한글판 제이와이게임타운 |
|
- text: '[PS4] 색보이 빅 어드벤처 에이티게임(주)' |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.7771822358346095 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 5 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 3 | <ul><li>'[PS4] NBA 2K24 코비 브라이언트 에디션 특전 바우처 有 오진상사(주)'</li><li>'닌텐도 스위치 둘이서 냥코 대전쟁 한글판 게임매니아'</li><li>'닌텐도 마리오 카트 8 디럭스 + 조이콘 휠 패키지 SWITCH 한글판 마리오카트8 디럭스 (+조이콘핸들 세트)_마리오카트8 (+핸들 2개 원형 네온) 주식회사 쇼핑랩스'</li></ul> | |
|
| 2 | <ul><li>'[트러스트마스터] T80 Ferrari 488 GTB 에디션 주식회사 투비네트웍스글로벌'</li><li>'트러스트마스터 T300 페라리 Integral 레이싱휠 [PS5, PS4, PC지원] 주식회사 디에스샵(DS SHOP)'</li><li>'레이저코리아 울버린 V2 크로마 Wolverine V2 Chroma 게임 컨트롤러 (주)하이케이넷'</li></ul> | |
|
| 1 | <ul><li>'[노리박스] 오락실 게임기 분리기통(고급DX팩) (주)에스와이에스리테일'</li><li>'[XBOX]마이크로 소프트 정식발매 X-BOX series X 1TB 새제품 다음텔레콤'</li><li>'노리박스 32인치 스탠드형 강화유리 오락실게임기 오락기 DX팩(3000게임/720P/3~4인지원) (주)노리박스게임연구소'</li></ul> | |
|
| 0 | <ul><li>'PC 삼국지 14 한글판 (스팀코드발송) (주) 디지털터치'</li><li>'Wizard with a Gun 스팀 PC 뉴 어카운트 (정지X) / 기존계정 가능 기존 계정 스팀 유통할인'</li><li>'철권7 tekken7 PC/스팀 철권7 (코드48시이내발송) 전한수'</li></ul> | |
|
| 4 | <ul><li>'한국 닌텐도 정품 게임기 스위치 신형 OLED+콘트라 로그콥스+액정강화유리세트 OLED 네온레드블루 색상_OLED본체+뉴슈퍼마리오U디럭스+강화유리 에이지씨'</li><li>'게임&워치 젤다의 전설 주식회사 손오공'</li><li>'닌텐도 스위치 라이트 옐로 동물의 숲 케이스 주식회사 손오공'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.7772 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el3") |
|
# Run inference |
|
preds = model("[PS4] 색보이 빅 어드벤처 에이티게임(주)") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 5 | 10.7325 | 23 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 43 | |
|
| 1 | 50 | |
|
| 2 | 50 | |
|
| 3 | 50 | |
|
| 4 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0263 | 1 | 0.496 | - | |
|
| 1.3158 | 50 | 0.1186 | - | |
|
| 2.6316 | 100 | 0.0532 | - | |
|
| 3.9474 | 150 | 0.0398 | - | |
|
| 5.2632 | 200 | 0.0002 | - | |
|
| 6.5789 | 250 | 0.0001 | - | |
|
| 7.8947 | 300 | 0.0001 | - | |
|
| 9.2105 | 350 | 0.0001 | - | |
|
| 10.5263 | 400 | 0.0001 | - | |
|
| 11.8421 | 450 | 0.0001 | - | |
|
| 13.1579 | 500 | 0.0001 | - | |
|
| 14.4737 | 550 | 0.0001 | - | |
|
| 15.7895 | 600 | 0.0 | - | |
|
| 17.1053 | 650 | 0.0001 | - | |
|
| 18.4211 | 700 | 0.0001 | - | |
|
| 19.7368 | 750 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |