Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 0.0 |
|
| 3.0 |
|
| 4.0 |
|
| 1.0 |
|
| 5.0 |
|
| 2.0 |
|
| Label | Accuracy |
|---|---|
| all | 0.7192 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt11_test")
# Run inference
preds = model("헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 5 | 9.4957 | 26 |
| Label | Training Sample Count |
|---|---|
| 0.0 | 25 |
| 1.0 | 19 |
| 2.0 | 15 |
| 3.0 | 25 |
| 4.0 | 19 |
| 5.0 | 14 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0714 | 1 | 0.4886 | - |
| 3.5714 | 50 | 0.3088 | - |
| 7.1429 | 100 | 0.049 | - |
| 10.7143 | 150 | 0.0043 | - |
| 14.2857 | 200 | 0.0001 | - |
| 17.8571 | 250 | 0.0001 | - |
| 21.4286 | 300 | 0.0001 | - |
| 25.0 | 350 | 0.0001 | - |
| 28.5714 | 400 | 0.0001 | - |
| 32.1429 | 450 | 0.0001 | - |
| 35.7143 | 500 | 0.0001 | - |
| 39.2857 | 550 | 0.0001 | - |
| 42.8571 | 600 | 0.0001 | - |
| 46.4286 | 650 | 0.0001 | - |
| 50.0 | 700 | 0.0001 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}