mindwrapped
commited on
Commit
•
1686ad0
1
Parent(s):
125be63
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 230.84 +/- 20.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc052db1d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc052db1dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc052db1e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc052db1ef0>", "_build": "<function ActorCriticPolicy._build at 0x7fc052db1f80>", "forward": "<function ActorCriticPolicy.forward at 0x7fc052db8050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc052db80e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc052db8170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc052db8200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc052db8290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc052db8320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc052df3ed0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651714475.479337, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbpWj6FiOE8C+MYunNY27gJdnU+0nepNwAAgD8AAIA/+hwsvil5aT/WX088Z/KovpRwD77OhE88AAAAAAAAAABmKQU+pLB0Old5BLzdUt+5oRCLPGqgxboAAIA/AACAP8Mrcb4yW2g//WIJPe26m77tDmy+Lo8JPgAAAAAAAAAAzS2/PjdzEj+2Swi+YBc3vjNZQ74jvfu9AAAAAAAAAADN0ic9j25oupgI1DnCYZM0yRIjOhuM8rgAAIA/AACAP2bym7z2fD66T0W1umJGKrXoAeg4uGzROQAAgD8AAIA/teqNvoOiOD0Kb9o9FOIbvjFGBz3zXBw+AAAAAAAAAACz4Rg+igSJPx04XT5UurW+Uj+zPYu97bwAAAAAAAAAAPokY75BfM+8+IRvuYrmALiSrDw+H5mbOAAAgD8AAIA/muFzPRhltj3tGVk9PZrlvQV1ab2ulr05AAAAAAAAAADmTlo9OdvmPlGFir3UX0a+I/7EvI7lWr0AAAAAAAAAAGap7LzDSUm6fqA+uUksg7ajhtW6c0TtNQAAgD8AAIA/wH+LvY8+BbrTS7A7VMoDOMCeFDpYFbe2AACAPwAAgD8mi609FBeoP55FBD+FJa2+MyqGPXrRfD4AAAAAAAAAAADdlz3cW0K868sNvazei7zZTF+9No5zvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJjW0Adj3W0CUhpRSlIwBbJRN6AOMAXSUR0COeU/9Hc1wdX2UKGgGaAloD0MIpREz+zyG+b+UhpRSlGgVTRkBaBZHQI6SQUi6g/V1fZQoaAZoCWgPQwhOtoE7UHtWQJSGlFKUaBVN6ANoFkdAjpXVIqbz9XV9lChoBmgJaA9DCPMcke9SyVpAlIaUUpRoFU3oA2gWR0COmMV1wHZ9dX2UKGgGaAloD0MIFCUhkbYGWUCUhpRSlGgVTegDaBZHQI6duzlcQiB1fZQoaAZoCWgPQwiH+l3YmqUhwJSGlFKUaBVL2mgWR0COom7xNIsidX2UKGgGaAloD0MIqP5BJEMqQkCUhpRSlGgVTegDaBZHQI6vTsrupjt1fZQoaAZoCWgPQwgMB0KygDZhQJSGlFKUaBVN6ANoFkdAjrh/CqIacnV9lChoBmgJaA9DCEBMwoU8el5AlIaUUpRoFU3oA2gWR0CO/QpnYg7pdX2UKGgGaAloD0MIKsql8QuOUECUhpRSlGgVTegDaBZHQI7+Bl18stl1fZQoaAZoCWgPQwgk0csoFuxhQJSGlFKUaBVN6ANoFkdAjwhwiJO32HV9lChoBmgJaA9DCNOFWP0RzmFAlIaUUpRoFU3oA2gWR0CPGF0XgtOEdX2UKGgGaAloD0MIar3faMfIUkCUhpRSlGgVTegDaBZHQI8ak2LpA2R1fZQoaAZoCWgPQwiHbCBdbLFRQJSGlFKUaBVN6ANoFkdAjxzL3TNMXnV9lChoBmgJaA9DCG8qUmFsKlJAlIaUUpRoFU3oA2gWR0CPJHVsk6cRdX2UKGgGaAloD0MIDJBoAkVKV0CUhpRSlGgVTegDaBZHQI8k83n6l+F1fZQoaAZoCWgPQwhypDMw8n9cQJSGlFKUaBVN6ANoFkdAj0FiEpRXOnV9lChoBmgJaA9DCMo329yY/kBAlIaUUpRoFUuoaBZHQI9iYlv60pp1fZQoaAZoCWgPQwg1fXbAdYZeQJSGlFKUaBVN6ANoFkdAj4KuZTho/XV9lChoBmgJaA9DCJQT7SqkvlRAlIaUUpRoFU3oA2gWR0CPhpLVWjoIdX2UKGgGaAloD0MI0911NuS1RECUhpRSlGgVTegDaBZHQI+Jtovi97F1fZQoaAZoCWgPQwidgvxs5N1fQJSGlFKUaBVN6ANoFkdAj46yUC7sfXV9lChoBmgJaA9DCNRlMbH5FWBAlIaUUpRoFU3oA2gWR0CPk0Z4wAU+dX2UKGgGaAloD0MISb2nctrfWECUhpRSlGgVTegDaBZHQI+gZg7YChh1fZQoaAZoCWgPQwiRfCWQEmpWQJSGlFKUaBVN6ANoFkdAj6kmnfl6q3V9lChoBmgJaA9DCNuF5joNu2JAlIaUUpRoFU3oA2gWR0CP7Oi0v4/NdX2UKGgGaAloD0MIAtNp3YYQYECUhpRSlGgVTegDaBZHQI/tz6k69011fZQoaAZoCWgPQwhOet/42s9DwJSGlFKUaBVL2mgWR0CP74G34Kx+dX2UKGgGaAloD0MIt0PDYtRKYECUhpRSlGgVTegDaBZHQI/3dw97ngZ1fZQoaAZoCWgPQwhfXRWoxaJhQJSGlFKUaBVN6ANoFkdAkAL5C4SYgXV9lChoBmgJaA9DCKJ9rOC3TFpAlIaUUpRoFU3oA2gWR0CQA/YyO7xvdX2UKGgGaAloD0MIowOSsG+ZXkCUhpRSlGgVTegDaBZHQJAE/cN6PbR1fZQoaAZoCWgPQwheoQ+WMexiQJSGlFKUaBVN6ANoFkdAkAiSbMHKOnV9lChoBmgJaA9DCNpxw++mbF5AlIaUUpRoFU3oA2gWR0CQCM3YL9dedX2UKGgGaAloD0MIc/bOaKuqIcCUhpRSlGgVTSIBaBZHQJALnZtelbh1fZQoaAZoCWgPQwiOyeL+I0M1QJSGlFKUaBVNIQFoFkdAkAzFC5VfeHV9lChoBmgJaA9DCDaRmQtciFpAlIaUUpRoFU3oA2gWR0CQJGwiJO32dX2UKGgGaAloD0MIIhlybD3mVUCUhpRSlGgVTegDaBZHQJAyusCDEm91fZQoaAZoCWgPQwiXxcTmY3BgQJSGlFKUaBVN6ANoFkdAkDRnz6JqI3V9lChoBmgJaA9DCAQ4vYv3lGFAlIaUUpRoFU3oA2gWR0CQNd2XLNfPdX2UKGgGaAloD0MIZysv+Z+2WUCUhpRSlGgVTegDaBZHQJA6lxcVxjt1fZQoaAZoCWgPQwjq7GRwlB1fQJSGlFKUaBVN6ANoFkdAkEDMVpKzzHV9lChoBmgJaA9DCKKYvAFmnmJAlIaUUpRoFU3oA2gWR0CQROVo6CDmdX2UKGgGaAloD0MIi21S0VjjWUCUhpRSlGgVTegDaBZHQJBIfqFAVwh1fZQoaAZoCWgPQwgUtMnhkztsQJSGlFKUaBVNrAFoFkdAkGiUhV2ic3V9lChoBmgJaA9DCDxQpzw6lmFAlIaUUpRoFU3oA2gWR0CQbJOE/SpjdX2UKGgGaAloD0MIZVQZxt0QU0CUhpRSlGgVTegDaBZHQJBzdfZ26kJ1fZQoaAZoCWgPQwjLR1LSw99kQJSGlFKUaBVN6ANoFkdAkHRlc6eXiXV9lChoBmgJaA9DCNBDbRvGk2BAlIaUUpRoFU3oA2gWR0CQdWWldkaudX2UKGgGaAloD0MIKe0NvjBcYECUhpRSlGgVTegDaBZHQJB45kGzKLd1fZQoaAZoCWgPQwjKFkm70URdQJSGlFKUaBVN6ANoFkdAkHkb/n4fwXV9lChoBmgJaA9DCDScMjffsWBAlIaUUpRoFU3oA2gWR0CQe8G+bmU4dX2UKGgGaAloD0MIzzEge72yXkCUhpRSlGgVTegDaBZHQJB8yy8jAzp1fZQoaAZoCWgPQwjl8bT8wFXtP5SGlFKUaBVNGAFoFkdAkId6tLcsUnV9lChoBmgJaA9DCEgbR6zFDz1AlIaUUpRoFUvcaBZHQJCNF+uvECN1fZQoaAZoCWgPQwiuDRXj/MhXQJSGlFKUaBVN6ANoFkdAkKA5LAYYSHV9lChoBmgJaA9DCJsEb0ijC2NAlIaUUpRoFU3oA2gWR0CQoeq5byH3dX2UKGgGaAloD0MIQPz89+DIW0CUhpRSlGgVTegDaBZHQJCjTb0voNd1fZQoaAZoCWgPQwgbSYJwBcxeQJSGlFKUaBVN6ANoFkdAkKfs8xKxs3V9lChoBmgJaA9DCI5XIHrS92NAlIaUUpRoFU3oA2gWR0CQrp+M6zVudX2UKGgGaAloD0MIsFjDRW53YUCUhpRSlGgVTegDaBZHQJCzbHtF8Xx1fZQoaAZoCWgPQwj9TShEwNthQJSGlFKUaBVN6ANoFkdAkLdNWU8mr3V9lChoBmgJaA9DCHbgnBGl21tAlIaUUpRoFU3oA2gWR0CQuCnTy8SPdX2UKGgGaAloD0MIeF+VC5VhR0CUhpRSlGgVTQMBaBZHQJC5O1E3Kjl1fZQoaAZoCWgPQwjpYWh1cnheQJSGlFKUaBVN6ANoFkdAkNse14Pf9HV9lChoBmgJaA9DCMyZ7Qp9T1ZAlIaUUpRoFU3oA2gWR0CQ4it16mfodX2UKGgGaAloD0MIZY7lXfWqXECUhpRSlGgVTegDaBZHQJDkMtjCpFV1fZQoaAZoCWgPQwhpxw2/m1hfQJSGlFKUaBVN6ANoFkdAkOgIWpIcznV9lChoBmgJaA9DCC16pwJuuWFAlIaUUpRoFU3oA2gWR0CQ6Evw3HaOdX2UKGgGaAloD0MIV+2akFbIYUCUhpRSlGgVTegDaBZHQJDrXQ0GeMB1fZQoaAZoCWgPQwjt2AjE6wBAwJSGlFKUaBVLwGgWR0CQ8s+evpyIdX2UKGgGaAloD0MIJxHhX4SQZECUhpRSlGgVTegDaBZHQJD5JOXVsk91fZQoaAZoCWgPQwjakH9mkE9jQJSGlFKUaBVN6ANoFkdAkP9V+/gzg3V9lChoBmgJaA9DCMIxy54EsGJAlIaUUpRoFU3oA2gWR0CRFC0Dlo12dX2UKGgGaAloD0MIl43O+amFY0CUhpRSlGgVTegDaBZHQJEWF1RtP551fZQoaAZoCWgPQwgdccgG0l1gQJSGlFKUaBVN6ANoFkdAkR0IWLxZuHV9lChoBmgJaA9DCAeZZOQs5kRAlIaUUpRoFU0+AWgWR0CRHtMfA9FGdX2UKGgGaAloD0MIexNDcjKkY0CUhpRSlGgVTegDaBZHQJEkiqm0mdB1fZQoaAZoCWgPQwil942vPVpaQJSGlFKUaBVN6ANoFkdAkSmwWi1zAHV9lChoBmgJaA9DCNUI/Uy9MVpAlIaUUpRoFU3oA2gWR0CRLeqTKT0QdX2UKGgGaAloD0MI19zR/3LgV0CUhpRSlGgVTegDaBZHQJEu4i4axX51fZQoaAZoCWgPQwjQYFPnUdhhQJSGlFKUaBVN6ANoFkdAkTALdFfAsXV9lChoBmgJaA9DCIgrZ++MbF9AlIaUUpRoFU3oA2gWR0CRUaywwCbMdX2UKGgGaAloD0MISz/h7NZcYUCUhpRSlGgVTegDaBZHQJFYtbcGkep1fZQoaAZoCWgPQwjgMNEgBfZXQJSGlFKUaBVN6ANoFkdAkV7bFsHjZXV9lChoBmgJaA9DCGkbf6Ky2VlAlIaUUpRoFU3oA2gWR0CRXx163RXwdX2UKGgGaAloD0MIPPiJA2hUZECUhpRSlGgVTegDaBZHQJFiPi0fHPx1fZQoaAZoCWgPQwjTwfo/h4lfQJSGlFKUaBVN6ANoFkdAkWmidFvyb3V9lChoBmgJaA9DCPVHGAasA2FAlIaUUpRoFU3oA2gWR0CRb6aaCtihdX2UKGgGaAloD0MINpTai2gLMECUhpRSlGgVTVABaBZHQJF6KLdepn91fZQoaAZoCWgPQwg/HY8ZKIBjQJSGlFKUaBVN6ANoFkdAkYgZPAO8TXV9lChoBmgJaA9DCJlmutfJh2BAlIaUUpRoFU3oA2gWR0CRicVAiV0LdX2UKGgGaAloD0MIcsXFUTmJYECUhpRSlGgVTegDaBZHQJGPfRqoIfN1fZQoaAZoCWgPQwjgg9cu7cdhQJSGlFKUaBVN6ANoFkdAkZDuyzHCGnV9lChoBmgJaA9DCIXQQZfwT2FAlIaUUpRoFU3oA2gWR0CRlZdxQzk7dX2UKGgGaAloD0MIkKD4MeZfWkCUhpRSlGgVTegDaBZHQJGZ+VB2Ohl1fZQoaAZoCWgPQwiYF2AfnexfQJSGlFKUaBVN6ANoFkdAkZ20PH1e0HV9lChoBmgJaA9DCDhOCvOeeGFAlIaUUpRoFU3oA2gWR0CRnofjCHh1dX2UKGgGaAloD0MIDCO9qN2MWUCUhpRSlGgVTegDaBZHQJGfq1og3cZ1fZQoaAZoCWgPQwh32a873XNaQJSGlFKUaBVN6ANoFkdAkaKGIKtxMnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c7bc554429c6fcf48ae46cdd40021ea2138978e51986eafd16f85d12086f7f
|
3 |
+
size 144043
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc052db1d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc052db1dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc052db1e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc052db1ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc052db1f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc052db8050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc052db80e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc052db8170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc052db8200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc052db8290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc052db8320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc052df3ed0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651714475.479337,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbpWj6FiOE8C+MYunNY27gJdnU+0nepNwAAgD8AAIA/+hwsvil5aT/WX088Z/KovpRwD77OhE88AAAAAAAAAABmKQU+pLB0Old5BLzdUt+5oRCLPGqgxboAAIA/AACAP8Mrcb4yW2g//WIJPe26m77tDmy+Lo8JPgAAAAAAAAAAzS2/PjdzEj+2Swi+YBc3vjNZQ74jvfu9AAAAAAAAAADN0ic9j25oupgI1DnCYZM0yRIjOhuM8rgAAIA/AACAP2bym7z2fD66T0W1umJGKrXoAeg4uGzROQAAgD8AAIA/teqNvoOiOD0Kb9o9FOIbvjFGBz3zXBw+AAAAAAAAAACz4Rg+igSJPx04XT5UurW+Uj+zPYu97bwAAAAAAAAAAPokY75BfM+8+IRvuYrmALiSrDw+H5mbOAAAgD8AAIA/muFzPRhltj3tGVk9PZrlvQV1ab2ulr05AAAAAAAAAADmTlo9OdvmPlGFir3UX0a+I/7EvI7lWr0AAAAAAAAAAGap7LzDSUm6fqA+uUksg7ajhtW6c0TtNQAAgD8AAIA/wH+LvY8+BbrTS7A7VMoDOMCeFDpYFbe2AACAPwAAgD8mi609FBeoP55FBD+FJa2+MyqGPXrRfD4AAAAAAAAAAADdlz3cW0K868sNvazei7zZTF+9No5zvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJjW0Adj3W0CUhpRSlIwBbJRN6AOMAXSUR0COeU/9Hc1wdX2UKGgGaAloD0MIpREz+zyG+b+UhpRSlGgVTRkBaBZHQI6SQUi6g/V1fZQoaAZoCWgPQwhOtoE7UHtWQJSGlFKUaBVN6ANoFkdAjpXVIqbz9XV9lChoBmgJaA9DCPMcke9SyVpAlIaUUpRoFU3oA2gWR0COmMV1wHZ9dX2UKGgGaAloD0MIFCUhkbYGWUCUhpRSlGgVTegDaBZHQI6duzlcQiB1fZQoaAZoCWgPQwiH+l3YmqUhwJSGlFKUaBVL2mgWR0COom7xNIsidX2UKGgGaAloD0MIqP5BJEMqQkCUhpRSlGgVTegDaBZHQI6vTsrupjt1fZQoaAZoCWgPQwgMB0KygDZhQJSGlFKUaBVN6ANoFkdAjrh/CqIacnV9lChoBmgJaA9DCEBMwoU8el5AlIaUUpRoFU3oA2gWR0CO/QpnYg7pdX2UKGgGaAloD0MIKsql8QuOUECUhpRSlGgVTegDaBZHQI7+Bl18stl1fZQoaAZoCWgPQwgk0csoFuxhQJSGlFKUaBVN6ANoFkdAjwhwiJO32HV9lChoBmgJaA9DCNOFWP0RzmFAlIaUUpRoFU3oA2gWR0CPGF0XgtOEdX2UKGgGaAloD0MIar3faMfIUkCUhpRSlGgVTegDaBZHQI8ak2LpA2R1fZQoaAZoCWgPQwiHbCBdbLFRQJSGlFKUaBVN6ANoFkdAjxzL3TNMXnV9lChoBmgJaA9DCG8qUmFsKlJAlIaUUpRoFU3oA2gWR0CPJHVsk6cRdX2UKGgGaAloD0MIDJBoAkVKV0CUhpRSlGgVTegDaBZHQI8k83n6l+F1fZQoaAZoCWgPQwhypDMw8n9cQJSGlFKUaBVN6ANoFkdAj0FiEpRXOnV9lChoBmgJaA9DCMo329yY/kBAlIaUUpRoFUuoaBZHQI9iYlv60pp1fZQoaAZoCWgPQwg1fXbAdYZeQJSGlFKUaBVN6ANoFkdAj4KuZTho/XV9lChoBmgJaA9DCJQT7SqkvlRAlIaUUpRoFU3oA2gWR0CPhpLVWjoIdX2UKGgGaAloD0MI0911NuS1RECUhpRSlGgVTegDaBZHQI+Jtovi97F1fZQoaAZoCWgPQwidgvxs5N1fQJSGlFKUaBVN6ANoFkdAj46yUC7sfXV9lChoBmgJaA9DCNRlMbH5FWBAlIaUUpRoFU3oA2gWR0CPk0Z4wAU+dX2UKGgGaAloD0MISb2nctrfWECUhpRSlGgVTegDaBZHQI+gZg7YChh1fZQoaAZoCWgPQwiRfCWQEmpWQJSGlFKUaBVN6ANoFkdAj6kmnfl6q3V9lChoBmgJaA9DCNuF5joNu2JAlIaUUpRoFU3oA2gWR0CP7Oi0v4/NdX2UKGgGaAloD0MIAtNp3YYQYECUhpRSlGgVTegDaBZHQI/tz6k69011fZQoaAZoCWgPQwhOet/42s9DwJSGlFKUaBVL2mgWR0CP74G34Kx+dX2UKGgGaAloD0MIt0PDYtRKYECUhpRSlGgVTegDaBZHQI/3dw97ngZ1fZQoaAZoCWgPQwhfXRWoxaJhQJSGlFKUaBVN6ANoFkdAkAL5C4SYgXV9lChoBmgJaA9DCKJ9rOC3TFpAlIaUUpRoFU3oA2gWR0CQA/YyO7xvdX2UKGgGaAloD0MIowOSsG+ZXkCUhpRSlGgVTegDaBZHQJAE/cN6PbR1fZQoaAZoCWgPQwheoQ+WMexiQJSGlFKUaBVN6ANoFkdAkAiSbMHKOnV9lChoBmgJaA9DCNpxw++mbF5AlIaUUpRoFU3oA2gWR0CQCM3YL9dedX2UKGgGaAloD0MIc/bOaKuqIcCUhpRSlGgVTSIBaBZHQJALnZtelbh1fZQoaAZoCWgPQwiOyeL+I0M1QJSGlFKUaBVNIQFoFkdAkAzFC5VfeHV9lChoBmgJaA9DCDaRmQtciFpAlIaUUpRoFU3oA2gWR0CQJGwiJO32dX2UKGgGaAloD0MIIhlybD3mVUCUhpRSlGgVTegDaBZHQJAyusCDEm91fZQoaAZoCWgPQwiXxcTmY3BgQJSGlFKUaBVN6ANoFkdAkDRnz6JqI3V9lChoBmgJaA9DCAQ4vYv3lGFAlIaUUpRoFU3oA2gWR0CQNd2XLNfPdX2UKGgGaAloD0MIZysv+Z+2WUCUhpRSlGgVTegDaBZHQJA6lxcVxjt1fZQoaAZoCWgPQwjq7GRwlB1fQJSGlFKUaBVN6ANoFkdAkEDMVpKzzHV9lChoBmgJaA9DCKKYvAFmnmJAlIaUUpRoFU3oA2gWR0CQROVo6CDmdX2UKGgGaAloD0MIi21S0VjjWUCUhpRSlGgVTegDaBZHQJBIfqFAVwh1fZQoaAZoCWgPQwgUtMnhkztsQJSGlFKUaBVNrAFoFkdAkGiUhV2ic3V9lChoBmgJaA9DCDxQpzw6lmFAlIaUUpRoFU3oA2gWR0CQbJOE/SpjdX2UKGgGaAloD0MIZVQZxt0QU0CUhpRSlGgVTegDaBZHQJBzdfZ26kJ1fZQoaAZoCWgPQwjLR1LSw99kQJSGlFKUaBVN6ANoFkdAkHRlc6eXiXV9lChoBmgJaA9DCNBDbRvGk2BAlIaUUpRoFU3oA2gWR0CQdWWldkaudX2UKGgGaAloD0MIKe0NvjBcYECUhpRSlGgVTegDaBZHQJB45kGzKLd1fZQoaAZoCWgPQwjKFkm70URdQJSGlFKUaBVN6ANoFkdAkHkb/n4fwXV9lChoBmgJaA9DCDScMjffsWBAlIaUUpRoFU3oA2gWR0CQe8G+bmU4dX2UKGgGaAloD0MIzzEge72yXkCUhpRSlGgVTegDaBZHQJB8yy8jAzp1fZQoaAZoCWgPQwjl8bT8wFXtP5SGlFKUaBVNGAFoFkdAkId6tLcsUnV9lChoBmgJaA9DCEgbR6zFDz1AlIaUUpRoFUvcaBZHQJCNF+uvECN1fZQoaAZoCWgPQwiuDRXj/MhXQJSGlFKUaBVN6ANoFkdAkKA5LAYYSHV9lChoBmgJaA9DCJsEb0ijC2NAlIaUUpRoFU3oA2gWR0CQoeq5byH3dX2UKGgGaAloD0MIQPz89+DIW0CUhpRSlGgVTegDaBZHQJCjTb0voNd1fZQoaAZoCWgPQwgbSYJwBcxeQJSGlFKUaBVN6ANoFkdAkKfs8xKxs3V9lChoBmgJaA9DCI5XIHrS92NAlIaUUpRoFU3oA2gWR0CQrp+M6zVudX2UKGgGaAloD0MIsFjDRW53YUCUhpRSlGgVTegDaBZHQJCzbHtF8Xx1fZQoaAZoCWgPQwj9TShEwNthQJSGlFKUaBVN6ANoFkdAkLdNWU8mr3V9lChoBmgJaA9DCHbgnBGl21tAlIaUUpRoFU3oA2gWR0CQuCnTy8SPdX2UKGgGaAloD0MIeF+VC5VhR0CUhpRSlGgVTQMBaBZHQJC5O1E3Kjl1fZQoaAZoCWgPQwjpYWh1cnheQJSGlFKUaBVN6ANoFkdAkNse14Pf9HV9lChoBmgJaA9DCMyZ7Qp9T1ZAlIaUUpRoFU3oA2gWR0CQ4it16mfodX2UKGgGaAloD0MIZY7lXfWqXECUhpRSlGgVTegDaBZHQJDkMtjCpFV1fZQoaAZoCWgPQwhpxw2/m1hfQJSGlFKUaBVN6ANoFkdAkOgIWpIcznV9lChoBmgJaA9DCC16pwJuuWFAlIaUUpRoFU3oA2gWR0CQ6Evw3HaOdX2UKGgGaAloD0MIV+2akFbIYUCUhpRSlGgVTegDaBZHQJDrXQ0GeMB1fZQoaAZoCWgPQwjt2AjE6wBAwJSGlFKUaBVLwGgWR0CQ8s+evpyIdX2UKGgGaAloD0MIJxHhX4SQZECUhpRSlGgVTegDaBZHQJD5JOXVsk91fZQoaAZoCWgPQwjakH9mkE9jQJSGlFKUaBVN6ANoFkdAkP9V+/gzg3V9lChoBmgJaA9DCMIxy54EsGJAlIaUUpRoFU3oA2gWR0CRFC0Dlo12dX2UKGgGaAloD0MIl43O+amFY0CUhpRSlGgVTegDaBZHQJEWF1RtP551fZQoaAZoCWgPQwgdccgG0l1gQJSGlFKUaBVN6ANoFkdAkR0IWLxZuHV9lChoBmgJaA9DCAeZZOQs5kRAlIaUUpRoFU0+AWgWR0CRHtMfA9FGdX2UKGgGaAloD0MIexNDcjKkY0CUhpRSlGgVTegDaBZHQJEkiqm0mdB1fZQoaAZoCWgPQwil942vPVpaQJSGlFKUaBVN6ANoFkdAkSmwWi1zAHV9lChoBmgJaA9DCNUI/Uy9MVpAlIaUUpRoFU3oA2gWR0CRLeqTKT0QdX2UKGgGaAloD0MI19zR/3LgV0CUhpRSlGgVTegDaBZHQJEu4i4axX51fZQoaAZoCWgPQwjQYFPnUdhhQJSGlFKUaBVN6ANoFkdAkTALdFfAsXV9lChoBmgJaA9DCIgrZ++MbF9AlIaUUpRoFU3oA2gWR0CRUaywwCbMdX2UKGgGaAloD0MISz/h7NZcYUCUhpRSlGgVTegDaBZHQJFYtbcGkep1fZQoaAZoCWgPQwjgMNEgBfZXQJSGlFKUaBVN6ANoFkdAkV7bFsHjZXV9lChoBmgJaA9DCGkbf6Ky2VlAlIaUUpRoFU3oA2gWR0CRXx163RXwdX2UKGgGaAloD0MIPPiJA2hUZECUhpRSlGgVTegDaBZHQJFiPi0fHPx1fZQoaAZoCWgPQwjTwfo/h4lfQJSGlFKUaBVN6ANoFkdAkWmidFvyb3V9lChoBmgJaA9DCPVHGAasA2FAlIaUUpRoFU3oA2gWR0CRb6aaCtihdX2UKGgGaAloD0MINpTai2gLMECUhpRSlGgVTVABaBZHQJF6KLdepn91fZQoaAZoCWgPQwg/HY8ZKIBjQJSGlFKUaBVN6ANoFkdAkYgZPAO8TXV9lChoBmgJaA9DCJlmutfJh2BAlIaUUpRoFU3oA2gWR0CRicVAiV0LdX2UKGgGaAloD0MIcsXFUTmJYECUhpRSlGgVTegDaBZHQJGPfRqoIfN1fZQoaAZoCWgPQwjgg9cu7cdhQJSGlFKUaBVN6ANoFkdAkZDuyzHCGnV9lChoBmgJaA9DCIXQQZfwT2FAlIaUUpRoFU3oA2gWR0CRlZdxQzk7dX2UKGgGaAloD0MIkKD4MeZfWkCUhpRSlGgVTegDaBZHQJGZ+VB2Ohl1fZQoaAZoCWgPQwiYF2AfnexfQJSGlFKUaBVN6ANoFkdAkZ20PH1e0HV9lChoBmgJaA9DCDhOCvOeeGFAlIaUUpRoFU3oA2gWR0CRnofjCHh1dX2UKGgGaAloD0MIDCO9qN2MWUCUhpRSlGgVTegDaBZHQJGfq1og3cZ1fZQoaAZoCWgPQwh32a873XNaQJSGlFKUaBVN6ANoFkdAkaKGIKtxMnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44e803e0d327d8abf3127fbaebcebdfc01396052926598b9e341f1f14c58f76a
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9faa04f6aa949a7676791b88c3665e40b203129eb6795382b8da01f88d07d38a
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6935d0e435ef559012a5447787408eb9f3dae298de6e3a8760360c2c986ac7d
|
3 |
+
size 212724
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 230.84045482399853, "std_reward": 20.72527557767422, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T01:55:31.842761"}
|