File size: 11,677 Bytes
ec8a4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import torch
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from typing import Optional, Callable
from .rpe_options import make_kprpe_shared, make_kprpe_input
from .RPE import build_rpe

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class VITBatchNorm(nn.Module):
    def __init__(self, num_features):
        super().__init__()
        self.num_features = num_features
        self.bn = nn.BatchNorm1d(num_features=num_features)

    def forward(self, x):
        return self.bn(x)


class Attention(nn.Module):
    def __init__(self,
                 dim: int,
                 num_heads: int = 8,
                 qkv_bias: bool = False,
                 qk_scale: Optional[None] = None,
                 attn_drop: float = 0.,
                 proj_drop: float = 0.,
                 rpe_config=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        # image relative position encoding
        self.rpe_config = rpe_config
        self.rpe_q, self.rpe_k, self.rpe_v = build_rpe(rpe_config, head_dim=head_dim, num_heads=num_heads)


    def forward(self, x, extra_ctx=None):

        batch_size, num_token, embed_dim = x.shape
        #qkv is [3,batch_size,num_heads,num_token, embed_dim//num_heads]
        qkv = self.qkv(x).reshape(
            batch_size, num_token, 3, self.num_heads, embed_dim // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q *= self.scale
        attn = (q @ k.transpose(-2, -1))

        # image relative position on keys
        if self.rpe_k is not None:
            ctx = extra_ctx['rel_keypoints']
            attn += self.rpe_k(ctx)

        # image relative position on queries
        if self.rpe_q is not None:
            attn += self.rpe_q(k * self.scale).transpose(2, 3)

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        out = attn @ v

        # image relative position on values
        if self.rpe_v is not None:
            out += self.rpe_v(attn)

        x = out.transpose(1, 2).reshape(batch_size, num_token, embed_dim)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self,
                 dim: int,
                 num_heads: int,
                 num_patches: int,
                 mlp_ratio: float = 4.,
                 qkv_bias: bool = False,
                 qk_scale: Optional[None] = None,
                 drop: float = 0.,
                 attn_drop: float = 0.,
                 drop_path: float = 0.,
                 act_layer: Callable = nn.ReLU6,
                 norm_layer: str = "ln",
                 patch_n: int = 144,
                 rpe_config=None):
        super().__init__()

        if norm_layer == "bn":
            self.norm1 = VITBatchNorm(num_features=num_patches)
            self.norm2 = VITBatchNorm(num_features=num_patches)
        elif norm_layer == "ln":
            self.norm1 = nn.LayerNorm(dim)
            self.norm2 = nn.LayerNorm(dim)

        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
            rpe_config=rpe_config)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.extra_gflops = (num_heads * patch_n * (dim//num_heads)*patch_n * 2) / (1000**3)

    def forward(self, x, extra_ctx=None):
        norm_x = self.norm1(x)
        attn_out = self.attn(norm_x, extra_ctx=extra_ctx)
        x = x + self.drop_path(attn_out)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    def __init__(self, img_size=108, patch_size=9, in_channels=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.proj = nn.Conv2d(in_channels, embed_dim,
                              kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        batch_size, channels, height, width = x.shape
        assert height == self.img_size[0] and width == self.img_size[1], \
            f"Input image size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class VisionTransformerWithKPRPE(nn.Module):
    """
    Vision Transformer with auxiliary keypoint inputs for KP-RPE
    """

    def __init__(self,
                 img_size: int = 112,
                 patch_size: int = 16,
                 in_channels: int = 3,
                 num_classes: int = 1000,
                 embed_dim: int = 768,
                 depth: int = 12,
                 num_heads: int = 12,
                 mlp_ratio: float = 4.,
                 qkv_bias: bool = False,
                 qk_scale: Optional[None] = None,
                 drop_rate: float = 0.,
                 attn_drop_rate: float = 0.,
                 drop_path_rate: float = 0.,
                 num_patches: Optional[int] = None,
                 norm_layer: str = "ln",
                 mask_ratio = 0.1,
                 using_checkpoint = False,
                 rpe_config=None,
                 ):
        super().__init__()
        self.num_classes = num_classes
        # num_features for consistency with other models
        self.num_features = self.embed_dim = embed_dim

        if num_patches is not None:
            self.patch_embed = nn.Identity()
        else:
            self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim)
            num_patches = self.patch_embed.num_patches
        self.mask_ratio = mask_ratio
        self.using_checkpoint = using_checkpoint

        self.num_patches = num_patches

        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        patch_n = (img_size//patch_size)**2
        self.blocks = nn.ModuleList(
            [
                Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                      drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                      num_patches=num_patches, patch_n=patch_n, rpe_config=rpe_config)
                for i in range(depth)]
        )
        self.extra_gflops = 0.0
        for _block in self.blocks:
            self.extra_gflops += _block.extra_gflops

        if norm_layer == "ln":
            self.norm = nn.LayerNorm(embed_dim)
        elif norm_layer == "bn":
            self.norm = VITBatchNorm(self.num_patches)

        # features head
        self.feature = nn.Sequential(
            nn.Linear(in_features=embed_dim * num_patches, out_features=embed_dim, bias=False),
            nn.BatchNorm1d(num_features=embed_dim, eps=2e-5),
            nn.Linear(in_features=embed_dim, out_features=num_classes, bias=False),
            nn.BatchNorm1d(num_features=num_classes, eps=2e-5)
        )

        if self.mask_ratio == 0:
            pass
        else:
            self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
            torch.nn.init.normal_(self.mask_token, std=.02)
        trunc_normal_(self.pos_embed, std=.02)
        # trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

        self.num_heads = num_heads
        self.depth = depth

        self.rpe_config = rpe_config
        self.keypoint_linear, self.num_buckets = make_kprpe_shared(rpe_config, depth, num_heads)


    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def random_masking(self, x, mask_ratio=0.1):
        N, L, D = x.size()  # batch, length, dim
        len_keep = int(L * (1 - mask_ratio))

        noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]

        # sort noise for each sample
        # ascend: small is keep, large is remove
        ids_shuffle = torch.argsort(noise, dim=1)
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        index = ids_keep.unsqueeze(-1).repeat(1, 1, D)
        x_masked = torch.gather(x, dim=1, index=index)

        return x_masked, index, ids_restore

    def forward_features(self, x, keypoints=None):
        B = x.shape[0]
        x = self.patch_embed(x)
        x = x + self.pos_embed
        x = self.pos_drop(x)

        if self.training and self.mask_ratio > 0:
            x, _, ids_restore = self.random_masking(x)

        extra_ctx = make_kprpe_input(keypoints, x, self.keypoint_linear, self.rpe_config, self.mask_ratio,
                                     self.depth, self.num_heads, self.num_buckets)

        for block_idx, func in enumerate(self.blocks):
            if isinstance(extra_ctx, list):
                extra_ctx_ = extra_ctx[block_idx]
            else:
                extra_ctx_ = extra_ctx
            if self.using_checkpoint and self.training:
                from torch.utils.checkpoint import checkpoint
                x = checkpoint(func, x, extra_ctx_)
            else:
                x = func(x, extra_ctx=extra_ctx_)
        x = self.norm(x.float())
        if self.training and self.mask_ratio > 0:
            mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1)
            x_ = torch.cat([x[:, :, :], mask_tokens], dim=1)  # no cls token
            x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]))  # unshuffle
            x = x_
        return torch.reshape(x, (B, self.num_patches * self.embed_dim))

    def forward(self, x, keypoints=None):
        x = self.forward_features(x, keypoints=keypoints)
        x = self.feature(x)
        return x