milad-kazemi
commited on
Commit
·
8d09ff0
1
Parent(s):
7e2f2a3
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.91 +/- 19.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbec3f3ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbec3f3d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbec3f3dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbec3f3e50>", "_build": "<function ActorCriticPolicy._build at 0x7fdbec3f3ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdbec3f3f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbec3f8040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdbec3f80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbec3f8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbec3f81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbec3f8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdbec3f04b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671621804570941216, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPBDb1JZbk/tgIXv3eOVz43Eyc9dSwkPgAAAAAAAAAAnSCCvpQ4HL1mfdk64/CUOfGRiT5G4xG6AACAPwAAgD+mQrI9hNHJPrpz8Lysmka+YNYRPYo/FD0AAAAAAAAAADPCnz2fH6m781XuvNdnWzxBeho9wa45vQAAgD8AAIA/Tb6dvWu+bT9lA869+lLAvl7pw71AZtA8AAAAAAAAAACaI7i9rPiAPHu7RD4lokK+GvJvPQKfjb0AAAAAAAAAANo1eL5Rnge9TXE5vIf4sLrur28+RJuEOwAAgD8AAIA/5tBRvnkNIj9RhiY9SW6JvsErqb1qWso9AAAAAAAAAABaK/296PqNP9WwW76SUOC+5JXdvcw4xr0AAAAAAAAAAC0rQb62izs/zQ4MvJujm75+Kka9PpNEPQAAAAAAAAAAm0yUvoBwTD+/qKK+lcTJvjdTeb4L3Ui6AAAAAAAAAADaBQE+HnOZP2IHND8AXwW/aZrsux2qcT0AAAAAAAAAAOYI9T3WgKU/buQIPy6TYr4YBAs+pcl5PgAAAAAAAAAA0GiPPjG0Uz8j7/I7V/WnvqjlQD7YDKk8AAAAAAAAAACmm/i9rveTPw2WFb6XZbm+A3aMvbskGDwAAAAAAAAAAJqe87wfNem5fpZtOmRubrYTJbi7342LuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKLfte9Rgb0CUhpRSlIwBbJRNJQGMAXSUR0CX69/t6X0HdX2UKGgGaAloD0MISpo/pnVnc0CUhpRSlGgVTToBaBZHQJfs+7Bfrrx1fZQoaAZoCWgPQwh2qRH6mcBKQJSGlFKUaBVL1GgWR0CX7a5MlC1JdX2UKGgGaAloD0MI5CzsaQfZcECUhpRSlGgVTRIBaBZHQJft55MURFt1fZQoaAZoCWgPQwi37uapTqBxQJSGlFKUaBVNJQFoFkdAl+6adYnv2HV9lChoBmgJaA9DCEp6GFodFG1AlIaUUpRoFU0wAWgWR0CX7qa6jFhodX2UKGgGaAloD0MIhGdCk8SJcUCUhpRSlGgVTSEBaBZHQJfwdBmf5DZ1fZQoaAZoCWgPQwhJ1uHoajRwQJSGlFKUaBVNKQFoFkdAl/CZML4N7XV9lChoBmgJaA9DCL+36c8+qHBAlIaUUpRoFU0zAWgWR0CX8Kz3yqdZdX2UKGgGaAloD0MIuATgnxIVcECUhpRSlGgVTSMBaBZHQJfxK0Xxe9l1fZQoaAZoCWgPQwifsMQDSjxtQJSGlFKUaBVNJQFoFkdAl/G0ADJU53V9lChoBmgJaA9DCG2RtBt9x3BAlIaUUpRoFU1kAWgWR0CX8zaews5GdX2UKGgGaAloD0MIaEC9GbW5bECUhpRSlGgVTTQBaBZHQJfzSrxRVIZ1fZQoaAZoCWgPQwg900uMZb1uQJSGlFKUaBVNHgFoFkdAl/Urm6oVEnV9lChoBmgJaA9DCLO3lPOFSnJAlIaUUpRoFU0qAWgWR0CX+B21D0DmdX2UKGgGaAloD0MICcGqevmgcECUhpRSlGgVTSEBaBZHQJf48TK1XvJ1fZQoaAZoCWgPQwhos+pztfU6QJSGlFKUaBVL32gWR0CX+cW3Sa3JdX2UKGgGaAloD0MIgXfy6bHVbUCUhpRSlGgVTQ4BaBZHQJf50v9LpRp1fZQoaAZoCWgPQwhqaW6F8ChyQJSGlFKUaBVNLQFoFkdAl/o6l+EytXV9lChoBmgJaA9DCJv+7EeK6m9AlIaUUpRoFU1CAWgWR0CX+2aOxSpBdX2UKGgGaAloD0MI4V8EjZnAUkCUhpRSlGgVTegDaBZHQJf8mNxVAA11fZQoaAZoCWgPQwhUVz7Lc+dvQJSGlFKUaBVNIgFoFkdAl/yaPKdQPHV9lChoBmgJaA9DCCnOUUcHPXJAlIaUUpRoFU1PAWgWR0CX/KRwIdELdX2UKGgGaAloD0MIUkXxKmsicECUhpRSlGgVTS4BaBZHQJf9IkcCHRF1fZQoaAZoCWgPQwjXoZqSLEhwQJSGlFKUaBVNLAFoFkdAl/15QP7N0XV9lChoBmgJaA9DCML4adzbrXJAlIaUUpRoFU0eAWgWR0CX/Xp5eJHidX2UKGgGaAloD0MIxCYyc4GKcUCUhpRSlGgVTQoBaBZHQJf9/6P8yet1fZQoaAZoCWgPQwjJdr6fmlNuQJSGlFKUaBVNJwFoFkdAl/7fZZjhDXV9lChoBmgJaA9DCCpvRzgtzERAlIaUUpRoFUv9aBZHQJf/E74i5d51fZQoaAZoCWgPQwh8JvvnaR5JQJSGlFKUaBVL42gWR0CYADafzz3AdX2UKGgGaAloD0MI1o9N8mNscECUhpRSlGgVTS4BaBZHQJgDgj9n9Nx1fZQoaAZoCWgPQwhNFYxKqpVxQJSGlFKUaBVNIAFoFkdAmAO3aakRBnV9lChoBmgJaA9DCGcpWU5C+m5AlIaUUpRoFU0mAWgWR0CYA+hrFfiQdX2UKGgGaAloD0MIxVimXyJGOkCUhpRSlGgVS/toFkdAmAS6Wom5UnV9lChoBmgJaA9DCKThlLk5FHBAlIaUUpRoFU1EAWgWR0CYBXmOlwcYdX2UKGgGaAloD0MIGqchqvDhbkCUhpRSlGgVTSIBaBZHQJgGV6a9bot1fZQoaAZoCWgPQwjQ1VbsL49wQJSGlFKUaBVNCAFoFkdAmAZjpTuOTHV9lChoBmgJaA9DCGTpQxfUZm9AlIaUUpRoFU0WAWgWR0CYBoFtsN2DdX2UKGgGaAloD0MIeXWOAdlPbUCUhpRSlGgVTSwBaBZHQJgGrqNZNfx1fZQoaAZoCWgPQwgCRSximFVzQJSGlFKUaBVNTAFoFkdAmAbXeWOZLXV9lChoBmgJaA9DCGxAhLiy53FAlIaUUpRoFU0kAWgWR0CYB1MK1G9YdX2UKGgGaAloD0MI3uf4aHERcUCUhpRSlGgVTRsBaBZHQJgHnzAeq711fZQoaAZoCWgPQwgabVUSWQZhQJSGlFKUaBVN6ANoFkdAmAijQ3PzF3V9lChoBmgJaA9DCLgiMUEN1HBAlIaUUpRoFU0cAWgWR0CYCM1FH8TBdX2UKGgGaAloD0MI86ykFR92ckCUhpRSlGgVTS4BaBZHQJgJGlVLi/B1fZQoaAZoCWgPQwjYSBKEK2dvQJSGlFKUaBVNHAFoFkdAmAnurQw9JXV9lChoBmgJaA9DCOLIA5GFSHBAlIaUUpRoFU1KAWgWR0CYI7mGdqcmdX2UKGgGaAloD0MINgLxuv6ob0CUhpRSlGgVTQ0BaBZHQJgj+uEEkjZ1fZQoaAZoCWgPQwh+bmjKzvhwQJSGlFKUaBVNYAFoFkdAmCSTOC5Et3V9lChoBmgJaA9DCMfWM4QjzHBAlIaUUpRoFU0uAWgWR0CYJJVzp5eJdX2UKGgGaAloD0MIkncOZahKbUCUhpRSlGgVTWABaBZHQJglCu1WsBB1fZQoaAZoCWgPQwit3XahuTByQJSGlFKUaBVNFwFoFkdAmCUXIZIg/3V9lChoBmgJaA9DCGDmO/iJ/G5AlIaUUpRoFU0tAWgWR0CYJYLVnVXndX2UKGgGaAloD0MIpztPPKd7cECUhpRSlGgVTVsBaBZHQJglt/4Irvt1fZQoaAZoCWgPQwgNVTGV/kxuQJSGlFKUaBVNOAFoFkdAmCYQLRa5gHV9lChoBmgJaA9DCOKTTiSYtnJAlIaUUpRoFU0cAWgWR0CYJk7OVxCIdX2UKGgGaAloD0MIsRpLWBuacUCUhpRSlGgVTSYBaBZHQJgmTzVc2R91fZQoaAZoCWgPQwidf7vsV+RuQJSGlFKUaBVNVQFoFkdAmCcZokAxSHV9lChoBmgJaA9DCCx+U1gp+GxAlIaUUpRoFU0cAWgWR0CYJ1S7oStedX2UKGgGaAloD0MInMO12sMfbUCUhpRSlGgVTSIBaBZHQJgnqFAVwgl1fZQoaAZoCWgPQwiXAPxT6o5xQJSGlFKUaBVNVgFoFkdAmClNoexOcnV9lChoBmgJaA9DCLX5f9WRI3FAlIaUUpRoFU16AWgWR0CYK57655JLdX2UKGgGaAloD0MIO8WqQVhZcECUhpRSlGgVTRMBaBZHQJguOhJyyUt1fZQoaAZoCWgPQwhcj8L1qJdsQJSGlFKUaBVNFAFoFkdAmC5K/20zCXV9lChoBmgJaA9DCGcMc4I27W9AlIaUUpRoFU0SAWgWR0CYLqXXRPXTdX2UKGgGaAloD0MIzLIngc0/ckCUhpRSlGgVTQIBaBZHQJgvT4k/r0J1fZQoaAZoCWgPQwg6BmSvd/lyQJSGlFKUaBVNLgFoFkdAmC/iUgSvknV9lChoBmgJaA9DCHR5c7hWl3BAlIaUUpRoFU0hAWgWR0CYL/eANG3GdX2UKGgGaAloD0MIAALWql2YbECUhpRSlGgVTSgBaBZHQJgwx7iQ1aZ1fZQoaAZoCWgPQwjb/SrAN2twQJSGlFKUaBVNZQFoFkdAmDEM2NvOyHV9lChoBmgJaA9DCBKHbCBdDHBAlIaUUpRoFU09AWgWR0CYMU2bobGWdX2UKGgGaAloD0MIie5Z1+jMa0CUhpRSlGgVTRcBaBZHQJgxcFA3T/h1fZQoaAZoCWgPQwh1AwXeyelsQJSGlFKUaBVNWQFoFkdAmDG3eBQN1HV9lChoBmgJaA9DCBBAahNnvnNAlIaUUpRoFU0rAWgWR0CYMchYvFm4dX2UKGgGaAloD0MIpP56hQUtcUCUhpRSlGgVTUMBaBZHQJgy6jsUqQR1fZQoaAZoCWgPQwgrieyDbNtxQJSGlFKUaBVNKQFoFkdAmDYyN0eU6nV9lChoBmgJaA9DCJ8CYDzD0XFAlIaUUpRoFU0WAWgWR0CYOCLeANG3dX2UKGgGaAloD0MIRgn6C33LcECUhpRSlGgVTTABaBZHQJg49dRiw0R1fZQoaAZoCWgPQwi5wyYyc6xyQJSGlFKUaBVNHQFoFkdAmDkzDTBqK3V9lChoBmgJaA9DCJ27XS9NNW9AlIaUUpRoFU1KAWgWR0CYOiKO1fE5dX2UKGgGaAloD0MIFHtoH6v9bkCUhpRSlGgVTSsBaBZHQJg6g+/xlQN1fZQoaAZoCWgPQwgbaD7nLmhxQJSGlFKUaBVNFQFoFkdAmDsjjFQ2uXV9lChoBmgJaA9DCKjIIeJmh29AlIaUUpRoFU0gAWgWR0CYO01U2kzodX2UKGgGaAloD0MIo+VAD3VMcUCUhpRSlGgVTUkBaBZHQJg7p8fFJg91fZQoaAZoCWgPQwhahGIraNtuQJSGlFKUaBVNNQFoFkdAmDvW7Wd3CHV9lChoBmgJaA9DCM4Y5gTtbm1AlIaUUpRoFU0jAWgWR0CYO9kjopx4dX2UKGgGaAloD0MIfAvrxrvTbkCUhpRSlGgVTSoBaBZHQJg8YZDRc/t1fZQoaAZoCWgPQwgxPzc0ZTRwQJSGlFKUaBVNLwFoFkdAmD3xAOavzXV9lChoBmgJaA9DCDc2O1J9gm5AlIaUUpRoFU1mAWgWR0CYPlSro4dZdX2UKGgGaAloD0MIsFdYcD+McECUhpRSlGgVTREBaBZHQJhAQPFvQ4V1fZQoaAZoCWgPQwiI83AC0xxuQJSGlFKUaBVNJwFoFkdAmEPXPu5SWXV9lChoBmgJaA9DCI9Rnnl5Q3FAlIaUUpRoFU06AWgWR0CYQ+OwxFiKdX2UKGgGaAloD0MIRFGgT2STbkCUhpRSlGgVTRcBaBZHQJhEQLUkOZt1fZQoaAZoCWgPQwhgzQGCuUtyQJSGlFKUaBVNAwFoFkdAmEUv2bobGXV9lChoBmgJaA9DCB0c7E3MqHJAlIaUUpRoFU1BAWgWR0CYRTCPp6hQdX2UKGgGaAloD0MIbK8FvTd9b0CUhpRSlGgVTRYBaBZHQJhFZN21Ul11fZQoaAZoCWgPQwj2Rq0wvZhwQJSGlFKUaBVNEwFoFkdAmEWfHT7VKHV9lChoBmgJaA9DCPxvJTu2p3FAlIaUUpRoFU0+AWgWR0CYRrdgv115dX2UKGgGaAloD0MIG0tYG2NucUCUhpRSlGgVTS8BaBZHQJhG0xzq8lJ1fZQoaAZoCWgPQwindRvU/ndwQJSGlFKUaBVNWwFoFkdAmEcunVG0/nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79dd180129b7216ac80e94be1e0d56169b0bac6ebc06d70bc82a16e3ed04b066
|
3 |
+
size 147214
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbec3f3ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbec3f3d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbec3f3dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbec3f3e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdbec3f3ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdbec3f3f70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbec3f8040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdbec3f80d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbec3f8160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbec3f81f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbec3f8280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fdbec3f04b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671621804570941216,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPBDb1JZbk/tgIXv3eOVz43Eyc9dSwkPgAAAAAAAAAAnSCCvpQ4HL1mfdk64/CUOfGRiT5G4xG6AACAPwAAgD+mQrI9hNHJPrpz8Lysmka+YNYRPYo/FD0AAAAAAAAAADPCnz2fH6m781XuvNdnWzxBeho9wa45vQAAgD8AAIA/Tb6dvWu+bT9lA869+lLAvl7pw71AZtA8AAAAAAAAAACaI7i9rPiAPHu7RD4lokK+GvJvPQKfjb0AAAAAAAAAANo1eL5Rnge9TXE5vIf4sLrur28+RJuEOwAAgD8AAIA/5tBRvnkNIj9RhiY9SW6JvsErqb1qWso9AAAAAAAAAABaK/296PqNP9WwW76SUOC+5JXdvcw4xr0AAAAAAAAAAC0rQb62izs/zQ4MvJujm75+Kka9PpNEPQAAAAAAAAAAm0yUvoBwTD+/qKK+lcTJvjdTeb4L3Ui6AAAAAAAAAADaBQE+HnOZP2IHND8AXwW/aZrsux2qcT0AAAAAAAAAAOYI9T3WgKU/buQIPy6TYr4YBAs+pcl5PgAAAAAAAAAA0GiPPjG0Uz8j7/I7V/WnvqjlQD7YDKk8AAAAAAAAAACmm/i9rveTPw2WFb6XZbm+A3aMvbskGDwAAAAAAAAAAJqe87wfNem5fpZtOmRubrYTJbi7342LuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKLfte9Rgb0CUhpRSlIwBbJRNJQGMAXSUR0CX69/t6X0HdX2UKGgGaAloD0MISpo/pnVnc0CUhpRSlGgVTToBaBZHQJfs+7Bfrrx1fZQoaAZoCWgPQwh2qRH6mcBKQJSGlFKUaBVL1GgWR0CX7a5MlC1JdX2UKGgGaAloD0MI5CzsaQfZcECUhpRSlGgVTRIBaBZHQJft55MURFt1fZQoaAZoCWgPQwi37uapTqBxQJSGlFKUaBVNJQFoFkdAl+6adYnv2HV9lChoBmgJaA9DCEp6GFodFG1AlIaUUpRoFU0wAWgWR0CX7qa6jFhodX2UKGgGaAloD0MIhGdCk8SJcUCUhpRSlGgVTSEBaBZHQJfwdBmf5DZ1fZQoaAZoCWgPQwhJ1uHoajRwQJSGlFKUaBVNKQFoFkdAl/CZML4N7XV9lChoBmgJaA9DCL+36c8+qHBAlIaUUpRoFU0zAWgWR0CX8Kz3yqdZdX2UKGgGaAloD0MIuATgnxIVcECUhpRSlGgVTSMBaBZHQJfxK0Xxe9l1fZQoaAZoCWgPQwifsMQDSjxtQJSGlFKUaBVNJQFoFkdAl/G0ADJU53V9lChoBmgJaA9DCG2RtBt9x3BAlIaUUpRoFU1kAWgWR0CX8zaews5GdX2UKGgGaAloD0MIaEC9GbW5bECUhpRSlGgVTTQBaBZHQJfzSrxRVIZ1fZQoaAZoCWgPQwg900uMZb1uQJSGlFKUaBVNHgFoFkdAl/Urm6oVEnV9lChoBmgJaA9DCLO3lPOFSnJAlIaUUpRoFU0qAWgWR0CX+B21D0DmdX2UKGgGaAloD0MICcGqevmgcECUhpRSlGgVTSEBaBZHQJf48TK1XvJ1fZQoaAZoCWgPQwhos+pztfU6QJSGlFKUaBVL32gWR0CX+cW3Sa3JdX2UKGgGaAloD0MIgXfy6bHVbUCUhpRSlGgVTQ4BaBZHQJf50v9LpRp1fZQoaAZoCWgPQwhqaW6F8ChyQJSGlFKUaBVNLQFoFkdAl/o6l+EytXV9lChoBmgJaA9DCJv+7EeK6m9AlIaUUpRoFU1CAWgWR0CX+2aOxSpBdX2UKGgGaAloD0MI4V8EjZnAUkCUhpRSlGgVTegDaBZHQJf8mNxVAA11fZQoaAZoCWgPQwhUVz7Lc+dvQJSGlFKUaBVNIgFoFkdAl/yaPKdQPHV9lChoBmgJaA9DCCnOUUcHPXJAlIaUUpRoFU1PAWgWR0CX/KRwIdELdX2UKGgGaAloD0MIUkXxKmsicECUhpRSlGgVTS4BaBZHQJf9IkcCHRF1fZQoaAZoCWgPQwjXoZqSLEhwQJSGlFKUaBVNLAFoFkdAl/15QP7N0XV9lChoBmgJaA9DCML4adzbrXJAlIaUUpRoFU0eAWgWR0CX/Xp5eJHidX2UKGgGaAloD0MIxCYyc4GKcUCUhpRSlGgVTQoBaBZHQJf9/6P8yet1fZQoaAZoCWgPQwjJdr6fmlNuQJSGlFKUaBVNJwFoFkdAl/7fZZjhDXV9lChoBmgJaA9DCCpvRzgtzERAlIaUUpRoFUv9aBZHQJf/E74i5d51fZQoaAZoCWgPQwh8JvvnaR5JQJSGlFKUaBVL42gWR0CYADafzz3AdX2UKGgGaAloD0MI1o9N8mNscECUhpRSlGgVTS4BaBZHQJgDgj9n9Nx1fZQoaAZoCWgPQwhNFYxKqpVxQJSGlFKUaBVNIAFoFkdAmAO3aakRBnV9lChoBmgJaA9DCGcpWU5C+m5AlIaUUpRoFU0mAWgWR0CYA+hrFfiQdX2UKGgGaAloD0MIxVimXyJGOkCUhpRSlGgVS/toFkdAmAS6Wom5UnV9lChoBmgJaA9DCKThlLk5FHBAlIaUUpRoFU1EAWgWR0CYBXmOlwcYdX2UKGgGaAloD0MIGqchqvDhbkCUhpRSlGgVTSIBaBZHQJgGV6a9bot1fZQoaAZoCWgPQwjQ1VbsL49wQJSGlFKUaBVNCAFoFkdAmAZjpTuOTHV9lChoBmgJaA9DCGTpQxfUZm9AlIaUUpRoFU0WAWgWR0CYBoFtsN2DdX2UKGgGaAloD0MIeXWOAdlPbUCUhpRSlGgVTSwBaBZHQJgGrqNZNfx1fZQoaAZoCWgPQwgCRSximFVzQJSGlFKUaBVNTAFoFkdAmAbXeWOZLXV9lChoBmgJaA9DCGxAhLiy53FAlIaUUpRoFU0kAWgWR0CYB1MK1G9YdX2UKGgGaAloD0MI3uf4aHERcUCUhpRSlGgVTRsBaBZHQJgHnzAeq711fZQoaAZoCWgPQwgabVUSWQZhQJSGlFKUaBVN6ANoFkdAmAijQ3PzF3V9lChoBmgJaA9DCLgiMUEN1HBAlIaUUpRoFU0cAWgWR0CYCM1FH8TBdX2UKGgGaAloD0MI86ykFR92ckCUhpRSlGgVTS4BaBZHQJgJGlVLi/B1fZQoaAZoCWgPQwjYSBKEK2dvQJSGlFKUaBVNHAFoFkdAmAnurQw9JXV9lChoBmgJaA9DCOLIA5GFSHBAlIaUUpRoFU1KAWgWR0CYI7mGdqcmdX2UKGgGaAloD0MINgLxuv6ob0CUhpRSlGgVTQ0BaBZHQJgj+uEEkjZ1fZQoaAZoCWgPQwh+bmjKzvhwQJSGlFKUaBVNYAFoFkdAmCSTOC5Et3V9lChoBmgJaA9DCMfWM4QjzHBAlIaUUpRoFU0uAWgWR0CYJJVzp5eJdX2UKGgGaAloD0MIkncOZahKbUCUhpRSlGgVTWABaBZHQJglCu1WsBB1fZQoaAZoCWgPQwit3XahuTByQJSGlFKUaBVNFwFoFkdAmCUXIZIg/3V9lChoBmgJaA9DCGDmO/iJ/G5AlIaUUpRoFU0tAWgWR0CYJYLVnVXndX2UKGgGaAloD0MIpztPPKd7cECUhpRSlGgVTVsBaBZHQJglt/4Irvt1fZQoaAZoCWgPQwgNVTGV/kxuQJSGlFKUaBVNOAFoFkdAmCYQLRa5gHV9lChoBmgJaA9DCOKTTiSYtnJAlIaUUpRoFU0cAWgWR0CYJk7OVxCIdX2UKGgGaAloD0MIsRpLWBuacUCUhpRSlGgVTSYBaBZHQJgmTzVc2R91fZQoaAZoCWgPQwidf7vsV+RuQJSGlFKUaBVNVQFoFkdAmCcZokAxSHV9lChoBmgJaA9DCCx+U1gp+GxAlIaUUpRoFU0cAWgWR0CYJ1S7oStedX2UKGgGaAloD0MInMO12sMfbUCUhpRSlGgVTSIBaBZHQJgnqFAVwgl1fZQoaAZoCWgPQwiXAPxT6o5xQJSGlFKUaBVNVgFoFkdAmClNoexOcnV9lChoBmgJaA9DCLX5f9WRI3FAlIaUUpRoFU16AWgWR0CYK57655JLdX2UKGgGaAloD0MIO8WqQVhZcECUhpRSlGgVTRMBaBZHQJguOhJyyUt1fZQoaAZoCWgPQwhcj8L1qJdsQJSGlFKUaBVNFAFoFkdAmC5K/20zCXV9lChoBmgJaA9DCGcMc4I27W9AlIaUUpRoFU0SAWgWR0CYLqXXRPXTdX2UKGgGaAloD0MIzLIngc0/ckCUhpRSlGgVTQIBaBZHQJgvT4k/r0J1fZQoaAZoCWgPQwg6BmSvd/lyQJSGlFKUaBVNLgFoFkdAmC/iUgSvknV9lChoBmgJaA9DCHR5c7hWl3BAlIaUUpRoFU0hAWgWR0CYL/eANG3GdX2UKGgGaAloD0MIAALWql2YbECUhpRSlGgVTSgBaBZHQJgwx7iQ1aZ1fZQoaAZoCWgPQwjb/SrAN2twQJSGlFKUaBVNZQFoFkdAmDEM2NvOyHV9lChoBmgJaA9DCBKHbCBdDHBAlIaUUpRoFU09AWgWR0CYMU2bobGWdX2UKGgGaAloD0MIie5Z1+jMa0CUhpRSlGgVTRcBaBZHQJgxcFA3T/h1fZQoaAZoCWgPQwh1AwXeyelsQJSGlFKUaBVNWQFoFkdAmDG3eBQN1HV9lChoBmgJaA9DCBBAahNnvnNAlIaUUpRoFU0rAWgWR0CYMchYvFm4dX2UKGgGaAloD0MIpP56hQUtcUCUhpRSlGgVTUMBaBZHQJgy6jsUqQR1fZQoaAZoCWgPQwgrieyDbNtxQJSGlFKUaBVNKQFoFkdAmDYyN0eU6nV9lChoBmgJaA9DCJ8CYDzD0XFAlIaUUpRoFU0WAWgWR0CYOCLeANG3dX2UKGgGaAloD0MIRgn6C33LcECUhpRSlGgVTTABaBZHQJg49dRiw0R1fZQoaAZoCWgPQwi5wyYyc6xyQJSGlFKUaBVNHQFoFkdAmDkzDTBqK3V9lChoBmgJaA9DCJ27XS9NNW9AlIaUUpRoFU1KAWgWR0CYOiKO1fE5dX2UKGgGaAloD0MIFHtoH6v9bkCUhpRSlGgVTSsBaBZHQJg6g+/xlQN1fZQoaAZoCWgPQwgbaD7nLmhxQJSGlFKUaBVNFQFoFkdAmDsjjFQ2uXV9lChoBmgJaA9DCKjIIeJmh29AlIaUUpRoFU0gAWgWR0CYO01U2kzodX2UKGgGaAloD0MIo+VAD3VMcUCUhpRSlGgVTUkBaBZHQJg7p8fFJg91fZQoaAZoCWgPQwhahGIraNtuQJSGlFKUaBVNNQFoFkdAmDvW7Wd3CHV9lChoBmgJaA9DCM4Y5gTtbm1AlIaUUpRoFU0jAWgWR0CYO9kjopx4dX2UKGgGaAloD0MIfAvrxrvTbkCUhpRSlGgVTSoBaBZHQJg8YZDRc/t1fZQoaAZoCWgPQwgxPzc0ZTRwQJSGlFKUaBVNLwFoFkdAmD3xAOavzXV9lChoBmgJaA9DCDc2O1J9gm5AlIaUUpRoFU1mAWgWR0CYPlSro4dZdX2UKGgGaAloD0MIsFdYcD+McECUhpRSlGgVTREBaBZHQJhAQPFvQ4V1fZQoaAZoCWgPQwiI83AC0xxuQJSGlFKUaBVNJwFoFkdAmEPXPu5SWXV9lChoBmgJaA9DCI9Rnnl5Q3FAlIaUUpRoFU06AWgWR0CYQ+OwxFiKdX2UKGgGaAloD0MIRFGgT2STbkCUhpRSlGgVTRcBaBZHQJhEQLUkOZt1fZQoaAZoCWgPQwhgzQGCuUtyQJSGlFKUaBVNAwFoFkdAmEUv2bobGXV9lChoBmgJaA9DCB0c7E3MqHJAlIaUUpRoFU1BAWgWR0CYRTCPp6hQdX2UKGgGaAloD0MIbK8FvTd9b0CUhpRSlGgVTRYBaBZHQJhFZN21Ul11fZQoaAZoCWgPQwj2Rq0wvZhwQJSGlFKUaBVNEwFoFkdAmEWfHT7VKHV9lChoBmgJaA9DCPxvJTu2p3FAlIaUUpRoFU0+AWgWR0CYRrdgv115dX2UKGgGaAloD0MIG0tYG2NucUCUhpRSlGgVTS8BaBZHQJhG0xzq8lJ1fZQoaAZoCWgPQwindRvU/ndwQJSGlFKUaBVNWwFoFkdAmEcunVG0/nVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2349a6885ead6d7614340d3f8562a50008a3377c8cc6a8ecb178dae20b8e0b46
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30e69f122f2c01da848d20dd1a4f21ac4fb8727ca603bfde25b4ba2fbe537b87
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (173 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.9146501561021, "std_reward": 19.753450585767204, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T11:57:39.636688"}
|