PPO RL Agents_v1 for LunarLanderV2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2_first_again.zip +2 -2
- ppo-LunarLander-v2_first_again/data +20 -20
- ppo-LunarLander-v2_first_again/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2_first_again/policy.pth +2 -2
- ppo-LunarLander-v2_first_again/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 295.24 +/- 13.68
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ad1327c0af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ad1327c0b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ad1327c0c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ad1327c0ca0>", "_build": "<function ActorCriticPolicy._build at 0x7ad1327c0d30>", "forward": "<function ActorCriticPolicy.forward at 0x7ad1327c0dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ad1327c0e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ad1327c0ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ad1327c0f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ad1327c1000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ad1327c1090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ad1327c1120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ad132753ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719664432994595483, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbiQT2koAe531OFOoAWOTVRtz25gYecuQAAgD8AAIA/mv7IPMNFfboSdRe6oG0Yta8uDztuETE5AACAPwAAgD8g/Aq+uEKVP6Ui/b5QYAq/2tI+vvFUvb0AAAAAAAAAALOzkb1cDyG6cvuvOj/45bX93Li7DVbgtAAAgD8AAIA/mvmvOihbIz/OXIq9X3/hvn3kUT0KY5m9AAAAAAAAAADG8g++hJoAP6bR5z0pgcG+VECUvIailD0AAAAAAAAAAGZ28LrDaWK6uCjuOok8oLQzmhu6kiUJugAAgD8AAIA/ZihPPK7phLodnFS50XVXtH333jothXQ4AACAPwAAgD/NCDQ9FvBqPTM6kT00EEK+ZclLO6VY1zwAAAAAAAAAAJpsb77sNiw/C8iavXue5b7LjcK92IfLPQAAAAAAAAAAzfzkPbgmsLlN8iY6HVyGNVdWbDpQJ0O5AAAAAAAAgD99hFm+QCvwPuOqSD7ayY++oIlovfWCWTwAAAAAAAAAACZQxD2uKa66kqfZO3oAATgFmAe5knWdNgAAgD8AAIA/WskIPnEQJLuI6zm7UJYyOPj3a7xFxGI6AAAAAAAAgD9NcES9yle+Px5JCr+kz4k+smoYPU8Cwj0AAAAAAAAAAJp5MTz2uE26R4sUussKDLRAooQ7ame+MwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNFw/xDst2MAWyUTegDjAF0lEdAnd49d7fHgnV9lChoBkdAZTqVymygPGgHTegDaAhHQJ3pfPv8ZUF1fZQoaAZHQGWEYCZF5OdoB03oA2gIR0Cd6fIbOu7pdX2UKGgGR0BmsKPdVNpNaAdN6ANoCEdAnfIKj8DSxHV9lChoBkdAZegGDcuanmgHTegDaAhHQJ33ibKA8Sx1fZQoaAZHQFs/hOxjawloB03oA2gIR0Cd+BWLgn+idX2UKGgGR0BgkORgZ0jkaAdN6ANoCEdAngIooE0SAnV9lChoBkdAYLnvqC6H02gHTegDaAhHQJ4aFC/oJRh1fZQoaAZHQGRt+1rqMWJoB03oA2gIR0CeHAMglnh9dX2UKGgGR0Bj59UbT+efaAdN6ANoCEdAnh+Z7sv7FnV9lChoBkdAYiyon8baRWgHTegDaAhHQJ4igbCJoCd1fZQoaAZHQGLnhVENOM5oB03oA2gIR0CeJNHIp6QedX2UKGgGR0BhGIGlhw2maAdN6ANoCEdAnjwho/Rmb3V9lChoBkdAYw3F2FFlTWgHTegDaAhHQJ4+IMCtA9p1fZQoaAZHQGbCl7MPjGVoB03oA2gIR0CeQJY77sOYdX2UKGgGR0BmcLSb6P8yaAdN6ANoCEdAnkGKsMiKSHV9lChoBkdAY5I2R7qptWgHTegDaAhHQJ5G+B5HEuR1fZQoaAZHQGKZEBCD28JoB03oA2gIR0CeYWFoL5RCdX2UKGgGR0Bk62FlCkXUaAdN6ANoCEdAnmHX3lCCz3V9lChoBkdAZiKood+5OWgHTegDaAhHQJ5n7LIPsiV1fZQoaAZHQGYY8WbgCOpoB03oA2gIR0Cea6FtKqXGdX2UKGgGR0BjblQ/HHWCaAdN6ANoCEdAnmv3UYsND3V9lChoBkdAYeZzZHuqm2gHTegDaAhHQJ50h8UmD151fZQoaAZHQGArp97WuoxoB03oA2gIR0CefvvqC6H1dX2UKGgGR0BnOxxvNu+AaAdN6ANoCEdAnoCqiblRxnV9lChoBkdAZ/9+rELpimgHTegDaAhHQJ6Du3CsOoZ1fZQoaAZHQGGHKWC2+f1oB03oA2gIR0CehcLt/nW8dX2UKGgGR0Bm6LnkkrwwaAdN6ANoCEdAnoe1MIu5BnV9lChoBkdAaOJaHsTnJWgHTegDaAhHQJ6Yz7l7tzF1fZQoaAZHQGHwPKdQO4JoB03oA2gIR0CerayKNyYHdX2UKGgGR0AiBVT72tdSaAdLymgIR0Cerz+vQnhLdX2UKGgGR0Bioqb2Dg62aAdN6ANoCEdAnq/WrKeTV3V9lChoBkdAYZvmwqy4WmgHTegDaAhHQJ6wm8+Royt1fZQoaAZHQGbGydvsJIFoB03oA2gIR0CetVcurZJ1dX2UKGgGR0BjKgH1OCXhaAdN6ANoCEdAnsI+kxh2GXV9lChoBkdAYfU24uscQ2gHTegDaAhHQJ7C2knCwbF1fZQoaAZHQGFCu/cnE2poB03oA2gIR0CeyfhkiD/VdX2UKGgGR0Bh2q2fChvjaAdN6ANoCEdAns1g0Kqn33V9lChoBkdAWcUg9vCMxWgHTegDaAhHQJ7Nss+V1Ol1fZQoaAZHQGi9u9OARTVoB03oA2gIR0Ce4Vgam4y5dX2UKGgGR0BeqONT987ZaAdN6ANoCEdAnusDdgv12HV9lChoBkdAYWkvBacI7mgHTegDaAhHQJ7v001qFh51fZQoaAZHQGNSnyup0fZoB03oA2gIR0Ce8tIYm9g4dX2UKGgGR0BieDgXMyJsaAdN6ANoCEdAnvTwieNDMXV9lChoBkdAXqQeDFqBVmgHTegDaAhHQJ731gOSW7h1fZQoaAZHQGBx6uwHJLdoB03oA2gIR0CfDkRaHKwIdX2UKGgGR0BjvxEhJRO2aAdN6ANoCEdAnw/2DpTuOXV9lChoBkdAYE20IkZ75WgHTegDaAhHQJ8Qonv2GqR1fZQoaAZHQGV4D4xk/bFoB03oA2gIR0CfEXgEU0vXdX2UKGgGR0BI0tTcZccEaAdLpmgIR0CfEkeBQN1AdX2UKGgGR0BmdJtJnQIEaAdN6ANoCEdAnxY+VopQUHV9lChoBkdAYbt7pFCswWgHTegDaAhHQJ8vnMEA5rB1fZQoaAZHQGd7gCwKSgZoB03oA2gIR0CfMAvLX+VDdX2UKGgGR0BlLag/TspoaAdN6ANoCEdAnzXYgieNDXV9lChoBkdAZ8gKpkwvg2gHTegDaAhHQJ85c53kgfV1fZQoaAZHQGRkebExZdRoB03oA2gIR0CfOcUmD15CdX2UKGgGR0BBtJyQxN7CaAdLy2gIR0CfO96dUbT+dX2UKGgGR0BhsmxOclPaaAdN6ANoCEdAn0HgX668QXV9lChoBkdAYfgtcv/R3WgHTegDaAhHQJ9LrTOPeYV1fZQoaAZHQGTtGBvrGBFoB03oA2gIR0CfXdLNwBHTdX2UKGgGR0BjA2+GoJiRaAdN6ANoCEdAn2MZk078vXV9lChoBkdAZfmcrAgxJ2gHTegDaAhHQJ9ld+Vkc0d1fZQoaAZHQDg0T/Q0GeNoB0u9aAhHQJ9m5uHerMl1fZQoaAZHQGcUiZWq95BoB03oA2gIR0CfZ1xASnLrdX2UKGgGR0Bi8KYzBRAKaAdN6ANoCEdAn3wgla8pTnV9lChoBkdAZtFRhttQ9GgHTegDaAhHQJ98uK64DtB1fZQoaAZHQGcGpudf9gpoB03oA2gIR0CffXtgKF7EdX2UKGgGR0BmJOQ2dd3TaAdN6ANoCEdAn348f/3nIXV9lChoBkdAaRUtq59Vm2gHTegDaAhHQJ+BqMCLdep1fZQoaAZHQGh6drGipNtoB03oA2gIR0Cfi6RkEs8QdX2UKGgGR0BndYEIPbwjaAdN6ANoCEdAn5NsTFl05nV9lChoBkdAX7uePJaJRGgHTegDaAhHQJ+m49A5aNd1fZQoaAZHQGcUCswL3K1oB03oA2gIR0CfpzuXNTtLdX2UKGgGR0BlSRAfMfRvaAdN6ANoCEdAn6l9ph4MW3V9lChoBkdAZmMGzru6VmgHTegDaAhHQJ+vRvJiiIt1fZQoaAZHQFcsbwz+FURoB0vbaAhHQJ+zlcVxjrl1fZQoaAZHQGGAHDiwSrZoB03oA2gIR0CfvTKMvRJFdX2UKGgGR0Bk5CdrftQbaAdN6ANoCEdAn8D0VWS2Y3V9lChoBkdAZUWtSydFv2gHTegDaAhHQJ/DjUWl/H51fZQoaAZHQGEGfSx7iQ1oB03oA2gIR0CfxaNVBD5TdX2UKGgGR0BkCVuHerMlaAdN6ANoCEdAn8Y21IAfdXV9lChoBkdAZs9CXQdCFGgHTegDaAhHQJ/IhlBhQWN1fZQoaAZHQGNc5Tho/RpoB03oA2gIR0CfyWGX5WRzdX2UKGgGR0BkykaOxSpBaAdN6ANoCEdAn98iwW3z+XV9lChoBkdAYgpI7vG6w2gHTegDaAhHQJ/f61TisGR1fZQoaAZHQGaJUN8VpK1oB03oA2gIR0Cf8oLbpNbkdX2UKGgGR0BhqyTlkpZwaAdN6ANoCEdAoAD2K4x1xXV9lChoBkdAZXA5q/M4cWgHTegDaAhHQKAEoI3R5Tt1fZQoaAZHQGYiZhz/6wdoB03oA2gIR0CgBqV6mfoSdX2UKGgGR0BkdtdE9dNWaAdN6ANoCEdAoAgJM6BAfXV9lChoBkdAccOAFxGUfWgHTR4CaAhHQKAJCGyHEdh1fZQoaAZHQGJh9mQKa5RoB03oA2gIR0CgCzh4+r2hdX2UKGgGR0Bl98FINEw4aAdN6ANoCEdAoBQUgfU4JnV9lChoBkdAZYEtq59Vm2gHTegDaAhHQKAaG+pOvdN1fZQoaAZHQGkDOyE+PiloB03oA2gIR0CgHPWkadc0dX2UKGgGR0BnJ8e0Xxe+aAdN6ANoCEdAoB4vkJa7mXV9lChoBkdAZHSNCqp97WgHTegDaAhHQKAe/9AHE/B1fZQoaAZHQGRu39zfaYhoB03oA2gIR0CgHzlGG21EdX2UKGgGR0Bl59CzC1qnaAdN6ANoCEdAoCB9C9h7V3V9lChoBkdAYTEWSEDhcmgHTegDaAhHQKAg9NRFZxJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d5bf82c9480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d5bf82c9510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d5bf82c95a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d5bf82c9630>", "_build": "<function ActorCriticPolicy._build at 0x7d5bf82c96c0>", "forward": "<function ActorCriticPolicy.forward at 0x7d5bf82c9750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d5bf82c97e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d5bf82c9870>", "_predict": "<function ActorCriticPolicy._predict at 0x7d5bf82c9900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d5bf82c9990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d5bf82c9a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d5bf82c9ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d5bf8261080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719922694853600243, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKayHD5sOPA+A8sCvmrNBL+m4Hs+SgsBvgAAAAAAAAAAgEj0PXxyoz4xHiO++fTUvk8F3zyqKkG9AAAAAAAAAACaZrW9QXMyPtj50D6q45C+vRtTPlan9j0AAAAAAAAAADO1ojzDlQC6uNI7vA1G5rHucqI7WuiBMwAAgD8AAIA/07IoPqSfa7uZAQo7gjMEuAn1prwRUSG6AACAPwAAgD8A2wQ9nPQovFeNxLw2XJY87+qRvTANeD0AAIA/AACAP4ABB70X6AE8GpE8PnxJo75XySQ+11O/vgAAAAAAAIA/s10qPVIAqrnlNwU43rSVM2fwFbkiox23AACAPwAAgD+awxy8/pm4P13gAb7F8fM91OucugxuLb0AAAAAAAAAADNbnTulrcM+GAWlu3GB/L7P280767vWvAAAAAAAAAAAgJguPYHhoz/mzpw+kW8bvzmUCD2ZjwI+AAAAAAAAAAAAVPY7Cgg2u27ej7uzf3k8AHmAPM1uWL0AAIA/AACAPzPqyj2Y0pk/xi7zPr4IJL/Rdfc97QR2PgAAAAAAAAAAMy5pPcM7dby6Ba29CjejPE/PwT3KyzK9AACAPwAAgD/z/IA95ZNZP5JXhD15Pxq/ZAWiPW3wAr0AAAAAAAAAADOxfL3Xowu5XWjEN0bCqDITtai7u5jntgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBKwfQrtmeMAWyUS96MAXSUR0CkAvlY2bXpdX2UKGgGR0ByFhrl/6O6aAdL0WgIR0CkA2ELYwqRdX2UKGgGR0Bw9Kpkwvg4aAdLsWgIR0CkA43n6l+FdX2UKGgGR0ByZxsDW9UTaAdL1WgIR0CkA6GnXNC7dX2UKGgGR0BxLnXlKbrkaAdLw2gIR0CkA6G7BfrsdX2UKGgGR0BuVSpPykKvaAdLxWgIR0CkA72wu/UOdX2UKGgGR0BxnT+AEt/XaAdLxGgIR0CkA9J53TuwdX2UKGgGR0BxUAPMB6rvaAdLz2gIR0CkA/LVvuPWdX2UKGgGR0ByahE8aGYbaAdLp2gIR0CkBADvVmSRdX2UKGgGR0Bu1OpsGgSOaAdLv2gIR0CkBCqu0TlDdX2UKGgGR0BwzC++M6zWaAdLxWgIR0CkBGxiobXIdX2UKGgGR0ByLw+jdpIuaAdL4mgIR0CkBIz3yqdZdX2UKGgGR0BzQyzv7WNFaAdL6GgIR0CkBNDN6gM+dX2UKGgGR0BzTTe3x4IKaAdLy2gIR0CkBUnMUypJdX2UKGgGR0BtoshvBJqZaAdLsWgIR0CkBZiTdLxqdX2UKGgGR0BwTHMEA5q/aAdLx2gIR0CkBc6BAfMfdX2UKGgGR0BzdGseXAuaaAdL0mgIR0CkBpTER8MNdX2UKGgGR0BxVXhIe5nUaAdL02gIR0CkBtsotthvdX2UKGgGR0BxkdeiSJTEaAdLzWgIR0CkBuA8jiXIdX2UKGgGR0BxtcMRYigTaAdL0WgIR0CkBwpHRTjvdX2UKGgGR0ByVPr+o99uaAdL32gIR0CkBxDOkcjrdX2UKGgGR0BykhroGIKuaAdL3mgIR0CkB2X9R77bdX2UKGgGR0BzkeVRk3CLaAdL3mgIR0CkB3eruIAPdX2UKGgGR0ByIYC5mRNiaAdLwmgIR0CkB3+DOC5FdX2UKGgGR0ByPikHlfZ3aAdLxmgIR0CkB7UBnzxxdX2UKGgGR0BxO76Eal1saAdL5mgIR0CkB8XeWOZLdX2UKGgGR0BxV78aXKKYaAdNJwFoCEdApBDYmAskIHV9lChoBkdAcUxW5paibmgHS9RoCEdApBDtRxcVxnV9lChoBkdAcADRODaoM2gHS7toCEdApBEFiz9jw3V9lChoBkdAcSHMmF8G92gHS7xoCEdApBFUETxoZnV9lChoBkdAcNlTEBKcu2gHS9hoCEdApBWIu5BkZ3V9lChoBkdAU+NqtYB/7WgHTegDaAhHQKQV11J17pp1fZQoaAZHQHKnOK4x1xNoB0vRaAhHQKQWXkMCtA91fZQoaAZHQHAQq5byH21oB0u/aAhHQKQWk12JSBN1fZQoaAZHQHAJeYYzi0hoB0vQaAhHQKQWr7mdRSB1fZQoaAZHQG/tKzRhMJxoB0vNaAhHQKQW2vrWy1N1fZQoaAZHQHL+p1ie/YdoB0veaAhHQKQW/TGYKIB1fZQoaAZHQHCRi3PRiPRoB0vBaAhHQKQXCZ1mrbR1fZQoaAZHQHLjWYSg5BFoB0vFaAhHQKQXKuyu6mR1fZQoaAZHQHI0aDK5kLBoB0vPaAhHQKQXWSmqHXV1fZQoaAZHQHBWclPacqhoB0uqaAhHQKQXaDJ2dNF1fZQoaAZHQHJfD3M6ikBoB0vjaAhHQKQX5cUuctp1fZQoaAZHQHHxc6/7BO5oB0vkaAhHQKQX/v863iJ1fZQoaAZHQHKXrsByS3doB0vNaAhHQKQYGcbR4Ql1fZQoaAZHQHJddipeeFtoB0vWaAhHQKQYYRzRx951fZQoaAZHQG8YPDpC8e1oB0vHaAhHQKQYfp7kXDZ1fZQoaAZHQHCgmi5/b0xoB0u6aAhHQKQZS1TBInV1fZQoaAZHQHNTvg3tKI1oB0u9aAhHQKQZ7nVXmvJ1fZQoaAZHQHIh7TtsvZhoB0u5aAhHQKQaFRBu4w11fZQoaAZHQHDRlmrbQC1oB0vdaAhHQKQa+Gmk30h1fZQoaAZHQHIi9grpaA5oB0vYaAhHQKQbA/7BO591fZQoaAZHQG5w9ELH+61oB0u2aAhHQKQbBIkqto11fZQoaAZHQHKxsNlRP45oB0vHaAhHQKQbCpF1B+p1fZQoaAZHQHEn5BPbfxdoB0vPaAhHQKQbCuUUwi91fZQoaAZHQHByOMdcSoRoB0vkaAhHQKQbSLsrupl1fZQoaAZHQHJ34u9OARVoB0vUaAhHQKQbXhybQTp1fZQoaAZHQHEfTJZGKAJoB0uqaAhHQKQbrpgTh5x1fZQoaAZHQHDex6By0a9oB0vRaAhHQKQb1gy/KyR1fZQoaAZHQHDCXvttyghoB0vWaAhHQKQb1WFvhqF1fZQoaAZHQHDxGIwdsBRoB0vOaAhHQKQb4MBIWgx1fZQoaAZHQHPAmAskIHFoB0vjaAhHQKQcVz/6wdN1fZQoaAZHQHK3C1y/9HdoB02FAWgIR0CkHHx/ViF1dX2UKGgGR0BxP3Wy1NQCaAdLv2gIR0CkHH+BpYcOdX2UKGgGR0BzaYleF+NMaAdLwmgIR0CkHQUtI066dX2UKGgGR0BzC/Abhm5EaAdL02gIR0CkHSnARChOdX2UKGgGR0BKoois4ku6aAdLlGgIR0CkHT79hqj8dX2UKGgGR0BxlMr4FiazaAdLyWgIR0CkHbfFR51OdX2UKGgGR0ByBMGeMAFQaAdL0WgIR0CkHcwCKaXsdX2UKGgGR0Bwbe4PPLPlaAdL1mgIR0CkHesSkCV9dX2UKGgGR0Bvr9chTwUhaAdLw2gIR0CkHf/seGO/dX2UKGgGR0BxctQHiWE9aAdL42gIR0CkHhj/VAiWdX2UKGgGR0BxT6+qR2bHaAdL52gIR0CkHiF4TsY3dX2UKGgGR0By6fPppvgnaAdLz2gIR0CkHnaqsEJTdX2UKGgGR0By7fK7qY7aaAdLxGgIR0CkHoMfJV81dX2UKGgGR0BywvP8hs68aAdL0GgIR0CkHqAn2IwedX2UKGgGR0BxcrOoo/iYaAdL22gIR0CkHsNZ3cHodX2UKGgGR0Bv0uWv8qFzaAdLv2gIR0CkHuakAPupdX2UKGgGR0BwqPRqoIfKaAdLzGgIR0CkHzHUtqYadX2UKGgGR0By5Hkjopx4aAdL7mgIR0CkIt/MGHHndX2UKGgGR0BybTqRlpXZaAdLyWgIR0CkIypJf6XTdX2UKGgGR0Bx2tIg/1QJaAdL42gIR0CkI0pKraM8dX2UKGgGR0BzI5FiKBNFaAdLumgIR0CkI2ziKiwjdX2UKGgGR0Bx9m40/GEPaAdL9GgIR0CkI64EW69TdX2UKGgGR0BxWjRUm2LHaAdL0WgIR0CkI/FHSWqtdX2UKGgGR0BysGwB5ooNaAdLzmgIR0CkI/xFiKBNdX2UKGgGR0BvcU8vEjxDaAdL5GgIR0CkJBZXU6PsdX2UKGgGR0BxI5NTLns+aAdLz2gIR0CkJBlVcUuddX2UKGgGR0BzQblDF6zFaAdL4GgIR0CkJFTyauwHdX2UKGgGR0BwNFmyxA0LaAdL1GgIR0CkJLBZZB9kdX2UKGgGR0BzEJNpM6BAaAdL52gIR0CkJMsXrMTwdX2UKGgGR0BwIFYhdMTOaAdLy2gIR0CkJOXEyckMdX2UKGgGR0BwHyOU+s5oaAdL2GgIR0CkJOnQ6ZH/dX2UKGgGR0BzJge5nUUgaAdL+2gIR0CkJRjzyz5XdX2UKGgGR0BxHxE6T4cnaAdLtGgIR0CkJZmBOHnEdX2UKGgGR0BwuxOafBepaAdL02gIR0CkJcYUN8VpdX2UKGgGR0Bw/F8KG+K1aAdL0WgIR0CkJiDGcWj5dX2UKGgGR0BwnCKXOW0JaAdL2GgIR0CkJl8eCCjDdX2UKGgGR0Bwpw+GGmDUaAdLzWgIR0CkJtMv7FbWdX2UKGgGR0BxlXnIQvpRaAdL6WgIR0CkJuvQv6CUdX2UKGgGR0ByP1YEGJN1aAdL3GgIR0CkJwOXmeUZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2_first_again.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b31d36f82092d8d7d06959411a1eb9669e1e3d5a2da08ae548ab3b5f1e3adeef
|
3 |
+
size 147446
|
ppo-LunarLander-v2_first_again/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.001,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d5bf82c9480>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d5bf82c9510>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d5bf82c95a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d5bf82c9630>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d5bf82c96c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d5bf82c9750>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d5bf82c97e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d5bf82c9870>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d5bf82c9900>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d5bf82c9990>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d5bf82c9a20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d5bf82c9ab0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d5bf8261080>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000.0,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1719922694853600243,
|
30 |
"learning_rate": 0.001,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKayHD5sOPA+A8sCvmrNBL+m4Hs+SgsBvgAAAAAAAAAAgEj0PXxyoz4xHiO++fTUvk8F3zyqKkG9AAAAAAAAAACaZrW9QXMyPtj50D6q45C+vRtTPlan9j0AAAAAAAAAADO1ojzDlQC6uNI7vA1G5rHucqI7WuiBMwAAgD8AAIA/07IoPqSfa7uZAQo7gjMEuAn1prwRUSG6AACAPwAAgD8A2wQ9nPQovFeNxLw2XJY87+qRvTANeD0AAIA/AACAP4ABB70X6AE8GpE8PnxJo75XySQ+11O/vgAAAAAAAIA/s10qPVIAqrnlNwU43rSVM2fwFbkiox23AACAPwAAgD+awxy8/pm4P13gAb7F8fM91OucugxuLb0AAAAAAAAAADNbnTulrcM+GAWlu3GB/L7P280767vWvAAAAAAAAAAAgJguPYHhoz/mzpw+kW8bvzmUCD2ZjwI+AAAAAAAAAAAAVPY7Cgg2u27ej7uzf3k8AHmAPM1uWL0AAIA/AACAPzPqyj2Y0pk/xi7zPr4IJL/Rdfc97QR2PgAAAAAAAAAAMy5pPcM7dby6Ba29CjejPE/PwT3KyzK9AACAPwAAgD/z/IA95ZNZP5JXhD15Pxq/ZAWiPW3wAr0AAAAAAAAAADOxfL3Xowu5XWjEN0bCqDITtai7u5jntgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBKwfQrtmeMAWyUS96MAXSUR0CkAvlY2bXpdX2UKGgGR0ByFhrl/6O6aAdL0WgIR0CkA2ELYwqRdX2UKGgGR0Bw9Kpkwvg4aAdLsWgIR0CkA43n6l+FdX2UKGgGR0ByZxsDW9UTaAdL1WgIR0CkA6GnXNC7dX2UKGgGR0BxLnXlKbrkaAdLw2gIR0CkA6G7BfrsdX2UKGgGR0BuVSpPykKvaAdLxWgIR0CkA72wu/UOdX2UKGgGR0BxnT+AEt/XaAdLxGgIR0CkA9J53TuwdX2UKGgGR0BxUAPMB6rvaAdLz2gIR0CkA/LVvuPWdX2UKGgGR0ByahE8aGYbaAdLp2gIR0CkBADvVmSRdX2UKGgGR0Bu1OpsGgSOaAdLv2gIR0CkBCqu0TlDdX2UKGgGR0BwzC++M6zWaAdLxWgIR0CkBGxiobXIdX2UKGgGR0ByLw+jdpIuaAdL4mgIR0CkBIz3yqdZdX2UKGgGR0BzQyzv7WNFaAdL6GgIR0CkBNDN6gM+dX2UKGgGR0BzTTe3x4IKaAdLy2gIR0CkBUnMUypJdX2UKGgGR0BtoshvBJqZaAdLsWgIR0CkBZiTdLxqdX2UKGgGR0BwTHMEA5q/aAdLx2gIR0CkBc6BAfMfdX2UKGgGR0BzdGseXAuaaAdL0mgIR0CkBpTER8MNdX2UKGgGR0BxVXhIe5nUaAdL02gIR0CkBtsotthvdX2UKGgGR0BxkdeiSJTEaAdLzWgIR0CkBuA8jiXIdX2UKGgGR0BxtcMRYigTaAdL0WgIR0CkBwpHRTjvdX2UKGgGR0ByVPr+o99uaAdL32gIR0CkBxDOkcjrdX2UKGgGR0BykhroGIKuaAdL3mgIR0CkB2X9R77bdX2UKGgGR0BzkeVRk3CLaAdL3mgIR0CkB3eruIAPdX2UKGgGR0ByIYC5mRNiaAdLwmgIR0CkB3+DOC5FdX2UKGgGR0ByPikHlfZ3aAdLxmgIR0CkB7UBnzxxdX2UKGgGR0BxO76Eal1saAdL5mgIR0CkB8XeWOZLdX2UKGgGR0BxV78aXKKYaAdNJwFoCEdApBDYmAskIHV9lChoBkdAcUxW5paibmgHS9RoCEdApBDtRxcVxnV9lChoBkdAcADRODaoM2gHS7toCEdApBEFiz9jw3V9lChoBkdAcSHMmF8G92gHS7xoCEdApBFUETxoZnV9lChoBkdAcNlTEBKcu2gHS9hoCEdApBWIu5BkZ3V9lChoBkdAU+NqtYB/7WgHTegDaAhHQKQV11J17pp1fZQoaAZHQHKnOK4x1xNoB0vRaAhHQKQWXkMCtA91fZQoaAZHQHAQq5byH21oB0u/aAhHQKQWk12JSBN1fZQoaAZHQHAJeYYzi0hoB0vQaAhHQKQWr7mdRSB1fZQoaAZHQG/tKzRhMJxoB0vNaAhHQKQW2vrWy1N1fZQoaAZHQHL+p1ie/YdoB0veaAhHQKQW/TGYKIB1fZQoaAZHQHCRi3PRiPRoB0vBaAhHQKQXCZ1mrbR1fZQoaAZHQHLjWYSg5BFoB0vFaAhHQKQXKuyu6mR1fZQoaAZHQHI0aDK5kLBoB0vPaAhHQKQXWSmqHXV1fZQoaAZHQHBWclPacqhoB0uqaAhHQKQXaDJ2dNF1fZQoaAZHQHJfD3M6ikBoB0vjaAhHQKQX5cUuctp1fZQoaAZHQHHxc6/7BO5oB0vkaAhHQKQX/v863iJ1fZQoaAZHQHKXrsByS3doB0vNaAhHQKQYGcbR4Ql1fZQoaAZHQHJddipeeFtoB0vWaAhHQKQYYRzRx951fZQoaAZHQG8YPDpC8e1oB0vHaAhHQKQYfp7kXDZ1fZQoaAZHQHCgmi5/b0xoB0u6aAhHQKQZS1TBInV1fZQoaAZHQHNTvg3tKI1oB0u9aAhHQKQZ7nVXmvJ1fZQoaAZHQHIh7TtsvZhoB0u5aAhHQKQaFRBu4w11fZQoaAZHQHDRlmrbQC1oB0vdaAhHQKQa+Gmk30h1fZQoaAZHQHIi9grpaA5oB0vYaAhHQKQbA/7BO591fZQoaAZHQG5w9ELH+61oB0u2aAhHQKQbBIkqto11fZQoaAZHQHKxsNlRP45oB0vHaAhHQKQbCpF1B+p1fZQoaAZHQHEn5BPbfxdoB0vPaAhHQKQbCuUUwi91fZQoaAZHQHByOMdcSoRoB0vkaAhHQKQbSLsrupl1fZQoaAZHQHJ34u9OARVoB0vUaAhHQKQbXhybQTp1fZQoaAZHQHEfTJZGKAJoB0uqaAhHQKQbrpgTh5x1fZQoaAZHQHDex6By0a9oB0vRaAhHQKQb1gy/KyR1fZQoaAZHQHDCXvttyghoB0vWaAhHQKQb1WFvhqF1fZQoaAZHQHDxGIwdsBRoB0vOaAhHQKQb4MBIWgx1fZQoaAZHQHPAmAskIHFoB0vjaAhHQKQcVz/6wdN1fZQoaAZHQHK3C1y/9HdoB02FAWgIR0CkHHx/ViF1dX2UKGgGR0BxP3Wy1NQCaAdLv2gIR0CkHH+BpYcOdX2UKGgGR0BzaYleF+NMaAdLwmgIR0CkHQUtI066dX2UKGgGR0BzC/Abhm5EaAdL02gIR0CkHSnARChOdX2UKGgGR0BKoois4ku6aAdLlGgIR0CkHT79hqj8dX2UKGgGR0BxlMr4FiazaAdLyWgIR0CkHbfFR51OdX2UKGgGR0ByBMGeMAFQaAdL0WgIR0CkHcwCKaXsdX2UKGgGR0Bwbe4PPLPlaAdL1mgIR0CkHesSkCV9dX2UKGgGR0Bvr9chTwUhaAdLw2gIR0CkHf/seGO/dX2UKGgGR0BxctQHiWE9aAdL42gIR0CkHhj/VAiWdX2UKGgGR0BxT6+qR2bHaAdL52gIR0CkHiF4TsY3dX2UKGgGR0By6fPppvgnaAdLz2gIR0CkHnaqsEJTdX2UKGgGR0By7fK7qY7aaAdLxGgIR0CkHoMfJV81dX2UKGgGR0BywvP8hs68aAdL0GgIR0CkHqAn2IwedX2UKGgGR0BxcrOoo/iYaAdL22gIR0CkHsNZ3cHodX2UKGgGR0Bv0uWv8qFzaAdLv2gIR0CkHuakAPupdX2UKGgGR0BwqPRqoIfKaAdLzGgIR0CkHzHUtqYadX2UKGgGR0By5Hkjopx4aAdL7mgIR0CkIt/MGHHndX2UKGgGR0BybTqRlpXZaAdLyWgIR0CkIypJf6XTdX2UKGgGR0Bx2tIg/1QJaAdL42gIR0CkI0pKraM8dX2UKGgGR0BzI5FiKBNFaAdLumgIR0CkI2ziKiwjdX2UKGgGR0Bx9m40/GEPaAdL9GgIR0CkI64EW69TdX2UKGgGR0BxWjRUm2LHaAdL0WgIR0CkI/FHSWqtdX2UKGgGR0BysGwB5ooNaAdLzmgIR0CkI/xFiKBNdX2UKGgGR0BvcU8vEjxDaAdL5GgIR0CkJBZXU6PsdX2UKGgGR0BxI5NTLns+aAdLz2gIR0CkJBlVcUuddX2UKGgGR0BzQblDF6zFaAdL4GgIR0CkJFTyauwHdX2UKGgGR0BwNFmyxA0LaAdL1GgIR0CkJLBZZB9kdX2UKGgGR0BzEJNpM6BAaAdL52gIR0CkJMsXrMTwdX2UKGgGR0BwIFYhdMTOaAdLy2gIR0CkJOXEyckMdX2UKGgGR0BwHyOU+s5oaAdL2GgIR0CkJOnQ6ZH/dX2UKGgGR0BzJge5nUUgaAdL+2gIR0CkJRjzyz5XdX2UKGgGR0BxHxE6T4cnaAdLtGgIR0CkJZmBOHnEdX2UKGgGR0BwuxOafBepaAdL02gIR0CkJcYUN8VpdX2UKGgGR0Bw/F8KG+K1aAdL0WgIR0CkJiDGcWj5dX2UKGgGR0BwnCKXOW0JaAdL2GgIR0CkJl8eCCjDdX2UKGgGR0Bwpw+GGmDUaAdLzWgIR0CkJtMv7FbWdX2UKGgGR0BxlXnIQvpRaAdL6WgIR0CkJuvQv6CUdX2UKGgGR0ByP1YEGJN1aAdL3GgIR0CkJwOXmeUZdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 492,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2_first_again/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec2718f0b1d414736faff567734a1f9859f030c9713c12659bc9d475544e6692
|
3 |
+
size 87978
|
ppo-LunarLander-v2_first_again/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75d9bc5a1809583f82e5f9ee63f05fc5748e10f591f836f33cc7832b753f6aeb
|
3 |
+
size 43634
|
ppo-LunarLander-v2_first_again/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.3.0+cu121
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 295.2389959, "std_reward": 13.676167703635342, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-02T13:22:24.392626"}
|