mihirdeo16
commited on
Commit
·
cf7f6ca
1
Parent(s):
63a1007
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.47 +/- 0.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dd56aad633a547020191e21521bbf664d25f0ae58f3da34824f577be8a1ba39
|
3 |
+
size 108147
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ffa00b2f370>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ffa00b353c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1686513803727019595,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANbDUPslWij1+IQ0/NbDUPslWij1+IQ0/NbDUPslWij1+IQ0/NbDUPslWij1+IQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKeWivvK0Zr/UHK2/GjmTP1meBr/0Arc/qzE0v41JID9S1du/9TDEP3cyzL+GXFe+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1sNQ+yVaKPX4hDT+Z4dW5vgezO+gDy7w1sNQ+yVaKPX4hDT+Z4dW5vgezO+gDy7w1sNQ+yVaKPX4hDT+Z4dW5vgezO+gDy7w1sNQ+yVaKPX4hDT+Z4dW5vgezO+gDy7yUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.41540685 0.06754834 0.5512923 ]\n [0.41540685 0.06754834 0.5512923 ]\n [0.41540685 0.06754834 0.5512923 ]\n [0.41540685 0.06754834 0.5512923 ]]",
|
38 |
+
"desired_goal": "[[-0.3181546 -0.9011985 -1.3524423 ]\n [ 1.1501801 -0.5258537 1.4297776 ]\n [-0.7038829 0.6261223 -1.7174475 ]\n [ 1.532744 -1.5952901 -0.21031389]]",
|
39 |
+
"observation": "[[ 4.1540685e-01 6.7548342e-02 5.5129230e-01 -4.0794609e-04\n 5.4635694e-03 -2.4782136e-02]\n [ 4.1540685e-01 6.7548342e-02 5.5129230e-01 -4.0794609e-04\n 5.4635694e-03 -2.4782136e-02]\n [ 4.1540685e-01 6.7548342e-02 5.5129230e-01 -4.0794609e-04\n 5.4635694e-03 -2.4782136e-02]\n [ 4.1540685e-01 6.7548342e-02 5.5129230e-01 -4.0794609e-04\n 5.4635694e-03 -2.4782136e-02]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA35eFPeyUGD4qKUM+Yuy3u4cMOz07e4U+169qPfi+eTxDCS89H3+ZPf2v9b2e8go+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.06523108 0.14900559 0.19058672]\n [-0.0056129 0.04566624 0.2607058 ]\n [ 0.0572966 0.01524328 0.04273344]\n [ 0.0749495 -0.11996458 0.13569114]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/dzQlJ0eAcCUhpRSlIwBbJRLMowBdJRHQKVZHRXOnl51fZQoaAZoCWgPQwg1t0JYjSUBwJSGlFKUaBVLMmgWR0ClWM2q94/vdX2UKGgGaAloD0MIQQ3fwroxDcCUhpRSlGgVSzJoFkdApVh+qHXVb3V9lChoBmgJaA9DCFaBWgwexgDAlIaUUpRoFUsyaBZHQKVYLq9oN/h1fZQoaAZoCWgPQwiCAYQPJdoKwJSGlFKUaBVLMmgWR0ClWfa5f+judX2UKGgGaAloD0MIU1p/SwC+AMCUhpRSlGgVSzJoFkdApVmnR7Z393V9lChoBmgJaA9DCA2mYfiIOADAlIaUUpRoFUsyaBZHQKVZWDYh+v11fZQoaAZoCWgPQwi0HVN3ZdcAwJSGlFKUaBVLMmgWR0ClWQgiV0LddX2UKGgGaAloD0MIF5rrNNISC8CUhpRSlGgVSzJoFkdApVrKHuZ1FHV9lChoBmgJaA9DCJMehlYnRwnAlIaUUpRoFUsyaBZHQKVaerBj4Hp1fZQoaAZoCWgPQwjf/lw0ZFwFwJSGlFKUaBVLMmgWR0ClWiun2qT9dX2UKGgGaAloD0MIdCZtqu7RAcCUhpRSlGgVSzJoFkdApVnbfWMCLnV9lChoBmgJaA9DCKUxWkdV0wbAlIaUUpRoFUsyaBZHQKVbrM36yjZ1fZQoaAZoCWgPQwguNxjqsGIBwJSGlFKUaBVLMmgWR0ClW12E9MbndX2UKGgGaAloD0MIXDy858AyAsCUhpRSlGgVSzJoFkdApVsOf7Jnx3V9lChoBmgJaA9DCBcoKbAAJgLAlIaUUpRoFUsyaBZHQKVavnSOR1Z1fZQoaAZoCWgPQwj8cfvlk1UHwJSGlFKUaBVLMmgWR0ClXH/DDTBqdX2UKGgGaAloD0MIePF+3H45AsCUhpRSlGgVSzJoFkdApVwwWN3np3V9lChoBmgJaA9DCDgyj/zBAArAlIaUUpRoFUsyaBZHQKVb4U1yeZp1fZQoaAZoCWgPQwgJa2PshHcCwJSGlFKUaBVLMmgWR0ClW5EpI+W4dX2UKGgGaAloD0MIhNbDl4nCB8CUhpRSlGgVSzJoFkdApV1Wb1AZ9HV9lChoBmgJaA9DCNV6v9GOewTAlIaUUpRoFUsyaBZHQKVdBv0h/y51fZQoaAZoCWgPQwiwWMNF7okIwJSGlFKUaBVLMmgWR0ClXLfxUedTdX2UKGgGaAloD0MIQj7o2az6C8CUhpRSlGgVSzJoFkdApVxn2K2rn3V9lChoBmgJaA9DCKn4vyMqFA3AlIaUUpRoFUsyaBZHQKVeoiaAnUl1fZQoaAZoCWgPQwjjM9k/TwMEwJSGlFKUaBVLMmgWR0ClXlNbkfcOdX2UKGgGaAloD0MIPKHXn8RHBcCUhpRSlGgVSzJoFkdApV4E5IYm9nV9lChoBmgJaA9DCH2utmJ/mQPAlIaUUpRoFUsyaBZHQKVdtWPtD2J1fZQoaAZoCWgPQwiW6CyzCMUDwJSGlFKUaBVLMmgWR0ClX//HPu5SdX2UKGgGaAloD0MIFsH/VrLjAMCUhpRSlGgVSzJoFkdApV+xDRc/uHV9lChoBmgJaA9DCI19ycaDDQLAlIaUUpRoFUsyaBZHQKVfYs3hn8N1fZQoaAZoCWgPQwjRzJNrCkQGwJSGlFKUaBVLMmgWR0ClXxPAfuCxdX2UKGgGaAloD0MIEAcJUb6ACMCUhpRSlGgVSzJoFkdApWFa1RceKnV9lChoBmgJaA9DCC4bnfNTjBLAlIaUUpRoFUsyaBZHQKVhC/Z/Tb51fZQoaAZoCWgPQwj9wFWeQLgCwJSGlFKUaBVLMmgWR0ClYL1wgkkbdX2UKGgGaAloD0MImYQLeQSXD8CUhpRSlGgVSzJoFkdApWBuDDjzZ3V9lChoBmgJaA9DCLraiv1ld/e/lIaUUpRoFUsyaBZHQKViwphnanJ1fZQoaAZoCWgPQwgKv9TPm8oBwJSGlFKUaBVLMmgWR0ClYnYKYzBRdX2UKGgGaAloD0MI2qhOB7Ie/7+UhpRSlGgVSzJoFkdApWInrB0p3HV9lChoBmgJaA9DCAgB+RIqOAfAlIaUUpRoFUsyaBZHQKVh2DaoMrp1fZQoaAZoCWgPQwgjFcYWghz7v5SGlFKUaBVLMmgWR0ClZDcNYr8SdX2UKGgGaAloD0MIJA9EFmliDsCUhpRSlGgVSzJoFkdApWPoYNy5qnV9lChoBmgJaA9DCCZTBaOSWgnAlIaUUpRoFUsyaBZHQKVjmeV9nbt1fZQoaAZoCWgPQwh1yqMbYdEBwJSGlFKUaBVLMmgWR0ClY0pbD/EPdX2UKGgGaAloD0MIO1RTknWYCcCUhpRSlGgVSzJoFkdApWW0wN9YwXV9lChoBmgJaA9DCFq3Qe239gHAlIaUUpRoFUsyaBZHQKVlZj7Q9id1fZQoaAZoCWgPQwiSCI1g4xoDwJSGlFKUaBVLMmgWR0ClZRf5DZ13dX2UKGgGaAloD0MIowbTMHwkB8CUhpRSlGgVSzJoFkdApWTIeRxLkHV9lChoBmgJaA9DCDlkA+liMwLAlIaUUpRoFUsyaBZHQKVnN9roGIN1fZQoaAZoCWgPQwitad5xim4AwJSGlFKUaBVLMmgWR0ClZulhoduHdX2UKGgGaAloD0MITvG4qBYRBcCUhpRSlGgVSzJoFkdApWabND+irXV9lChoBmgJaA9DCLr2BfTCfQnAlIaUUpRoFUsyaBZHQKVmTCUornV1fZQoaAZoCWgPQwjPE8/ZAgIAwJSGlFKUaBVLMmgWR0ClaJZa/yoXdX2UKGgGaAloD0MIyjFZ3H8EA8CUhpRSlGgVSzJoFkdApWhG+49X93V9lChoBmgJaA9DCIvDmV/NYRDAlIaUUpRoFUsyaBZHQKVn9+aScLB1fZQoaAZoCWgPQwiQvknToOgMwJSGlFKUaBVLMmgWR0ClZ6fL1VYIdX2UKGgGaAloD0MIMgG/RpJg/r+UhpRSlGgVSzJoFkdApWl1MXaakXV9lChoBmgJaA9DCBO7trdbkgTAlIaUUpRoFUsyaBZHQKVpJfu1F6R1fZQoaAZoCWgPQwhMxFvn3y4TwJSGlFKUaBVLMmgWR0ClaNcbaRISdX2UKGgGaAloD0MIwRvSqMBpAMCUhpRSlGgVSzJoFkdApWiHf/FR53V9lChoBmgJaA9DCGzM64hD1gzAlIaUUpRoFUsyaBZHQKVqZ35eqrB1fZQoaAZoCWgPQwiemPViKGcAwJSGlFKUaBVLMmgWR0ClahgXdj5LdX2UKGgGaAloD0MI1uWUgJiEAsCUhpRSlGgVSzJoFkdApWnJCKJl8XV9lChoBmgJaA9DCK5hhsYTgQDAlIaUUpRoFUsyaBZHQKVpeNR3u/l1fZQoaAZoCWgPQwhLAWn/A4wXwJSGlFKUaBVLMmgWR0ClazzJQtSRdX2UKGgGaAloD0MIoaNVLelo/7+UhpRSlGgVSzJoFkdApWrtdPci4nV9lChoBmgJaA9DCH0iT5KuOQHAlIaUUpRoFUsyaBZHQKVqnn+Q2dd1fZQoaAZoCWgPQwhhbvdynywRwJSGlFKUaBVLMmgWR0Clak5flZHNdX2UKGgGaAloD0MIj+BGyhYJFcCUhpRSlGgVSzJoFkdApWwnG6wt8XV9lChoBmgJaA9DCPW4b7VOnALAlIaUUpRoFUsyaBZHQKVr2D/VAiV1fZQoaAZoCWgPQwgiqvBneLMGwJSGlFKUaBVLMmgWR0Cla4l3Qla9dX2UKGgGaAloD0MIqYWSyal9BMCUhpRSlGgVSzJoFkdApWs5ZU1hs3V9lChoBmgJaA9DCIiBrn0B3QTAlIaUUpRoFUsyaBZHQKVtEeg+Qlt1fZQoaAZoCWgPQwhTdvpBXSQGwJSGlFKUaBVLMmgWR0ClbMKx1PnCdX2UKGgGaAloD0MI5q26DtXUBcCUhpRSlGgVSzJoFkdApWxzqv/za3V9lChoBmgJaA9DCBWMSuoElALAlIaUUpRoFUsyaBZHQKVsI5DJEIB1fZQoaAZoCWgPQwhv9DEfEEgEwJSGlFKUaBVLMmgWR0ClbeZ0jkdWdX2UKGgGaAloD0MIOBPThVi9/r+UhpRSlGgVSzJoFkdApW2XGZNO/XV9lChoBmgJaA9DCMMMjSeC2APAlIaUUpRoFUsyaBZHQKVtSA93bEh1fZQoaAZoCWgPQwh5XFSLiGIAwJSGlFKUaBVLMmgWR0ClbPfdRBNVdX2UKGgGaAloD0MIITtvY7MjAcCUhpRSlGgVSzJoFkdApW67guRLb3V9lChoBmgJaA9DCNv3qL9egQrAlIaUUpRoFUsyaBZHQKVubBv73wl1fZQoaAZoCWgPQwip9X6jHZcJwJSGlFKUaBVLMmgWR0Clbh0ahpQDdX2UKGgGaAloD0MIYf91btoM/b+UhpRSlGgVSzJoFkdApW3NBWxQi3V9lChoBmgJaA9DCITwaOOI9QLAlIaUUpRoFUsyaBZHQKVvmTX8O091fZQoaAZoCWgPQwhOnNzvULQFwJSGlFKUaBVLMmgWR0Clb0ndGiHqdX2UKGgGaAloD0MIyhgfZi/7AsCUhpRSlGgVSzJoFkdApW762DxsmHV9lChoBmgJaA9DCLtgcM0dXQHAlIaUUpRoFUsyaBZHQKVuqqT8pCt1fZQoaAZoCWgPQwioGr0aoIQXwJSGlFKUaBVLMmgWR0ClcJOGj9GadX2UKGgGaAloD0MIVU0QdR9A/7+UhpRSlGgVSzJoFkdApXBEL0BfbHV9lChoBmgJaA9DCGQ8SiU8IQPAlIaUUpRoFUsyaBZHQKVv9RXOnl51fZQoaAZoCWgPQwjF5uPaULEBwJSGlFKUaBVLMmgWR0Clb6T3Zf2LdX2UKGgGaAloD0MIehnFcksrBcCUhpRSlGgVSzJoFkdApXFoKYzBRHV9lChoBmgJaA9DCBjuXBjphQHAlIaUUpRoFUsyaBZHQKVxGNS619h1fZQoaAZoCWgPQwgt0VlmEQoJwJSGlFKUaBVLMmgWR0ClcMnFYMfBdX2UKGgGaAloD0MIiULLun9MEMCUhpRSlGgVSzJoFkdApXB5pi7TUnV9lChoBmgJaA9DCI9yMJsA4wXAlIaUUpRoFUsyaBZHQKVyPYYixFB1fZQoaAZoCWgPQwgFw7mGGXoHwJSGlFKUaBVLMmgWR0Clce4pUgjhdX2UKGgGaAloD0MIjiCVYkcjCcCUhpRSlGgVSzJoFkdApXGfKSxJNHV9lChoBmgJaA9DCK1QpPs5xRLAlIaUUpRoFUsyaBZHQKVxTwDvE0l1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a297d9a2940f0b04b8b97a61d230a7293b89bc9a25d4c2de8bbb9aa46e8aab6
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6626e1a896eca4864d3b92516a285af8861e27b1d66d535ca15798e6485f6fa0
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ffa00b2f370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ffa00b353c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686513803727019595, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANbDUPslWij1+IQ0/NbDUPslWij1+IQ0/NbDUPslWij1+IQ0/NbDUPslWij1+IQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKeWivvK0Zr/UHK2/GjmTP1meBr/0Arc/qzE0v41JID9S1du/9TDEP3cyzL+GXFe+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1sNQ+yVaKPX4hDT+Z4dW5vgezO+gDy7w1sNQ+yVaKPX4hDT+Z4dW5vgezO+gDy7w1sNQ+yVaKPX4hDT+Z4dW5vgezO+gDy7w1sNQ+yVaKPX4hDT+Z4dW5vgezO+gDy7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41540685 0.06754834 0.5512923 ]\n [0.41540685 0.06754834 0.5512923 ]\n [0.41540685 0.06754834 0.5512923 ]\n [0.41540685 0.06754834 0.5512923 ]]", "desired_goal": "[[-0.3181546 -0.9011985 -1.3524423 ]\n [ 1.1501801 -0.5258537 1.4297776 ]\n [-0.7038829 0.6261223 -1.7174475 ]\n [ 1.532744 -1.5952901 -0.21031389]]", "observation": "[[ 4.1540685e-01 6.7548342e-02 5.5129230e-01 -4.0794609e-04\n 5.4635694e-03 -2.4782136e-02]\n [ 4.1540685e-01 6.7548342e-02 5.5129230e-01 -4.0794609e-04\n 5.4635694e-03 -2.4782136e-02]\n [ 4.1540685e-01 6.7548342e-02 5.5129230e-01 -4.0794609e-04\n 5.4635694e-03 -2.4782136e-02]\n [ 4.1540685e-01 6.7548342e-02 5.5129230e-01 -4.0794609e-04\n 5.4635694e-03 -2.4782136e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA35eFPeyUGD4qKUM+Yuy3u4cMOz07e4U+169qPfi+eTxDCS89H3+ZPf2v9b2e8go+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06523108 0.14900559 0.19058672]\n [-0.0056129 0.04566624 0.2607058 ]\n [ 0.0572966 0.01524328 0.04273344]\n [ 0.0749495 -0.11996458 0.13569114]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/dzQlJ0eAcCUhpRSlIwBbJRLMowBdJRHQKVZHRXOnl51fZQoaAZoCWgPQwg1t0JYjSUBwJSGlFKUaBVLMmgWR0ClWM2q94/vdX2UKGgGaAloD0MIQQ3fwroxDcCUhpRSlGgVSzJoFkdApVh+qHXVb3V9lChoBmgJaA9DCFaBWgwexgDAlIaUUpRoFUsyaBZHQKVYLq9oN/h1fZQoaAZoCWgPQwiCAYQPJdoKwJSGlFKUaBVLMmgWR0ClWfa5f+judX2UKGgGaAloD0MIU1p/SwC+AMCUhpRSlGgVSzJoFkdApVmnR7Z393V9lChoBmgJaA9DCA2mYfiIOADAlIaUUpRoFUsyaBZHQKVZWDYh+v11fZQoaAZoCWgPQwi0HVN3ZdcAwJSGlFKUaBVLMmgWR0ClWQgiV0LddX2UKGgGaAloD0MIF5rrNNISC8CUhpRSlGgVSzJoFkdApVrKHuZ1FHV9lChoBmgJaA9DCJMehlYnRwnAlIaUUpRoFUsyaBZHQKVaerBj4Hp1fZQoaAZoCWgPQwjf/lw0ZFwFwJSGlFKUaBVLMmgWR0ClWiun2qT9dX2UKGgGaAloD0MIdCZtqu7RAcCUhpRSlGgVSzJoFkdApVnbfWMCLnV9lChoBmgJaA9DCKUxWkdV0wbAlIaUUpRoFUsyaBZHQKVbrM36yjZ1fZQoaAZoCWgPQwguNxjqsGIBwJSGlFKUaBVLMmgWR0ClW12E9MbndX2UKGgGaAloD0MIXDy858AyAsCUhpRSlGgVSzJoFkdApVsOf7Jnx3V9lChoBmgJaA9DCBcoKbAAJgLAlIaUUpRoFUsyaBZHQKVavnSOR1Z1fZQoaAZoCWgPQwj8cfvlk1UHwJSGlFKUaBVLMmgWR0ClXH/DDTBqdX2UKGgGaAloD0MIePF+3H45AsCUhpRSlGgVSzJoFkdApVwwWN3np3V9lChoBmgJaA9DCDgyj/zBAArAlIaUUpRoFUsyaBZHQKVb4U1yeZp1fZQoaAZoCWgPQwgJa2PshHcCwJSGlFKUaBVLMmgWR0ClW5EpI+W4dX2UKGgGaAloD0MIhNbDl4nCB8CUhpRSlGgVSzJoFkdApV1Wb1AZ9HV9lChoBmgJaA9DCNV6v9GOewTAlIaUUpRoFUsyaBZHQKVdBv0h/y51fZQoaAZoCWgPQwiwWMNF7okIwJSGlFKUaBVLMmgWR0ClXLfxUedTdX2UKGgGaAloD0MIQj7o2az6C8CUhpRSlGgVSzJoFkdApVxn2K2rn3V9lChoBmgJaA9DCKn4vyMqFA3AlIaUUpRoFUsyaBZHQKVeoiaAnUl1fZQoaAZoCWgPQwjjM9k/TwMEwJSGlFKUaBVLMmgWR0ClXlNbkfcOdX2UKGgGaAloD0MIPKHXn8RHBcCUhpRSlGgVSzJoFkdApV4E5IYm9nV9lChoBmgJaA9DCH2utmJ/mQPAlIaUUpRoFUsyaBZHQKVdtWPtD2J1fZQoaAZoCWgPQwiW6CyzCMUDwJSGlFKUaBVLMmgWR0ClX//HPu5SdX2UKGgGaAloD0MIFsH/VrLjAMCUhpRSlGgVSzJoFkdApV+xDRc/uHV9lChoBmgJaA9DCI19ycaDDQLAlIaUUpRoFUsyaBZHQKVfYs3hn8N1fZQoaAZoCWgPQwjRzJNrCkQGwJSGlFKUaBVLMmgWR0ClXxPAfuCxdX2UKGgGaAloD0MIEAcJUb6ACMCUhpRSlGgVSzJoFkdApWFa1RceKnV9lChoBmgJaA9DCC4bnfNTjBLAlIaUUpRoFUsyaBZHQKVhC/Z/Tb51fZQoaAZoCWgPQwj9wFWeQLgCwJSGlFKUaBVLMmgWR0ClYL1wgkkbdX2UKGgGaAloD0MImYQLeQSXD8CUhpRSlGgVSzJoFkdApWBuDDjzZ3V9lChoBmgJaA9DCLraiv1ld/e/lIaUUpRoFUsyaBZHQKViwphnanJ1fZQoaAZoCWgPQwgKv9TPm8oBwJSGlFKUaBVLMmgWR0ClYnYKYzBRdX2UKGgGaAloD0MI2qhOB7Ie/7+UhpRSlGgVSzJoFkdApWInrB0p3HV9lChoBmgJaA9DCAgB+RIqOAfAlIaUUpRoFUsyaBZHQKVh2DaoMrp1fZQoaAZoCWgPQwgjFcYWghz7v5SGlFKUaBVLMmgWR0ClZDcNYr8SdX2UKGgGaAloD0MIJA9EFmliDsCUhpRSlGgVSzJoFkdApWPoYNy5qnV9lChoBmgJaA9DCCZTBaOSWgnAlIaUUpRoFUsyaBZHQKVjmeV9nbt1fZQoaAZoCWgPQwh1yqMbYdEBwJSGlFKUaBVLMmgWR0ClY0pbD/EPdX2UKGgGaAloD0MIO1RTknWYCcCUhpRSlGgVSzJoFkdApWW0wN9YwXV9lChoBmgJaA9DCFq3Qe239gHAlIaUUpRoFUsyaBZHQKVlZj7Q9id1fZQoaAZoCWgPQwiSCI1g4xoDwJSGlFKUaBVLMmgWR0ClZRf5DZ13dX2UKGgGaAloD0MIowbTMHwkB8CUhpRSlGgVSzJoFkdApWTIeRxLkHV9lChoBmgJaA9DCDlkA+liMwLAlIaUUpRoFUsyaBZHQKVnN9roGIN1fZQoaAZoCWgPQwitad5xim4AwJSGlFKUaBVLMmgWR0ClZulhoduHdX2UKGgGaAloD0MITvG4qBYRBcCUhpRSlGgVSzJoFkdApWabND+irXV9lChoBmgJaA9DCLr2BfTCfQnAlIaUUpRoFUsyaBZHQKVmTCUornV1fZQoaAZoCWgPQwjPE8/ZAgIAwJSGlFKUaBVLMmgWR0ClaJZa/yoXdX2UKGgGaAloD0MIyjFZ3H8EA8CUhpRSlGgVSzJoFkdApWhG+49X93V9lChoBmgJaA9DCIvDmV/NYRDAlIaUUpRoFUsyaBZHQKVn9+aScLB1fZQoaAZoCWgPQwiQvknToOgMwJSGlFKUaBVLMmgWR0ClZ6fL1VYIdX2UKGgGaAloD0MIMgG/RpJg/r+UhpRSlGgVSzJoFkdApWl1MXaakXV9lChoBmgJaA9DCBO7trdbkgTAlIaUUpRoFUsyaBZHQKVpJfu1F6R1fZQoaAZoCWgPQwhMxFvn3y4TwJSGlFKUaBVLMmgWR0ClaNcbaRISdX2UKGgGaAloD0MIwRvSqMBpAMCUhpRSlGgVSzJoFkdApWiHf/FR53V9lChoBmgJaA9DCGzM64hD1gzAlIaUUpRoFUsyaBZHQKVqZ35eqrB1fZQoaAZoCWgPQwiemPViKGcAwJSGlFKUaBVLMmgWR0ClahgXdj5LdX2UKGgGaAloD0MI1uWUgJiEAsCUhpRSlGgVSzJoFkdApWnJCKJl8XV9lChoBmgJaA9DCK5hhsYTgQDAlIaUUpRoFUsyaBZHQKVpeNR3u/l1fZQoaAZoCWgPQwhLAWn/A4wXwJSGlFKUaBVLMmgWR0ClazzJQtSRdX2UKGgGaAloD0MIoaNVLelo/7+UhpRSlGgVSzJoFkdApWrtdPci4nV9lChoBmgJaA9DCH0iT5KuOQHAlIaUUpRoFUsyaBZHQKVqnn+Q2dd1fZQoaAZoCWgPQwhhbvdynywRwJSGlFKUaBVLMmgWR0Clak5flZHNdX2UKGgGaAloD0MIj+BGyhYJFcCUhpRSlGgVSzJoFkdApWwnG6wt8XV9lChoBmgJaA9DCPW4b7VOnALAlIaUUpRoFUsyaBZHQKVr2D/VAiV1fZQoaAZoCWgPQwgiqvBneLMGwJSGlFKUaBVLMmgWR0Cla4l3Qla9dX2UKGgGaAloD0MIqYWSyal9BMCUhpRSlGgVSzJoFkdApWs5ZU1hs3V9lChoBmgJaA9DCIiBrn0B3QTAlIaUUpRoFUsyaBZHQKVtEeg+Qlt1fZQoaAZoCWgPQwhTdvpBXSQGwJSGlFKUaBVLMmgWR0ClbMKx1PnCdX2UKGgGaAloD0MI5q26DtXUBcCUhpRSlGgVSzJoFkdApWxzqv/za3V9lChoBmgJaA9DCBWMSuoElALAlIaUUpRoFUsyaBZHQKVsI5DJEIB1fZQoaAZoCWgPQwhv9DEfEEgEwJSGlFKUaBVLMmgWR0ClbeZ0jkdWdX2UKGgGaAloD0MIOBPThVi9/r+UhpRSlGgVSzJoFkdApW2XGZNO/XV9lChoBmgJaA9DCMMMjSeC2APAlIaUUpRoFUsyaBZHQKVtSA93bEh1fZQoaAZoCWgPQwh5XFSLiGIAwJSGlFKUaBVLMmgWR0ClbPfdRBNVdX2UKGgGaAloD0MIITtvY7MjAcCUhpRSlGgVSzJoFkdApW67guRLb3V9lChoBmgJaA9DCNv3qL9egQrAlIaUUpRoFUsyaBZHQKVubBv73wl1fZQoaAZoCWgPQwip9X6jHZcJwJSGlFKUaBVLMmgWR0Clbh0ahpQDdX2UKGgGaAloD0MIYf91btoM/b+UhpRSlGgVSzJoFkdApW3NBWxQi3V9lChoBmgJaA9DCITwaOOI9QLAlIaUUpRoFUsyaBZHQKVvmTX8O091fZQoaAZoCWgPQwhOnNzvULQFwJSGlFKUaBVLMmgWR0Clb0ndGiHqdX2UKGgGaAloD0MIyhgfZi/7AsCUhpRSlGgVSzJoFkdApW762DxsmHV9lChoBmgJaA9DCLtgcM0dXQHAlIaUUpRoFUsyaBZHQKVuqqT8pCt1fZQoaAZoCWgPQwioGr0aoIQXwJSGlFKUaBVLMmgWR0ClcJOGj9GadX2UKGgGaAloD0MIVU0QdR9A/7+UhpRSlGgVSzJoFkdApXBEL0BfbHV9lChoBmgJaA9DCGQ8SiU8IQPAlIaUUpRoFUsyaBZHQKVv9RXOnl51fZQoaAZoCWgPQwjF5uPaULEBwJSGlFKUaBVLMmgWR0Clb6T3Zf2LdX2UKGgGaAloD0MIehnFcksrBcCUhpRSlGgVSzJoFkdApXFoKYzBRHV9lChoBmgJaA9DCBjuXBjphQHAlIaUUpRoFUsyaBZHQKVxGNS619h1fZQoaAZoCWgPQwgt0VlmEQoJwJSGlFKUaBVLMmgWR0ClcMnFYMfBdX2UKGgGaAloD0MIiULLun9MEMCUhpRSlGgVSzJoFkdApXB5pi7TUnV9lChoBmgJaA9DCI9yMJsA4wXAlIaUUpRoFUsyaBZHQKVyPYYixFB1fZQoaAZoCWgPQwgFw7mGGXoHwJSGlFKUaBVLMmgWR0Clce4pUgjhdX2UKGgGaAloD0MIjiCVYkcjCcCUhpRSlGgVSzJoFkdApXGfKSxJNHV9lChoBmgJaA9DCK1QpPs5xRLAlIaUUpRoFUsyaBZHQKVxTwDvE0l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (721 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.4676868790294977, "std_reward": 0.9375032293875022, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-11T20:51:13.685556"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f323df9376791a53eeba5b76f198bc68992403ab60715ff1c8a6236fa9486c93
|
3 |
+
size 2387
|