miguel-kjh commited on
Commit
dba1198
·
1 Parent(s): 68cafe9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.25 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbd2f911fe940cc12796f0abe8cccd7b9164e0715929b359146facb6e85fe5db
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd712e3d360>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fd712e2e2c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1695034410413694096,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAd/uhPH3ewT4CFCe+m0icv8iu9j/0Kg3AMzRkPvr5oryMmuk+MzRkPvr5oryMmuk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhsDSPYx3oz9jGci/fj4gv9XMmj9me7e/ECxoP+1Kr78oOye/2JmkPqo4QT/BYDw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB3+6E8fd7BPgIUJ779t0q/arjVP2uYor+bSJy/yK72P/QqDcCgbl2/THdzP0jjk78zNGQ++vmivIya6T6qxO0+zTvDu4o/wz4zNGQ++vmivIya6T6qxO0+zTvDu4o/wz6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.01977323 0.37865058 -0.16316226]\n [-1.2209657 1.9272089 -2.2057467 ]\n [ 0.22285537 -0.01989459 0.45625722]\n [ 0.22285537 -0.01989459 0.45625722]]",
34
+ "desired_goal": "[[ 0.10290627 1.2770858 -1.5632747 ]\n [-0.62595356 1.209376 -1.4334533 ]\n [ 0.90692234 -1.369474 -0.6532464 ]\n [ 0.32148623 0.7547709 0.18396284]]",
35
+ "observation": "[[ 0.01977323 0.37865058 -0.16316226 -0.79186994 1.6696904 -1.2702764 ]\n [-1.2209657 1.9272089 -2.2057467 -0.86496925 0.9510391 -1.1553736 ]\n [ 0.22285537 -0.01989459 0.45625722 0.46439105 -0.00595806 0.38134414]\n [ 0.22285537 -0.01989459 0.45625722 0.46439105 -0.00595806 0.38134414]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzc2BPWszh71kmF0+l4BRPWh1+zyLtJI+24wBvjmFvz3ie4c+ykotvDyc2b0hNgY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.06338082 -0.06601604 0.21640164]\n [ 0.05114802 0.03069563 0.28653368]\n [-0.12651388 0.09351582 0.26461703]\n [-0.01057691 -0.10625502 0.13106586]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9fkOqebutyMAWyUSwSMAXSUR0CmT2oW56MSdX2UKGgGR7/MFUyYXwb3aAdLA2gIR0CmT69AX2ugdX2UKGgGR7/RysCDEm6YaAdLA2gIR0CmT/ObI91VdX2UKGgGR7+5xKg7HQyAaAdLAmgIR0CmT3mtp22YdX2UKGgGR7/TrcCYCyQgaAdLA2gIR0CmTzlw1ivxdX2UKGgGR7/Te0ojOcDsaAdLA2gIR0CmT8omG/N8dX2UKGgGR7+9CMPz4DcNaAdLAmgIR0CmT0v6be/IdX2UKGgGR7/Qg4wRGtp3aAdLA2gIR0CmUA57PY4AdX2UKGgGR7+iKJl8PWhAaAdLAWgIR0CmT9IToMa1dX2UKGgGR7/LF4s3AEdOaAdLA2gIR0CmT5Su6mO3dX2UKGgGR7+Sj1wo9cKPaAdLAWgIR0CmT1Qu/UONdX2UKGgGR7/Rxlg+hXbNaAdLA2gIR0CmUCaGgzxgdX2UKGgGR7/LYpUgjhUBaAdLA2gIR0CmT+p0fYBedX2UKGgGR7/DyPuG9HtnaAdLA2gIR0CmT60jTrmhdX2UKGgGR7/bRIBikO7QaAdLBGgIR0CmT3j/uLJkdX2UKGgGR7+5OoHcDbJwaAdLAmgIR0CmT/9tuUD/dX2UKGgGR7+yT1TR6WxAaAdLAmgIR0CmT8JPqLTAdX2UKGgGR7/FN4Z/CqIaaAdLAmgIR0CmT4mDcuandX2UKGgGR7/YSr5qM3qBaAdLBGgIR0CmUEw++ueSdX2UKGgGR7/DSE12q1gIaAdLAmgIR0CmUBAmzBykdX2UKGgGR7/B+NtIkJKKaAdLA2gIR0CmT9sfaHsUdX2UKGgGR7/Dwgkka/ATaAdLAmgIR0CmT5rgOz6adX2UKGgGR7+6lUIcBEKFaAdLAmgIR0CmUGKI7/4qdX2UKGgGR7/BEiMYMvytaAdLAmgIR0CmUCY9X9zfdX2UKGgGR7+6LvTgEU0vaAdLAmgIR0CmT6/6wdKedX2UKGgGR7/JJaJQ+EAYaAdLA2gIR0CmUHuVPepGdX2UKGgGR7/U+oLofSx8aAdLA2gIR0CmUD+eFtbcdX2UKGgGR7/WFYuCf6GhaAdLBGgIR0CmUAJg9eQddX2UKGgGR7/EBy0a6z3RaAdLA2gIR0CmT8lme18cdX2UKGgGR7+2Ei+tbLU1aAdLAmgIR0CmUJBcJMQFdX2UKGgGR7/CD/2kBS1maAdLAmgIR0CmUFRBu4wzdX2UKGgGR7/BZuhsZYPoaAdLAmgIR0CmUBbutwJgdX2UKGgGR7/AIRAbADaHaAdLAmgIR0CmT98KXv6TdX2UKGgGR7+3fKp1ie/YaAdLAmgIR0CmUKHggow3dX2UKGgGR7+1hScbzbvgaAdLAmgIR0CmUCf4ZdfLdX2UKGgGR7/QHNX5nDiwaAdLA2gIR0CmUG4Ju2qldX2UKGgGR7/HyNGViWmhaAdLAmgIR0CmT/BMajvedX2UKGgGR7/DYzSCvovBaAdLAmgIR0CmULMnZ00WdX2UKGgGR7/Kqy4Wk8A8aAdLA2gIR0CmUEUDuBtldX2UKGgGR7++8dxQzk6taAdLAmgIR0CmUATkyULVdX2UKGgGR7/Djm0VrRBvaAdLAmgIR0CmUMfOD8LsdX2UKGgGR7/eY2sJY1YRaAdLBGgIR0CmUJL1M/QjdX2UKGgGR7+86hg3Lmp3aAdLAmgIR0CmUFXRG+bmdX2UKGgGR7+6iUPhAGB4aAdLAmgIR0CmUBWV/tpmdX2UKGgGR7/C5CngpBomaAdLAmgIR0CmUNhFVktmdX2UKGgGR7+0yHmA9V3maAdLAmgIR0CmUGZHNHH4dX2UKGgGR7/BH2AXl8w6aAdLAmgIR0CmUOz1K5CodX2UKGgGR7/SSQ5myxA0aAdLA2gIR0CmULDXnQpndX2UKGgGR7/I7TUiILw4aAdLA2gIR0CmUDN21UlzdX2UKGgGR7+9GlQ/HHWCaAdLAmgIR0CmUHwO4G2UdX2UKGgGR7+/ZyuIRAbAaAdLAmgIR0CmUEOVX3g2dX2UKGgGR7/LAtWdVea8aAdLA2gIR0CmUQZ+x4Y8dX2UKGgGR7/NltCRfWtmaAdLA2gIR0CmUMphfBvadX2UKGgGR7/QwzLwF1SwaAdLA2gIR0CmUJUlRgqmdX2UKGgGR7+30rbxmTTwaAdLAmgIR0CmUFTsIE8rdX2UKGgGR7/DijL0SRKZaAdLAmgIR0CmURv69CeFdX2UKGgGR7+ls7+1jRUnaAdLAWgIR0CmUSQudwvQdX2UKGgGR7/V97ngYP5IaAdLA2gIR0CmUOflQuVYdX2UKGgGR7+9tIkJKJ2uaAdLAmgIR0CmUGo9LYf5dX2UKGgGR7/ReBQN0/4ZaAdLA2gIR0CmULMwDeTFdX2UKGgGR7/C1JlJ6IFeaAdLAmgIR0CmUTX3g1m8dX2UKGgGR7+etfXwsoUjaAdLAWgIR0CmUT+6RQrMdX2UKGgGR7/JpbD/EOy3aAdLA2gIR0CmUQOearmydX2UKGgGR7/AJxeb/ffoaAdLAmgIR0CmUMZfMOf/dX2UKGgGR7/IMnZ00WM1aAdLA2gIR0CmUIZBTn7pdX2UKGgGR7+6T7l7tzCDaAdLAmgIR0CmUVU3n6l+dX2UKGgGR7/JiKBNEgGKaAdLA2gIR0CmUSFcpsoEdX2UKGgGR7/HsnAqNIbwaAdLA2gIR0CmUKNvOyE+dX2UKGgGR7/ARUWEbo8qaAdLAmgIR0CmUWZ6MR6GdX2UKGgGR7/XWNFSbYseaAdLBGgIR0CmUOzM7lq8dX2UKGgGR7+lEJBw++ueaAdLAWgIR0CmUPSvcJt0dX2UKGgGR7+8XtShrWRSaAdLAmgIR0CmULSCnP3SdX2UKGgGR7/NyH2ys0YTaAdLA2gIR0CmUT75/LDAdX2UKGgGR7/HqNZNfw7UaAdLA2gIR0CmUYOTaCcxdX2UKGgGR7+zm3fAKv3baAdLAmgIR0CmUMkpZwGXdX2UKGgGR7/UdSVGCqZMaAdLA2gIR0CmURHivPkadX2UKGgGR7+4M8YAKfFraAdLAmgIR0CmUZRhUipvdX2UKGgGR7/LYRNATqSpaAdLA2gIR0CmUVgzpHI7dX2UKGgGR7++4d6sySFHaAdLAmgIR0CmUNot+TePdX2UKGgGR7/NpIMBp5/taAdLA2gIR0CmUS99c8kldX2UKGgGR7/GjrzGxUvPaAdLA2gIR0CmUbG4iHIqdX2UKGgGR7/UMxoIv8IiaAdLA2gIR0CmUXVdHDrJdX2UKGgGR7/cJxvNu+AVaAdLBGgIR0CmUP7N8ma6dX2UKGgGR7/O/yoXKr7waAdLA2gIR0CmUUe6y0KJdX2UKGgGR7/PbjcVQAMlaAdLA2gIR0CmUcnU2DQJdX2UKGgGR7/PX4CZF5OaaAdLA2gIR0CmUY2sijcmdX2UKGgGR7/UUjLSuyNXaAdLA2gIR0CmUR0T+NtJdX2UKGgGR7/C+evpyIYWaAdLAmgIR0CmUaNATqSpdX2UKGgGR7/Ly5I6Kcd6aAdLA2gIR0CmUWXumaYvdX2UKGgGR7/KlyBClabGaAdLA2gIR0CmUehEroW6dX2UKGgGR7/Nq46Oo5xSaAdLA2gIR0CmUbyPU8V6dX2UKGgGR7/RmPYFqzqsaAdLBGgIR0CmUT7kwN9ZdX2UKGgGR7/J8QZn+Q2daAdLA2gIR0CmUgWOQyRCdX2UKGgGR7/anl4keIVNaAdLBGgIR0CmUYz1schldX2UKGgGR7+9u89Oh0yQaAdLAmgIR0CmUdOB+WnkdX2UKGgGR7/Cdmxt52QoaAdLAmgIR0CmUVX05EMLdX2UKGgGR7/RH7xd6cAjaAdLA2gIR0CmUiBt1p0wdX2UKGgGR7/SXko4MnZ1aAdLA2gIR0CmUaat9x6wdX2UKGgGR7+WcOLBKtgbaAdLAWgIR0CmUa+05U97dX2UKGgGR7/SvGZNO/L1aAdLA2gIR0CmUW82BJ7LdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d4924cc32ade10294f6843326d99a7a48241dffc3e86b77c021feb1897222d3
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a36c544aa0b97c8594c3d87b20275d7d18bdb291a8d148827f3360a666b3a7c7
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd712e3d360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd712e2e2c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695034410413694096, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAd/uhPH3ewT4CFCe+m0icv8iu9j/0Kg3AMzRkPvr5oryMmuk+MzRkPvr5oryMmuk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhsDSPYx3oz9jGci/fj4gv9XMmj9me7e/ECxoP+1Kr78oOye/2JmkPqo4QT/BYDw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB3+6E8fd7BPgIUJ779t0q/arjVP2uYor+bSJy/yK72P/QqDcCgbl2/THdzP0jjk78zNGQ++vmivIya6T6qxO0+zTvDu4o/wz4zNGQ++vmivIya6T6qxO0+zTvDu4o/wz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.01977323 0.37865058 -0.16316226]\n [-1.2209657 1.9272089 -2.2057467 ]\n [ 0.22285537 -0.01989459 0.45625722]\n [ 0.22285537 -0.01989459 0.45625722]]", "desired_goal": "[[ 0.10290627 1.2770858 -1.5632747 ]\n [-0.62595356 1.209376 -1.4334533 ]\n [ 0.90692234 -1.369474 -0.6532464 ]\n [ 0.32148623 0.7547709 0.18396284]]", "observation": "[[ 0.01977323 0.37865058 -0.16316226 -0.79186994 1.6696904 -1.2702764 ]\n [-1.2209657 1.9272089 -2.2057467 -0.86496925 0.9510391 -1.1553736 ]\n [ 0.22285537 -0.01989459 0.45625722 0.46439105 -0.00595806 0.38134414]\n [ 0.22285537 -0.01989459 0.45625722 0.46439105 -0.00595806 0.38134414]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzc2BPWszh71kmF0+l4BRPWh1+zyLtJI+24wBvjmFvz3ie4c+ykotvDyc2b0hNgY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06338082 -0.06601604 0.21640164]\n [ 0.05114802 0.03069563 0.28653368]\n [-0.12651388 0.09351582 0.26461703]\n [-0.01057691 -0.10625502 0.13106586]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9fkOqebutyMAWyUSwSMAXSUR0CmT2oW56MSdX2UKGgGR7/MFUyYXwb3aAdLA2gIR0CmT69AX2ugdX2UKGgGR7/RysCDEm6YaAdLA2gIR0CmT/ObI91VdX2UKGgGR7+5xKg7HQyAaAdLAmgIR0CmT3mtp22YdX2UKGgGR7/TrcCYCyQgaAdLA2gIR0CmTzlw1ivxdX2UKGgGR7/Te0ojOcDsaAdLA2gIR0CmT8omG/N8dX2UKGgGR7+9CMPz4DcNaAdLAmgIR0CmT0v6be/IdX2UKGgGR7/Qg4wRGtp3aAdLA2gIR0CmUA57PY4AdX2UKGgGR7+iKJl8PWhAaAdLAWgIR0CmT9IToMa1dX2UKGgGR7/LF4s3AEdOaAdLA2gIR0CmT5Su6mO3dX2UKGgGR7+Sj1wo9cKPaAdLAWgIR0CmT1Qu/UONdX2UKGgGR7/Rxlg+hXbNaAdLA2gIR0CmUCaGgzxgdX2UKGgGR7/LYpUgjhUBaAdLA2gIR0CmT+p0fYBedX2UKGgGR7/DyPuG9HtnaAdLA2gIR0CmT60jTrmhdX2UKGgGR7/bRIBikO7QaAdLBGgIR0CmT3j/uLJkdX2UKGgGR7+5OoHcDbJwaAdLAmgIR0CmT/9tuUD/dX2UKGgGR7+yT1TR6WxAaAdLAmgIR0CmT8JPqLTAdX2UKGgGR7/FN4Z/CqIaaAdLAmgIR0CmT4mDcuandX2UKGgGR7/YSr5qM3qBaAdLBGgIR0CmUEw++ueSdX2UKGgGR7/DSE12q1gIaAdLAmgIR0CmUBAmzBykdX2UKGgGR7/B+NtIkJKKaAdLA2gIR0CmT9sfaHsUdX2UKGgGR7/Dwgkka/ATaAdLAmgIR0CmT5rgOz6adX2UKGgGR7+6lUIcBEKFaAdLAmgIR0CmUGKI7/4qdX2UKGgGR7/BEiMYMvytaAdLAmgIR0CmUCY9X9zfdX2UKGgGR7+6LvTgEU0vaAdLAmgIR0CmT6/6wdKedX2UKGgGR7/JJaJQ+EAYaAdLA2gIR0CmUHuVPepGdX2UKGgGR7/U+oLofSx8aAdLA2gIR0CmUD+eFtbcdX2UKGgGR7/WFYuCf6GhaAdLBGgIR0CmUAJg9eQddX2UKGgGR7/EBy0a6z3RaAdLA2gIR0CmT8lme18cdX2UKGgGR7+2Ei+tbLU1aAdLAmgIR0CmUJBcJMQFdX2UKGgGR7/CD/2kBS1maAdLAmgIR0CmUFRBu4wzdX2UKGgGR7/BZuhsZYPoaAdLAmgIR0CmUBbutwJgdX2UKGgGR7/AIRAbADaHaAdLAmgIR0CmT98KXv6TdX2UKGgGR7+3fKp1ie/YaAdLAmgIR0CmUKHggow3dX2UKGgGR7+1hScbzbvgaAdLAmgIR0CmUCf4ZdfLdX2UKGgGR7/QHNX5nDiwaAdLA2gIR0CmUG4Ju2qldX2UKGgGR7/HyNGViWmhaAdLAmgIR0CmT/BMajvedX2UKGgGR7/DYzSCvovBaAdLAmgIR0CmULMnZ00WdX2UKGgGR7/Kqy4Wk8A8aAdLA2gIR0CmUEUDuBtldX2UKGgGR7++8dxQzk6taAdLAmgIR0CmUATkyULVdX2UKGgGR7/Djm0VrRBvaAdLAmgIR0CmUMfOD8LsdX2UKGgGR7/eY2sJY1YRaAdLBGgIR0CmUJL1M/QjdX2UKGgGR7+86hg3Lmp3aAdLAmgIR0CmUFXRG+bmdX2UKGgGR7+6iUPhAGB4aAdLAmgIR0CmUBWV/tpmdX2UKGgGR7/C5CngpBomaAdLAmgIR0CmUNhFVktmdX2UKGgGR7+0yHmA9V3maAdLAmgIR0CmUGZHNHH4dX2UKGgGR7/BH2AXl8w6aAdLAmgIR0CmUOz1K5CodX2UKGgGR7/SSQ5myxA0aAdLA2gIR0CmULDXnQpndX2UKGgGR7/I7TUiILw4aAdLA2gIR0CmUDN21UlzdX2UKGgGR7+9GlQ/HHWCaAdLAmgIR0CmUHwO4G2UdX2UKGgGR7+/ZyuIRAbAaAdLAmgIR0CmUEOVX3g2dX2UKGgGR7/LAtWdVea8aAdLA2gIR0CmUQZ+x4Y8dX2UKGgGR7/NltCRfWtmaAdLA2gIR0CmUMphfBvadX2UKGgGR7/QwzLwF1SwaAdLA2gIR0CmUJUlRgqmdX2UKGgGR7+30rbxmTTwaAdLAmgIR0CmUFTsIE8rdX2UKGgGR7/DijL0SRKZaAdLAmgIR0CmURv69CeFdX2UKGgGR7+ls7+1jRUnaAdLAWgIR0CmUSQudwvQdX2UKGgGR7/V97ngYP5IaAdLA2gIR0CmUOflQuVYdX2UKGgGR7+9tIkJKJ2uaAdLAmgIR0CmUGo9LYf5dX2UKGgGR7/ReBQN0/4ZaAdLA2gIR0CmULMwDeTFdX2UKGgGR7/C1JlJ6IFeaAdLAmgIR0CmUTX3g1m8dX2UKGgGR7+etfXwsoUjaAdLAWgIR0CmUT+6RQrMdX2UKGgGR7/JpbD/EOy3aAdLA2gIR0CmUQOearmydX2UKGgGR7/AJxeb/ffoaAdLAmgIR0CmUMZfMOf/dX2UKGgGR7/IMnZ00WM1aAdLA2gIR0CmUIZBTn7pdX2UKGgGR7+6T7l7tzCDaAdLAmgIR0CmUVU3n6l+dX2UKGgGR7/JiKBNEgGKaAdLA2gIR0CmUSFcpsoEdX2UKGgGR7/HsnAqNIbwaAdLA2gIR0CmUKNvOyE+dX2UKGgGR7/ARUWEbo8qaAdLAmgIR0CmUWZ6MR6GdX2UKGgGR7/XWNFSbYseaAdLBGgIR0CmUOzM7lq8dX2UKGgGR7+lEJBw++ueaAdLAWgIR0CmUPSvcJt0dX2UKGgGR7+8XtShrWRSaAdLAmgIR0CmULSCnP3SdX2UKGgGR7/NyH2ys0YTaAdLA2gIR0CmUT75/LDAdX2UKGgGR7/HqNZNfw7UaAdLA2gIR0CmUYOTaCcxdX2UKGgGR7+zm3fAKv3baAdLAmgIR0CmUMkpZwGXdX2UKGgGR7/UdSVGCqZMaAdLA2gIR0CmURHivPkadX2UKGgGR7+4M8YAKfFraAdLAmgIR0CmUZRhUipvdX2UKGgGR7/LYRNATqSpaAdLA2gIR0CmUVgzpHI7dX2UKGgGR7++4d6sySFHaAdLAmgIR0CmUNot+TePdX2UKGgGR7/NpIMBp5/taAdLA2gIR0CmUS99c8kldX2UKGgGR7/GjrzGxUvPaAdLA2gIR0CmUbG4iHIqdX2UKGgGR7/UMxoIv8IiaAdLA2gIR0CmUXVdHDrJdX2UKGgGR7/cJxvNu+AVaAdLBGgIR0CmUP7N8ma6dX2UKGgGR7/O/yoXKr7waAdLA2gIR0CmUUe6y0KJdX2UKGgGR7/PbjcVQAMlaAdLA2gIR0CmUcnU2DQJdX2UKGgGR7/PX4CZF5OaaAdLA2gIR0CmUY2sijcmdX2UKGgGR7/UUjLSuyNXaAdLA2gIR0CmUR0T+NtJdX2UKGgGR7/C+evpyIYWaAdLAmgIR0CmUaNATqSpdX2UKGgGR7/Ly5I6Kcd6aAdLA2gIR0CmUWXumaYvdX2UKGgGR7/KlyBClabGaAdLA2gIR0CmUehEroW6dX2UKGgGR7/Nq46Oo5xSaAdLA2gIR0CmUbyPU8V6dX2UKGgGR7/RmPYFqzqsaAdLBGgIR0CmUT7kwN9ZdX2UKGgGR7/J8QZn+Q2daAdLA2gIR0CmUgWOQyRCdX2UKGgGR7/anl4keIVNaAdLBGgIR0CmUYz1schldX2UKGgGR7+9u89Oh0yQaAdLAmgIR0CmUdOB+WnkdX2UKGgGR7/Cdmxt52QoaAdLAmgIR0CmUVX05EMLdX2UKGgGR7/RH7xd6cAjaAdLA2gIR0CmUiBt1p0wdX2UKGgGR7/SXko4MnZ1aAdLA2gIR0CmUaat9x6wdX2UKGgGR7+WcOLBKtgbaAdLAWgIR0CmUa+05U97dX2UKGgGR7/SvGZNO/L1aAdLA2gIR0CmUW82BJ7LdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (685 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.24572398187592626, "std_reward": 0.12344613793222818, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-18T12:18:45.391653"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f10cf60f61acfa3724d426870a6fdba9a73b6e692b36d7eafdc8372d5172b479
3
+ size 2623