migtissera commited on
Commit
9565e16
·
verified ·
1 Parent(s): 6d0d202

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md CHANGED
@@ -1,3 +1,101 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ # Tess-2.0-Mixtral
6
+ Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-2.0-Mixtral was trained on the mistralai/Mixtral-8x7B-v0.1 base.
7
+
8
+ # Prompt Format:
9
+
10
+ ```
11
+ SYSTEM: <ANY SYSTEM CONTEXT>
12
+ USER:
13
+ ASSISTANT:
14
+ ```
15
+
16
+ <br>
17
+
18
+ ![Tesoro](https://huggingface.co/migtissera/Tess-7B-v2.0/resolve/main/Tesoro.png)
19
+
20
+ <br>
21
+
22
+ ### Below shows a code example on how to use this model:
23
+
24
+ ```python
25
+ import torch, json
26
+ from transformers import AutoModelForCausalLM, AutoTokenizer
27
+
28
+ model_path = "migtissera/Tess-2.0-Mixtral"
29
+ output_file_path = "./conversations.jsonl"
30
+
31
+ model = AutoModelForCausalLM.from_pretrained(
32
+ model_path,
33
+ torch_dtype=torch.float16,
34
+ device_map="auto",
35
+ load_in_8bit=False,
36
+ trust_remote_code=True,
37
+ )
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
40
+
41
+
42
+ def generate_text(instruction):
43
+ tokens = tokenizer.encode(instruction)
44
+ tokens = torch.LongTensor(tokens).unsqueeze(0)
45
+ tokens = tokens.to("cuda")
46
+
47
+ instance = {
48
+ "input_ids": tokens,
49
+ "top_p": 1.0,
50
+ "temperature": 0.5,
51
+ "generate_len": 1024,
52
+ "top_k": 50,
53
+ }
54
+
55
+ length = len(tokens[0])
56
+ with torch.no_grad():
57
+ rest = model.generate(
58
+ input_ids=tokens,
59
+ max_length=length + instance["generate_len"],
60
+ use_cache=True,
61
+ do_sample=True,
62
+ top_p=instance["top_p"],
63
+ temperature=instance["temperature"],
64
+ top_k=instance["top_k"],
65
+ num_return_sequences=1,
66
+ )
67
+ output = rest[0][length:]
68
+ string = tokenizer.decode(output, skip_special_tokens=True)
69
+ answer = string.split("USER:")[0].strip()
70
+ return f"{answer}"
71
+
72
+
73
+ conversation = f"SYSTEM: Answer the question thoughtfully and intelligently. Always answer without hesitation."
74
+
75
+
76
+ while True:
77
+ user_input = input("You: ")
78
+ llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
79
+ answer = generate_text(llm_prompt)
80
+ print(answer)
81
+ conversation = f"{llm_prompt}{answer}"
82
+ json_data = {"prompt": user_input, "answer": answer}
83
+
84
+ ## Save your conversation
85
+ with open(output_file_path, "a") as output_file:
86
+ output_file.write(json.dumps(json_data) + "\n")
87
+
88
+ ```
89
+
90
+ <br>
91
+
92
+ #### Limitations & Biases:
93
+
94
+ While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
95
+
96
+ Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
97
+
98
+ Exercise caution and cross-check information when necessary. This is an uncensored model.
99
+
100
+
101
+ <br>