midoiv commited on
Commit
a2e7c11
·
1 Parent(s): 9f794df

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: eng_Emp_reco
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # eng_Emp_reco
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0001
20
+ - Accuracy: {'accuracy': 1.0}
21
+ - F1score: {'f1': 1.0}
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 10
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1score |
52
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------:|:--------------------------:|
53
+ | 0.0254 | 1.0 | 320 | 0.0106 | {'accuracy': 0.9984375} | {'f1': 0.9984376713627683} |
54
+ | 0.002 | 2.0 | 640 | 0.0013 | {'accuracy': 1.0} | {'f1': 1.0} |
55
+ | 0.0019 | 3.0 | 960 | 0.0006 | {'accuracy': 1.0} | {'f1': 1.0} |
56
+ | 0.0019 | 4.0 | 1280 | 0.0004 | {'accuracy': 1.0} | {'f1': 1.0} |
57
+ | 0.0003 | 5.0 | 1600 | 0.0063 | {'accuracy': 0.9984375} | {'f1': 0.9984376713627683} |
58
+ | 0.0003 | 6.0 | 1920 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} |
59
+ | 0.0003 | 7.0 | 2240 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} |
60
+ | 0.0002 | 8.0 | 2560 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} |
61
+ | 0.0002 | 9.0 | 2880 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} |
62
+ | 0.0002 | 10.0 | 3200 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.18.0
68
+ - Pytorch 1.11.0
69
+ - Datasets 2.1.0
70
+ - Tokenizers 0.12.1