Update README.md
Browse files
README.md
CHANGED
@@ -1,66 +1,68 @@
|
|
1 |
-
---
|
2 |
-
language: en
|
3 |
-
tags:
|
4 |
-
- tapex
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
TAPEX is
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
}
|
|
|
|
|
66 |
```
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- tapex
|
5 |
+
datasets:
|
6 |
+
- tab_fact
|
7 |
+
license: mit
|
8 |
+
---
|
9 |
+
|
10 |
+
# TAPEX (base-sized model)
|
11 |
+
|
12 |
+
TAPEX was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found [here](https://github.com/microsoft/Table-Pretraining).
|
13 |
+
|
14 |
+
## Model description
|
15 |
+
|
16 |
+
TAPEX (**Ta**ble **P**re-training via **Ex**ecution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with *table reasoning* skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.
|
17 |
+
|
18 |
+
TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.
|
19 |
+
|
20 |
+
This model is the `tapex-base` model fine-tuned on the [Tabfact](https://huggingface.co/datasets/tab_fact) dataset.
|
21 |
+
|
22 |
+
## Intended Uses
|
23 |
+
|
24 |
+
You can use the model for table fact verficiation.
|
25 |
+
|
26 |
+
### How to Use
|
27 |
+
|
28 |
+
Here is how to use this model in transformers:
|
29 |
+
|
30 |
+
```python
|
31 |
+
from transformers import TapexTokenizer, BartForSequenceClassification
|
32 |
+
import pandas as pd
|
33 |
+
|
34 |
+
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base-finetuned-tabfact")
|
35 |
+
model = BartForSequenceClassification.from_pretrained("microsoft/tapex-base-finetuned-tabfact")
|
36 |
+
|
37 |
+
data = {
|
38 |
+
"year": [1896, 1900, 1904, 2004, 2008, 2012],
|
39 |
+
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
|
40 |
+
}
|
41 |
+
table = pd.DataFrame.from_dict(data)
|
42 |
+
|
43 |
+
# tapex accepts uncased input since it is pre-trained on the uncased corpus
|
44 |
+
query = "beijing hosts the olympic games in 2012"
|
45 |
+
encoding = tokenizer(table=table, query=query, return_tensors="pt")
|
46 |
+
|
47 |
+
outputs = model(**encoding)
|
48 |
+
output_id = int(outputs.logits[0].argmax(dim=0))
|
49 |
+
print(model.config.id2label[output_id])
|
50 |
+
# Refused
|
51 |
+
```
|
52 |
+
|
53 |
+
### How to Eval
|
54 |
+
|
55 |
+
Please find the eval script [here](https://github.com/SivilTaram/transformers/tree/add_tapex_bis/examples/research_projects/tapex).
|
56 |
+
|
57 |
+
### BibTeX entry and citation info
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@inproceedings{
|
61 |
+
liu2022tapex,
|
62 |
+
title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
|
63 |
+
author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
|
64 |
+
booktitle={International Conference on Learning Representations},
|
65 |
+
year={2022},
|
66 |
+
url={https://openreview.net/forum?id=O50443AsCP}
|
67 |
+
}
|
68 |
```
|