File size: 10,857 Bytes
0d1cd29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Phi-4."""
import base64
import os
from functools import cached_property
import re
from typing import Collection, Dict, List, Optional, Set, Tuple, Union
import requests
import tiktoken
from transformers import AddedToken, AutoConfig, PreTrainedTokenizer
from transformers.models.auto.tokenization_auto import get_tokenizer_config
PADDED_VOCAB_SIZE = 100352
VOCAB_SIZE = 100276
VOCAB_FILES_NAMES = {"vocab_file": "cl100k_base.tiktoken"}
DUMMY_TOKENS = {f"<|dummy_{12 + offset}|>": VOCAB_SIZE + offset for offset in range(1, PADDED_VOCAB_SIZE - VOCAB_SIZE)}
SPECIAL_TOKENS = {
"<|dummy_0|>": 100256,
"<|endoftext|>": 100257,
"<|fim_prefix|>": 100258,
"<|fim_middle|>": 100259,
"<|fim_suffix|>": 100260,
"<|dummy_1|>": 100261,
"<|dummy_2|>": 100262,
"<|dummy_3|>": 100263,
"<|im_start|>": 100264,
"<|im_end|>": 100265,
"<|im_sep|>": 100266,
"<|dummy_4|>": 100267,
"<|dummy_5|>": 100268,
"<|dummy_6|>": 100269,
"<|dummy_7|>": 100270,
"<|dummy_8|>": 100271,
"<|dummy_9|>": 100272,
"<|dummy_10|>": 100273,
"<|dummy_11|>": 100274,
"<|dummy_12|>": 100275,
"<|endofprompt|>": 100276,
**DUMMY_TOKENS,
}
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
with open(tiktoken_bpe_file, "rb") as f:
contents = f.read()
return {
base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)
}
class Phi4Tokenizer(PreTrainedTokenizer):
"""
Construct a Phi-4 tokenizer based on Titoken.
Args:
vocab_file (`str`, *optional*, defaults to `None`):
Path to the vocabulary file.
errors (`str`, *optional*, defaults to `'replace'`):
How to handle errors with the tokenizer. Can be `'replace'`, `'ignore'` or `'raise'`.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names: List[str] = ["input_ids", "attention_mask"]
padding_side = "left"
def __init__(self, vocab_file: Optional[str] = None, errors: str = "replace", **kwargs) -> None:
# `PreTrainedTokenizer.__init__()` calls `_add_tokens()` which checks if
# the token is present in `self.special_tokens`. Thus, we instantiate it before to ensure
# that the special tokens are present in `self.special_tokens`.
self.special_tokens = SPECIAL_TOKENS
self.errors = errors
super().__init__(**kwargs)
try:
base = tiktoken.get_encoding("cl100k_base")
except requests.RequestException:
import hashlib
from transformers.utils import cached_file
cached_tokenizer_path = cached_file(
"microsoft/phi-4",
"cl100k_base.tiktoken",
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
tiktoken_cache_dir = os.path.dirname(cached_tokenizer_path)
tiktoken_cache_path = os.path.join(
tiktoken_cache_dir,
hashlib.sha1(
"https://openaipublic.blob.core.windows.net/encodings/cl100k_base.tiktoken".encode()
).hexdigest(),
)
if not os.path.exists(tiktoken_cache_path):
os.rename(cached_tokenizer_path, tiktoken_cache_path)
os.environ["TIKTOKEN_CACHE_DIR"] = tiktoken_cache_dir
base = tiktoken.get_encoding("cl100k_base")
if vocab_file is None:
self.mergeable_ranks = base._mergeable_ranks
else:
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)
self.pat_str = base._pat_str
self.tokenizer = tiktoken.Encoding(
name="phi4",
pat_str=self.pat_str,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
self.decoder: Dict[int, bytes] = {v: k for k, v in self.mergeable_ranks.items()}
self.decoder.update({v: k for k, v in self.special_tokens.items()})
self.eod_id = self.tokenizer.eot_token
self._eos_token = self._convert_id_to_token(self.eod_id)
self._bos_token = self._eos_token
def __getstate__(self) -> Dict[str, Union[str, bytes, int]]:
state = self.__dict__.copy()
del state["tokenizer"]
return state
def __setstate__(self, state: Dict[str, Union[str, bytes, int]]) -> None:
self.__dict__ = state
self.tokenizer = tiktoken.Encoding(
name="phi4",
pat_str=self.pat_str,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
def __len__(self) -> int:
return self.tokenizer.n_vocab
@cached_property
def dummy_token_indices(self) -> List[int]:
# Some additional tokens which are not used are considered as dummy tokens
additional_tokens = ["<|fim_prefix|>", "<|fim_middle|>", "<|fim_suffix|>", "<|endofprompt|>"]
dummy_token_indices = [index for token, index in self.special_tokens.items() if "dummy_id" in token]
dummy_token_indices.extend([self.special_tokens[token] for token in additional_tokens])
return sorted(dummy_token_indices)
@property
def vocab_size(self) -> int:
return self.tokenizer.n_vocab
@property
def eos_token_id(self) -> int:
return self.eod_id
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
*args,
**kwargs,
) -> "Phi4Tokenizer":
cls_kwargs = kwargs
tokenization_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
if tokenization_config:
cls_kwargs = {**tokenization_config, **cls_kwargs}
else:
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
cls_kwargs["model_max_length"] = config.max_position_embeddings
return cls(**cls_kwargs)
def _add_tokens(
self,
new_tokens: Union[List[str], List[AddedToken]],
special_tokens: bool = False,
) -> int:
if not special_tokens and new_tokens:
raise ValueError("Only special tokens can be added to this tokenizer")
for token in new_tokens:
surface_form = token.content if isinstance(token, AddedToken) else token
if surface_form not in self.special_tokens:
raise ValueError(
"For now, we do not support unknown special tokens\n"
"In the future, if there is a need for this, we can add special tokens to the tokenizer\n"
"starting from rank 100261 - 100263 and then 100266 - 100275.\n"
"And finally, we can re-construct the enc object back\n"
)
return 0
def _strip_special_tokens(self, text: str) -> str:
for special_token in self.special_tokens:
pattern = rf"[ \r\n]*{re.escape(special_token)}[ \r\n]*"
text = re.sub(pattern, special_token, text)
return text
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
if index in self.decoder:
return self.decoder[index]
return "<|dummy_0|>"
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
if token in self.special_tokens:
return self.special_tokens[token]
if token in self.mergeable_ranks:
return self.mergeable_ranks[token]
return 100256
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
errors: str = None,
**kwargs,
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if skip_special_tokens:
token_ids = [i for i in token_ids if i < self.eod_id]
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
def _tokenize(self, text: str, **kwargs):
raise NotImplementedError
def convert_tokens_to_ids(self, tokens: Union[bytes, str, List[Union[bytes, str]]]) -> Union[int, List[int]]:
if isinstance(tokens, (str, bytes)):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
return self.mergeable_ranks.get(tokens)
ids = []
for token in tokens:
ids.append(self.convert_tokens_to_ids(token))
return ids
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
text = ""
temp = b""
for t in tokens:
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors=self.errors)
temp = b""
text += t
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type types or str")
if temp:
text += temp.decode("utf-8", errors=self.errors)
return text
def get_vocab(self) -> Dict[Union[str, bytes], int]:
return {**self.mergeable_ranks, **self.special_tokens}
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
file_path = os.path.join(save_directory, "cl100k_base.tiktoken")
with open(file_path, "w") as f:
for token, rank in self.mergeable_ranks.items():
line = base64.b64encode(token).decode("utf-8") + " " + str(rank) + "\n"
f.write(line)
return (file_path,)
def tokenize(
self,
text: str,
allowed_special: Union[Set, str] = "all",
disallowed_special: Union[Collection, str] = (),
**kwargs,
) -> List[Union[bytes, str]]:
text = self._strip_special_tokens(text)
return [
self.decoder[token_id]
for token_id in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)
]
|