gugarosa commited on
Commit
bc09a08
·
1 Parent(s): f9f2ac7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -5
README.md CHANGED
@@ -104,9 +104,9 @@ The model is licensed under the [Research License](https://huggingface.co/micros
104
  import torch
105
  from transformers import AutoModelForCausalLM, AutoTokenizer
106
 
107
- torch.set_default_device('cuda')
108
- model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", trust_remote_code=True, torch_dtype="auto")
109
- tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True, torch_dtype="auto")
110
  inputs = tokenizer('''```python
111
  def print_prime(n):
112
  """
@@ -118,8 +118,14 @@ text = tokenizer.batch_decode(outputs)[0]
118
  print(text)
119
  ```
120
 
121
- **Remark.** In the generation function, our model currently does not support beam search (`num_beams` >1).
122
- Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings (instead of the model's).
 
 
 
 
 
 
123
 
124
  ### Citation
125
 
 
104
  import torch
105
  from transformers import AutoModelForCausalLM, AutoTokenizer
106
 
107
+ torch.set_default_device("cuda")
108
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", trust_remote_code=True)
109
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True)
110
  inputs = tokenizer('''```python
111
  def print_prime(n):
112
  """
 
118
  print(text)
119
  ```
120
 
121
+ If you need to use the model in a lower precision (e.g., FP16), please wrap the model's forward pass with `torch.autocast()`, as follows:
122
+ ```python
123
+ with torch.autocast(model.device.type, dtype=torch.float16, enabled=True):
124
+ outputs = model.generate(**inputs, max_length=200)
125
+ ```
126
+
127
+ **Remark.** In the generation function, our model currently does not support beam search (`num_beams` > 1).
128
+ Furthermore, in the forward pass of the model, we currently do not support attention mask during training, outputting hidden states or attention values, or using custom input embeddings (instead of the model's).
129
 
130
  ### Citation
131