nielsr HF staff commited on
Commit
db2221b
·
1 Parent(s): a86abdc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -4
README.md CHANGED
@@ -1,15 +1,20 @@
1
  ---
2
  license: apache-2.0
3
  tags:
4
- - semantic-segmentation
5
  - vision
 
6
  datasets:
7
- - ade20k
 
 
 
 
 
8
  ---
9
 
10
  # BEiT (large-sized model, fine-tuned on ADE20k)
11
 
12
- BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on [ADE20k]() (an important benchmark for semantic segmentation of images) at resolution 640x640. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
13
 
14
  Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
15
 
@@ -39,7 +44,7 @@ from PIL import Image
39
  ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
40
 
41
  feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-finetuned-ade-640-640')
42
- model = BeitForImageClassification.from_pretrained('microsoft/beit-large-finetuned-ade-640-640')
43
 
44
  inputs = feature_extractor(images=image, return_tensors="pt")
45
  outputs = model(**inputs)
 
1
  ---
2
  license: apache-2.0
3
  tags:
 
4
  - vision
5
+ - image-segmentation
6
  datasets:
7
+ - scene_parse_150
8
+ widget:
9
+ - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
10
+ example_title: House
11
+ - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
12
+ example_title: Castle
13
  ---
14
 
15
  # BEiT (large-sized model, fine-tuned on ADE20k)
16
 
17
+ BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on [ADE20k](https://huggingface.co/datasets/scene_parse_150) (an important benchmark for semantic segmentation of images) at resolution 640x640. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit).
18
 
19
  Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
20
 
 
44
  ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
45
 
46
  feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-finetuned-ade-640-640')
47
+ model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-large-finetuned-ade-640-640')
48
 
49
  inputs = feature_extractor(images=image, return_tensors="pt")
50
  outputs = model(**inputs)