rageSpin commited on
Commit
6da17bd
·
verified ·
1 Parent(s): 4a0d683

Update processing_phi3_v.py

Browse files

This model was not able to process list of numpy arrays (and probably with pytorch tensors)
you can try yourself in the example code on this model card. Just use 'np.array(Image.open(requests.get(url, stream=True).raw)) '

![image.png](https://cdn-uploads.huggingface.co/production/uploads/6421a0e5918f0fd889f0283c/nE1ZvC_mi21l2v72dzlh3.png)

I solved this issue implementing a function to convert any type of valid image to PIL Image object.

Files changed (1) hide show
  1. processing_phi3_v.py +22 -4
processing_phi3_v.py CHANGED
@@ -56,7 +56,7 @@ logger = logging.get_logger(__name__)
56
  if is_vision_available():
57
  from PIL import Image
58
 
59
- import torch
60
  import torchvision
61
 
62
  def padding_336(b):
@@ -205,6 +205,22 @@ class Phi3VImageProcessor(BaseImageProcessor):
205
  num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
206
  return num_img_tokens
207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
  def preprocess(
209
  self,
210
  images: ImageInput,
@@ -245,8 +261,8 @@ class Phi3VImageProcessor(BaseImageProcessor):
245
  "torch.Tensor, tf.Tensor or jax.ndarray."
246
  )
247
 
248
- if do_convert_rgb:
249
- images = [convert_to_rgb(image) for image in images]
250
 
251
  image_sizes = []
252
  img_processor = torchvision.transforms.Compose([
@@ -256,7 +272,9 @@ class Phi3VImageProcessor(BaseImageProcessor):
256
 
257
  # PIL images
258
  # HD_transform pad images to size of multiiply of 336, 336
259
- # convert to RGB first
 
 
260
  images = [image.convert('RGB') for image in images]
261
  elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
262
  # tensor transform and normalize
 
56
  if is_vision_available():
57
  from PIL import Image
58
 
59
+ import torch # why is this imported twice?
60
  import torchvision
61
 
62
  def padding_336(b):
 
205
  num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
206
  return num_img_tokens
207
 
208
+ def convert_PIL(self, image):
209
+ """
210
+ Convert an image to a PIL Image object if it is not already one.
211
+
212
+ Args:
213
+ image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`): The image to be converted. Can be a numpy array or a torch tensor or PIL object.
214
+
215
+ Returns:
216
+ A PIL Image object.
217
+ """
218
+ if not isinstance(image, Image.Image):
219
+ return torchvision.transforms.functional.to_pil_image(image)
220
+ else:
221
+ return image
222
+
223
+
224
  def preprocess(
225
  self,
226
  images: ImageInput,
 
261
  "torch.Tensor, tf.Tensor or jax.ndarray."
262
  )
263
 
264
+ # if do_convert_rgb:
265
+ # images = [convert_to_rgb(image) for image in images]
266
 
267
  image_sizes = []
268
  img_processor = torchvision.transforms.Compose([
 
272
 
273
  # PIL images
274
  # HD_transform pad images to size of multiiply of 336, 336
275
+ # check and convert if the images are in PIL format
276
+ images = [convert_PIL(image) for image in images]
277
+ # convert to RGB first (I think the argument "do_convert_rgb is useless, since it is forced here")
278
  images = [image.convert('RGB') for image in images]
279
  elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
280
  # tensor transform and normalize