mgoin commited on
Commit
81d3368
·
verified ·
1 Parent(s): 210422c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +265 -0
README.md ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - fr
6
+ - de
7
+ - es
8
+ - it
9
+ - pt
10
+ - ru
11
+ - zh
12
+ - ja
13
+ tags:
14
+ - fp8
15
+ - vllm
16
+ ---
17
+
18
+ # Model Card for Mistral-Nemo-Instruct-2407 quantized to FP8 weights, activations, and kv cache
19
+
20
+ This model has been compressed to FP8 weights with static per-tensor scales for activations and kv cache for usage in vLLM.
21
+
22
+ Usage in vLLM:
23
+ ```python
24
+ from vllm import LLM
25
+
26
+ model = LLM("mgoin/Mistral-Nemo-Instruct-2407-FP8-KV", kv_cache_dtype="fp8", max_model_len=4096)
27
+ print(model.generate("Hello!"))
28
+ ```
29
+
30
+ Script for quantization:
31
+ ```python
32
+ from datasets import load_dataset
33
+ from transformers import AutoTokenizer
34
+ from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
35
+
36
+ pretrained_model_dir = "mistralai/Mistral-Nemo-Instruct-2407"
37
+ quantized_model_dir = "Mistral-Nemo-Instruct-2407-FP8-KV"
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=False)
40
+ tokenizer.pad_token = tokenizer.eos_token
41
+
42
+ # Load and tokenize all dataset samples for calibration of activation scales
43
+ ds = load_dataset("mgoin/ultrachat_2k", split="train_sft")
44
+ examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
45
+ examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt", max_length=4096).to("cuda")
46
+ print(examples)
47
+
48
+ # Define quantization config with static activation scales
49
+ quantize_config = BaseQuantizeConfig(
50
+ quant_method="fp8",
51
+ activation_scheme="static",
52
+ ignore_patterns=["re:.*lm_head"],
53
+ kv_cache_quant_targets=("k_proj", "v_proj"),
54
+ )
55
+
56
+ # Load the model, quantize, and save checkpoint
57
+ model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
58
+ model.quantize(examples)
59
+ model.save_quantized(quantized_model_dir)
60
+ ```
61
+
62
+ The Mistral-Nemo-Instruct-2407 Large Language Model (LLM) is an instruct fine-tuned version of the [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407). Trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
63
+
64
+ For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).
65
+
66
+ ## Key features
67
+ - Released under the **Apache 2 License**
68
+ - Pre-trained and instructed versions
69
+ - Trained with a **128k context window**
70
+ - Trained on a large proportion of **multilingual and code data**
71
+ - Drop-in replacement of Mistral 7B
72
+
73
+ ## Model Architecture
74
+ Mistral Nemo is a transformer model, with the following architecture choices:
75
+ - **Layers:** 40
76
+ - **Dim:** 5,120
77
+ - **Head dim:** 128
78
+ - **Hidden dim:** 14,436
79
+ - **Activation Function:** SwiGLU
80
+ - **Number of heads:** 32
81
+ - **Number of kv-heads:** 8 (GQA)
82
+ - **Vocabulary size:** 2**17 ~= 128k
83
+ - **Rotary embeddings (theta = 1M)**
84
+
85
+ ## Metrics
86
+
87
+ ### Main Benchmarks
88
+
89
+ | Benchmark | Score |
90
+ | --- | --- |
91
+ | HellaSwag (0-shot) | 83.5% |
92
+ | Winogrande (0-shot) | 76.8% |
93
+ | OpenBookQA (0-shot) | 60.6% |
94
+ | CommonSenseQA (0-shot) | 70.4% |
95
+ | TruthfulQA (0-shot) | 50.3% |
96
+ | MMLU (5-shot) | 68.0% |
97
+ | TriviaQA (5-shot) | 73.8% |
98
+ | NaturalQuestions (5-shot) | 31.2% |
99
+
100
+ ### Multilingual Benchmarks (MMLU)
101
+
102
+ | Language | Score |
103
+ | --- | --- |
104
+ | French | 62.3% |
105
+ | German | 62.7% |
106
+ | Spanish | 64.6% |
107
+ | Italian | 61.3% |
108
+ | Portuguese | 63.3% |
109
+ | Russian | 59.2% |
110
+ | Chinese | 59.0% |
111
+ | Japanese | 59.0% |
112
+
113
+ ## Usage
114
+
115
+ The model can be used with three different frameworks
116
+
117
+ - [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407#mistral-inference)
118
+ - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
119
+ - [`NeMo`](https://github.com/NVIDIA/NeMo): See [nvidia/Mistral-NeMo-12B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-12B-Instruct)
120
+
121
+ ### Mistral Inference
122
+
123
+ #### Install
124
+
125
+ It is recommended to use `mistralai/Mistral-Nemo-Instruct-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
126
+
127
+ ```
128
+ pip install mistral_inference
129
+ ```
130
+
131
+ #### Download
132
+
133
+ ```py
134
+ from huggingface_hub import snapshot_download
135
+ from pathlib import Path
136
+
137
+ mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-Instruct')
138
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
139
+
140
+ snapshot_download(repo_id="mistralai/Mistral-Nemo-Instruct-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
141
+ ```
142
+
143
+ #### Chat
144
+
145
+ After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
146
+
147
+ ```
148
+ mistral-chat $HOME/mistral_models/Nemo-Instruct --instruct --max_tokens 256 --temperature 0.35
149
+ ```
150
+
151
+ *E.g.* Try out something like:
152
+ ```
153
+ How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.
154
+ ```
155
+
156
+ #### Instruct following
157
+
158
+ ```py
159
+ from mistral_inference.transformer import Transformer
160
+ from mistral_inference.generate import generate
161
+
162
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
163
+ from mistral_common.protocol.instruct.messages import UserMessage
164
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
165
+
166
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
167
+ model = Transformer.from_folder(mistral_models_path)
168
+
169
+ prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."
170
+
171
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])
172
+
173
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
174
+
175
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
176
+ result = tokenizer.decode(out_tokens[0])
177
+
178
+ print(result)
179
+ ```
180
+
181
+ #### Function calling
182
+
183
+ ```py
184
+ from mistral_common.protocol.instruct.tool_calls import Function, Tool
185
+ from mistral_inference.transformer import Transformer
186
+ from mistral_inference.generate import generate
187
+
188
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
189
+ from mistral_common.protocol.instruct.messages import UserMessage
190
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
191
+
192
+
193
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
194
+ model = Transformer.from_folder(mistral_models_path)
195
+
196
+ completion_request = ChatCompletionRequest(
197
+ tools=[
198
+ Tool(
199
+ function=Function(
200
+ name="get_current_weather",
201
+ description="Get the current weather",
202
+ parameters={
203
+ "type": "object",
204
+ "properties": {
205
+ "location": {
206
+ "type": "string",
207
+ "description": "The city and state, e.g. San Francisco, CA",
208
+ },
209
+ "format": {
210
+ "type": "string",
211
+ "enum": ["celsius", "fahrenheit"],
212
+ "description": "The temperature unit to use. Infer this from the users location.",
213
+ },
214
+ },
215
+ "required": ["location", "format"],
216
+ },
217
+ )
218
+ )
219
+ ],
220
+ messages=[
221
+ UserMessage(content="What's the weather like today in Paris?"),
222
+ ],
223
+ )
224
+
225
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
226
+
227
+ out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
228
+ result = tokenizer.decode(out_tokens[0])
229
+
230
+ print(result)
231
+ ```
232
+
233
+ ### Transformers
234
+
235
+ > [!IMPORTANT]
236
+ > NOTE: Until a new release has been made, you need to install transformers from source:
237
+ > ```sh
238
+ > pip install git+https://github.com/huggingface/transformers.git
239
+ > ```
240
+
241
+ If you want to use Hugging Face `transformers` to generate text, you can do something like this.
242
+
243
+ ```py
244
+ from transformers import pipeline
245
+
246
+ messages = [
247
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
248
+ {"role": "user", "content": "Who are you?"},
249
+ ]
250
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-Nemo-Instruct-2407")
251
+ chatbot(messages)
252
+ ```
253
+
254
+ > [!TIP]
255
+ > Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
256
+
257
+ ## Limitations
258
+
259
+ The Mistral Nemo Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
260
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
261
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
262
+
263
+ ## The Mistral AI Team
264
+
265
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall