File size: 11,928 Bytes
8a7987e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MiniCPMV.
"""
from typing import List, Optional, Union, Dict, Any
import torch
import re
from transformers.image_processing_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
from .image_processing_minicpmv import MiniCPMVBatchFeature
class MiniCPMVProcessor(ProcessorMixin):
r"""
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
Args:
image_processor ([`MiniCPMVImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, tokenizer=None):
super().__init__(image_processor, tokenizer)
self.version = image_processor.version
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
do_pad: Optional[bool] = True,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> MiniCPMVBatchFeature:
"""
Only support for single input for now. Batched input is coming soon.
Args:
text (`str`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
do_pad (`bool`, *optional*, defaults to self.do_pad):
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if images is not None:
image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors)
return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
output_ids = args[0]
result_text = []
for result in output_ids:
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id:
result = result[:-1]
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
return result_text
# return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
result = args[0]
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
result = result[:-1]
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
def _convert(
self, input_str, max_inp_length: Optional[int] = None
):
if self.version == 2.5 or self.tokenizer.add_bos_token:
input_ids = self.tokenizer.encode(input_str)
else:
input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0]
image_start_tokens += 1
image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bounds = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
return input_ids.unsqueeze(0), image_bounds
def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None):
if not len(images):
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length)
return MiniCPMVBatchFeature(data={**model_inputs})
pattern = "(<image>./</image>)"
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
image_tags = re.findall(pattern, texts)
assert len(image_tags) == len(image_sizes[0])
text_chunks = texts.split(pattern)
final_texts = ""
for i in range(len(image_tags)):
final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[0][i])
final_texts += text_chunks[-1]
input_ids, image_bounds = self._convert(final_texts, max_length)
return MiniCPMVBatchFeature(data={
"input_ids": input_ids,
"pixel_values": images,
"image_sizes": image_sizes,
"image_bound": [image_bounds],
"tgt_sizes": tgt_sizes
})
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def pad(self, orig_items, key, max_length=None, padding_value=0, padding_side="left"):
items = []
if isinstance(orig_items[0][key], list):
assert isinstance(orig_items[0][key][0], torch.Tensor)
for it in orig_items:
for tr in it[key]:
items.append({key: tr})
else:
assert isinstance(orig_items[0][key], torch.Tensor)
items = orig_items
batch_size = len(items)
shape = items[0][key].shape
dim = len(shape)
assert dim <= 3
if max_length is None:
max_length = 0
max_length = max(max_length, max(item[key].shape[-1] for item in items))
min_length = min(item[key].shape[-1] for item in items)
dtype = items[0][key].dtype
if dim == 1:
return torch.cat([item[key] for item in items], dim=0)
elif dim == 2:
if max_length == min_length:
return torch.cat([item[key] for item in items], dim=0)
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
else:
tensor = (
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
+ padding_value
)
for i, item in enumerate(items):
if dim == 2:
if padding_side == "left":
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
else:
tensor[i, : len(item[key][0])] = item[key][0].clone()
elif dim == 3:
if padding_side == "left":
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
else:
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
return tensor
|