Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```
|
2 |
+
vllm (pretrained=/home/mgoin/code/llm-compressor/examples/quantizing_moe/DeepSeek-Coder-V2-Lite-Instruct-FP8,tensor_parallel_size=2,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto
|
3 |
+
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|
4 |
+
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|
5 |
+
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.7710|± |0.0116|
|
6 |
+
| | |strict-match | 5|exact_match|↑ |0.7582|± |0.0118|
|
7 |
+
```
|
8 |
+
|
9 |
+
## Creation
|
10 |
+
```python
|
11 |
+
import torch
|
12 |
+
from datasets import load_dataset
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
|
15 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
16 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
|
17 |
+
|
18 |
+
# select a Mixture of Experts model for quantization
|
19 |
+
MODEL_ID = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
20 |
+
|
21 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
22 |
+
MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True
|
23 |
+
)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
25 |
+
|
26 |
+
# Select calibration dataset.
|
27 |
+
# its recommended to use more calibration samples for MoE models so each expert is hit
|
28 |
+
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
|
29 |
+
DATASET_SPLIT = "train_sft"
|
30 |
+
NUM_CALIBRATION_SAMPLES = 2048
|
31 |
+
MAX_SEQUENCE_LENGTH = 2048
|
32 |
+
|
33 |
+
|
34 |
+
# Load dataset and preprocess.
|
35 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
36 |
+
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
37 |
+
|
38 |
+
|
39 |
+
def preprocess(example):
|
40 |
+
return {
|
41 |
+
"text": tokenizer.apply_chat_template(
|
42 |
+
example["messages"],
|
43 |
+
tokenize=False,
|
44 |
+
)
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
ds = ds.map(preprocess)
|
49 |
+
|
50 |
+
|
51 |
+
# Tokenize inputs.
|
52 |
+
def tokenize(sample):
|
53 |
+
return tokenizer(
|
54 |
+
sample["text"],
|
55 |
+
padding=False,
|
56 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
57 |
+
truncation=True,
|
58 |
+
add_special_tokens=False,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
63 |
+
|
64 |
+
# define a llmcompressor recipe for FP8 W8A8 quantization
|
65 |
+
# since the MoE gate layers are sensitive to quantization, we add them to the ignore
|
66 |
+
# list so they remain at full precision
|
67 |
+
recipe = [
|
68 |
+
QuantizationModifier(
|
69 |
+
targets="Linear",
|
70 |
+
scheme="FP8",
|
71 |
+
ignore=["lm_head", "re:.*mlp.gate$"],
|
72 |
+
),
|
73 |
+
]
|
74 |
+
|
75 |
+
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8"
|
76 |
+
|
77 |
+
oneshot(
|
78 |
+
model=model,
|
79 |
+
dataset=ds,
|
80 |
+
recipe=recipe,
|
81 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
82 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
83 |
+
save_compressed=True,
|
84 |
+
output_dir=SAVE_DIR,
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
print("========== SAMPLE GENERATION ==============")
|
89 |
+
SAMPLE_INPUT = ["I love quantization because"]
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
91 |
+
inputs = tokenizer(SAMPLE_INPUT, return_tensors="pt", padding=True).to(model.device)
|
92 |
+
output = model.generate(**inputs, max_length=50)
|
93 |
+
text_output = tokenizer.batch_decode(output)
|
94 |
+
print(text_output)
|
95 |
+
```
|