sd / predict.py
zhengqilin
add init
1976a91
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
import os
import sys
import signal
import time
import re
from typing import Dict, List, Any
import logging
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
from modules import errors
from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
import torch
# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
if ".dev" in torch.__version__ or "+git" in torch.__version__:
torch.__long_version__ = torch.__version__
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
from modules import shared, devices, ui_tempdir
from modules.api.api import encode_pil_to_base64
import modules.codeformer_model as codeformer
import modules.face_restoration
import modules.gfpgan_model as gfpgan
import modules.img2img
import modules.lowvram
import modules.paths
import modules.scripts
import modules.sd_hijack
import modules.sd_models
import modules.sd_vae
import modules.txt2img
import modules.script_callbacks
import modules.textual_inversion.textual_inversion
import modules.progress
import modules.ui
from modules import modelloader
from modules.shared import cmd_opts, opts
import modules.hypernetworks.hypernetwork
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
def initialize():
modelloader.cleanup_models()
modules.sd_models.setup_model()
codeformer.setup_model(cmd_opts.codeformer_models_path)
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
modelloader.list_builtin_upscalers()
modelloader.load_upscalers()
modules.sd_vae.refresh_vae_list()
try:
modules.sd_models.load_model()
except Exception as e:
errors.display(e, "loading stable diffusion model")
print("", file=sys.stderr)
print("Stable diffusion model failed to load, exiting", file=sys.stderr)
exit(1)
shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
# make the program just exit at ctrl+c without waiting for anything
# def sigint_handler(sig, frame):
# print(f'Interrupted with signal {sig} in {frame}')
# os._exit(0)
# signal.signal(signal.SIGINT, sigint_handler)
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
initialize()
def predict(
self,
prompt: str = Input(description="prompt en", default="lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer"),
negative_prompt: str = Input(description="negative prompt", default="paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed"),
sampler_name: str = Input(description="sampler name", default="DPM++ SDE Karras", choices=["DPM++ SDE Karras", "DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "LMS Karras", "DPM adaptive", "DPM fast", "DPM++ SDE", "DPM++ 2M", "DPM++ 2S a", "DPM2 a", "DPM2", "Heun", "LMS", "Euler", "Euler a"]),
steps: int = Input(description="steps", default=20),
cfg_scale: int = Input(description="cfg scale", default=8),
width: int = Input(description="width", default=512),
height: int = Input(description="height", default=768),
seed: int = Input(description="seed", default=-1),
) -> Path:
"""Run a single prediction on the model"""
args = {
"do_not_save_samples": True,
"do_not_save_grid": True,
"outpath_samples": "./output",
"prompt": prompt,
"negative_prompt": negative_prompt,
"sampler_name": sampler_name,
"steps": steps, # 25
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed,
}
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
processed = process_images(p)
filename = str(int(time.time())) + ".png"
processed.images[0].save(fp=filename, format="PNG")
# single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
return Path(filename)
class PredictorOld(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
initialize()
self.shared = shared
def predict(
self,
prompt: str = Input(description="prompt en"),
) -> Dict[str, Any]:
"""Run a single prediction on the model"""
args = {
"do_not_save_samples": True,
"do_not_save_grid": True,
"outpath_samples": "./output",
"prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
"negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
"sampler_name": "DPM++ SDE Karras",
"steps": 20, # 25
"cfg_scale": 8,
"width": 512,
"height": 768,
"seed": -1,
}
if len(prompt) > 0:
print("get prompt from request: ", prompt)
args["prompt"] = prompt
p = StableDiffusionProcessingTxt2Img(sd_model=self.shared.sd_model, **args)
processed = process_images(p)
single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
return {
"img_data": single_image_b64,
"parameters": processed.images[0].info.get('parameters', ""),
}