File size: 13,488 Bytes
1976a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Stable Diffusion 2.0
![t2i](assets/stable-samples/txt2img/768/merged-0006.png)
![t2i](assets/stable-samples/txt2img/768/merged-0002.png)
![t2i](assets/stable-samples/txt2img/768/merged-0005.png)

This repository contains [Stable Diffusion](https://github.com/CompVis/stable-diffusion) models trained from scratch and will be continuously updated with
new checkpoints. The following list provides an overview of all currently available models. More coming soon.
## News
**November 2022**
- New stable diffusion model (_Stable Diffusion 2.0-v_) at 768x768 resolution. Same number of parameters in the U-Net as 1.5, but uses [OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip) as the text encoder and is trained from scratch. _SD 2.0-v_ is a so-called [v-prediction](https://arxiv.org/abs/2202.00512) model. 
- The above model is finetuned from _SD 2.0-base_, which was trained as a standard noise-prediction model on 512x512 images and is also made available.
- Added a [x4 upscaling latent text-guided diffusion model](#image-upscaling-with-stable-diffusion).
- New [depth-guided stable diffusion model](#depth-conditional-stable-diffusion), finetuned from _SD 2.0-base_. The model is conditioned on monocular depth estimates inferred via [MiDaS](https://github.com/isl-org/MiDaS) and can be used for structure-preserving img2img and shape-conditional synthesis.

  ![d2i](assets/stable-samples/depth2img/depth2img01.png)
- A [text-guided inpainting model](#image-inpainting-with-stable-diffusion), finetuned from SD _2.0-base_.

We follow the [original repository](https://github.com/CompVis/stable-diffusion) and provide basic inference scripts to sample from the models.

________________
*The original Stable Diffusion model was created in a collaboration with [CompVis](https://arxiv.org/abs/2202.00512) and [RunwayML](https://runwayml.com/) and builds upon the work:*

[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)<br/>
[Robin Rombach](https://github.com/rromb)\*,
[Andreas Blattmann](https://github.com/ablattmann)\*,
[Dominik Lorenz](https://github.com/qp-qp)\,
[Patrick Esser](https://github.com/pesser),
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
_[CVPR '22 Oral](https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html) |
[GitHub](https://github.com/CompVis/latent-diffusion) | [arXiv](https://arxiv.org/abs/2112.10752) | [Project page](https://ommer-lab.com/research/latent-diffusion-models/)_

and [many others](#shout-outs).

Stable Diffusion is a latent text-to-image diffusion model.
________________________________
  
## Requirements

You can update an existing [latent diffusion](https://github.com/CompVis/latent-diffusion) environment by running

```
conda install pytorch==1.12.1 torchvision==0.13.1 -c pytorch
pip install transformers==4.19.2 diffusers invisible-watermark
pip install -e .
``` 
#### xformers efficient attention
For more efficiency and speed on GPUs, 
we highly recommended installing the [xformers](https://github.com/facebookresearch/xformers)
library.

Tested on A100 with CUDA 11.4.
Installation needs a somewhat recent version of nvcc and gcc/g++, obtain those, e.g., via 
```commandline
export CUDA_HOME=/usr/local/cuda-11.4
conda install -c nvidia/label/cuda-11.4.0 cuda-nvcc
conda install -c conda-forge gcc
conda install -c conda-forge gxx_linux-64=9.5.0
```

Then, run the following (compiling takes up to 30 min).

```commandline
cd ..
git clone https://github.com/facebookresearch/xformers.git
cd xformers
git submodule update --init --recursive
pip install -r requirements.txt
pip install -e .
cd ../stablediffusion
```
Upon successful installation, the code will automatically default to [memory efficient attention](https://github.com/facebookresearch/xformers)
for the self- and cross-attention layers in the U-Net and autoencoder.

## General Disclaimer
Stable Diffusion models are general text-to-image diffusion models and therefore mirror biases and (mis-)conceptions that are present
in their training data. Although efforts were made to reduce the inclusion of explicit pornographic material, **we do not recommend using the provided weights for services or products without additional safety mechanisms and considerations.
The weights are research artifacts and should be treated as such.**
Details on the training procedure and data, as well as the intended use of the model can be found in the corresponding [model card](https://huggingface.co/stabilityai/stable-diffusion-2).
The weights are available via [the StabilityAI organization at Hugging Face](https://huggingface.co/StabilityAI) under the [CreativeML Open RAIL++-M License](LICENSE-MODEL). 



## Stable Diffusion v2.0

Stable Diffusion v2.0 refers to a specific configuration of the model
architecture that uses a downsampling-factor 8 autoencoder with an 865M UNet
and OpenCLIP ViT-H/14 text encoder for the diffusion model. The _SD 2.0-v_ model produces 768x768 px outputs. 

Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) and 50 DDIM sampling steps show the relative improvements of the checkpoints:

![sd evaluation results](assets/model-variants.jpg)



### Text-to-Image
![txt2img-stable2](assets/stable-samples/txt2img/merged-0003.png)
![txt2img-stable2](assets/stable-samples/txt2img/merged-0001.png)

Stable Diffusion 2.0 is a latent diffusion model conditioned on the penultimate text embeddings of a CLIP ViT-H/14 text encoder.
We provide a [reference script for sampling](#reference-sampling-script).
#### Reference Sampling Script

This script incorporates an [invisible watermarking](https://github.com/ShieldMnt/invisible-watermark) of the outputs, to help viewers [identify the images as machine-generated](scripts/tests/test_watermark.py).
We provide the configs for the _SD2.0-v_ (768px) and _SD2.0-base_ (512px) model.

First, download the weights for [_SD2.0-v_](https://huggingface.co/stabilityai/stable-diffusion-2) and [_SD2.0-base_](https://huggingface.co/stabilityai/stable-diffusion-2-base). 

To sample from the _SD2.0-v_ model, run the following:

```
python scripts/txt2img.py --prompt "a professional photograph of an astronaut riding a horse" --ckpt <path/to/768model.ckpt/> --config configs/stable-diffusion/v2-inference-v.yaml --H 768 --W 768  
```
or try out the Web Demo: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/stabilityai/stable-diffusion).

To sample from the base model, use
```
python scripts/txt2img.py --prompt "a professional photograph of an astronaut riding a horse" --ckpt <path/to/model.ckpt/> --config <path/to/config.yaml/>  
```

By default, this uses the [DDIM sampler](https://arxiv.org/abs/2010.02502), and renders images of size 768x768 (which it was trained on) in 50 steps. 
Empirically, the v-models can be sampled with higher guidance scales.

Note: The inference config for all model versions is designed to be used with EMA-only checkpoints. 
For this reason `use_ema=False` is set in the configuration, otherwise the code will try to switch from
non-EMA to EMA weights. 

### Image Modification with Stable Diffusion

![depth2img-stable2](assets/stable-samples/depth2img/merged-0000.png)
#### Depth-Conditional Stable Diffusion

To augment the well-established [img2img](https://github.com/CompVis/stable-diffusion#image-modification-with-stable-diffusion) functionality of Stable Diffusion, we provide a _shape-preserving_ stable diffusion model.


Note that the original method for image modification introduces significant semantic changes w.r.t. the initial image.
If that is not desired, download our [depth-conditional stable diffusion](https://huggingface.co/stabilityai/stable-diffusion-2-depth) model and the `dpt_hybrid` MiDaS [model weights](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt), place the latter in a folder `midas_models` and sample via 
```
python scripts/gradio/depth2img.py configs/stable-diffusion/v2-midas-inference.yaml <path-to-ckpt>
```

or

```
streamlit run scripts/streamlit/depth2img.py configs/stable-diffusion/v2-midas-inference.yaml <path-to-ckpt>
```

This method can be used on the samples of the base model itself.
For example, take [this sample](assets/stable-samples/depth2img/old_man.png) generated by an anonymous discord user.
Using the [gradio](https://gradio.app) or [streamlit](https://streamlit.io/) script `depth2img.py`, the MiDaS model first infers a monocular depth estimate given this input, 
and the diffusion model is then conditioned on the (relative) depth output.

<p align="center">
<b> depth2image </b><br/>
<img src=assets/stable-samples/depth2img/d2i.gif/>
</p>

This model is particularly useful for a photorealistic style; see the [examples](assets/stable-samples/depth2img).
For a maximum strength of 1.0, the model removes all pixel-based information and only relies on the text prompt and the inferred monocular depth estimate.

![depth2img-stable3](assets/stable-samples/depth2img/merged-0005.png)

#### Classic Img2Img

For running the "classic" img2img, use
```
python scripts/img2img.py --prompt "A fantasy landscape, trending on artstation" --init-img <path-to-img.jpg> --strength 0.8 --ckpt <path/to/model.ckpt>
```
and adapt the checkpoint and config paths accordingly.

### Image Upscaling with Stable Diffusion
![upscaling-x4](assets/stable-samples/upscaling/merged-dog.png)
After [downloading the weights](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler), run
```
python scripts/gradio/superresolution.py configs/stable-diffusion/x4-upscaling.yaml <path-to-checkpoint>
```

or

```
streamlit run scripts/streamlit/superresolution.py -- configs/stable-diffusion/x4-upscaling.yaml <path-to-checkpoint>
```

for a Gradio or Streamlit demo of the text-guided x4 superresolution model.  
This model can be used both on real inputs and on synthesized examples. For the latter, we recommend setting a higher 
`noise_level`, e.g. `noise_level=100`.

### Image Inpainting with Stable Diffusion

![inpainting-stable2](assets/stable-inpainting/merged-leopards.png)

[Download the SD 2.0-inpainting checkpoint](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) and run

```
python scripts/gradio/inpainting.py configs/stable-diffusion/v2-inpainting-inference.yaml <path-to-checkpoint>
```

or

```
streamlit run scripts/streamlit/inpainting.py -- configs/stable-diffusion/v2-inpainting-inference.yaml <path-to-checkpoint>
```

for a Gradio or Streamlit demo of the inpainting model. 
This scripts adds invisible watermarking to the demo in the [RunwayML](https://github.com/runwayml/stable-diffusion/blob/main/scripts/inpaint_st.py) repository, but both should work interchangeably with the checkpoints/configs.  



## Shout-Outs
- Thanks to [Hugging Face](https://huggingface.co/) and in particular [Apolinário](https://github.com/apolinario)  for support with our model releases!
- Stable Diffusion would not be possible without [LAION](https://laion.ai/) and their efforts to create open, large-scale datasets.
- The [DeepFloyd team](https://twitter.com/deepfloydai) at Stability AI, for creating the subset of [LAION-5B](https://laion.ai/blog/laion-5b/) dataset used to train the model.
- Stable Diffusion 2.0 uses [OpenCLIP](https://laion.ai/blog/large-openclip/), trained by [Romain Beaumont](https://github.com/rom1504).  
- Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch). 
Thanks for open-sourcing!
- [CompVis](https://github.com/CompVis/stable-diffusion) initial stable diffusion release
- [Patrick](https://github.com/pesser)'s [implementation](https://github.com/runwayml/stable-diffusion/blob/main/scripts/inpaint_st.py) of the streamlit demo for inpainting.
- `img2img` is an application of [SDEdit](https://arxiv.org/abs/2108.01073) by [Chenlin Meng](https://cs.stanford.edu/~chenlin/) from the [Stanford AI Lab](https://cs.stanford.edu/~ermon/website/). 
- [Kat's implementation]((https://github.com/CompVis/latent-diffusion/pull/51)) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler, and [more](https://github.com/crowsonkb/k-diffusion).
- [DPMSolver](https://arxiv.org/abs/2206.00927) [integration](https://github.com/CompVis/stable-diffusion/pull/440) by [Cheng Lu](https://github.com/LuChengTHU).
- Facebook's [xformers](https://github.com/facebookresearch/xformers) for efficient attention computation.
- [MiDaS](https://github.com/isl-org/MiDaS) for monocular depth estimation.


## License

The code in this repository is released under the MIT License.

The weights are available via [the StabilityAI organization at Hugging Face](https://huggingface.co/StabilityAI), and released under the [CreativeML Open RAIL++-M License](LICENSE-MODEL) License.

## BibTeX

```
@misc{rombach2021highresolution,
      title={High-Resolution Image Synthesis with Latent Diffusion Models}, 
      author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
      year={2021},
      eprint={2112.10752},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```