File size: 6,727 Bytes
1976a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
author: lzhbrian (https://lzhbrian.me)
link: https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5
date: 2020.1.5
note: code is heavily borrowed from
    https://github.com/NVlabs/ffhq-dataset
    http://dlib.net/face_landmark_detection.py.html
requirements:
    conda install Pillow numpy scipy
    conda install -c conda-forge dlib
    # download face landmark model from:
    # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""

import cv2
import dlib
import glob
import numpy as np
import os
import PIL
import PIL.Image
import scipy
import scipy.ndimage
import sys
import argparse

# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
predictor = dlib.shape_predictor('weights/dlib/shape_predictor_68_face_landmarks-fbdc2cb8.dat')


def get_landmark(filepath, only_keep_largest=True):
    """get landmark with dlib
    :return: np.array shape=(68, 2)
    """
    detector = dlib.get_frontal_face_detector()

    img = dlib.load_rgb_image(filepath)
    dets = detector(img, 1)

    # Shangchen modified
    print("Number of faces detected: {}".format(len(dets)))
    if only_keep_largest:
        print('Detect several faces and only keep the largest.')
        face_areas = []
        for k, d in enumerate(dets):
            face_area = (d.right() - d.left()) * (d.bottom() - d.top())
            face_areas.append(face_area)

        largest_idx = face_areas.index(max(face_areas))
        d = dets[largest_idx]
        shape = predictor(img, d)
        print("Part 0: {}, Part 1: {} ...".format(
            shape.part(0), shape.part(1)))
    else:
        for k, d in enumerate(dets):
            print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
                k, d.left(), d.top(), d.right(), d.bottom()))
            # Get the landmarks/parts for the face in box d.
            shape = predictor(img, d)
            print("Part 0: {}, Part 1: {} ...".format(
                shape.part(0), shape.part(1)))

    t = list(shape.parts())
    a = []
    for tt in t:
        a.append([tt.x, tt.y])
    lm = np.array(a)
    # lm is a shape=(68,2) np.array
    return lm

def align_face(filepath, out_path):
    """
    :param filepath: str
    :return: PIL Image
    """
    try:
        lm = get_landmark(filepath)
    except:
        print('No landmark ...')
        return

    lm_chin = lm[0:17]  # left-right
    lm_eyebrow_left = lm[17:22]  # left-right
    lm_eyebrow_right = lm[22:27]  # left-right
    lm_nose = lm[27:31]  # top-down
    lm_nostrils = lm[31:36]  # top-down
    lm_eye_left = lm[36:42]  # left-clockwise
    lm_eye_right = lm[42:48]  # left-clockwise
    lm_mouth_outer = lm[48:60]  # left-clockwise
    lm_mouth_inner = lm[60:68]  # left-clockwise

    # Calculate auxiliary vectors.
    eye_left = np.mean(lm_eye_left, axis=0)
    eye_right = np.mean(lm_eye_right, axis=0)
    eye_avg = (eye_left + eye_right) * 0.5
    eye_to_eye = eye_right - eye_left
    mouth_left = lm_mouth_outer[0]
    mouth_right = lm_mouth_outer[6]
    mouth_avg = (mouth_left + mouth_right) * 0.5
    eye_to_mouth = mouth_avg - eye_avg

    # Choose oriented crop rectangle.
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    qsize = np.hypot(*x) * 2

    # read image
    img = PIL.Image.open(filepath)

    output_size = 512
    transform_size = 4096
    enable_padding = False

    # Shrink.
    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
        rsize = (int(np.rint(float(img.size[0]) / shrink)),
                 int(np.rint(float(img.size[1]) / shrink)))
        img = img.resize(rsize, PIL.Image.ANTIALIAS)
        quad /= shrink
        qsize /= shrink
 
    # Crop.
    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
            int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
    crop = (max(crop[0] - border, 0), max(crop[1] - border, 0),
            min(crop[2] + border,
                img.size[0]), min(crop[3] + border, img.size[1]))
    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
        img = img.crop(crop)
        quad -= crop[0:2]

    # Pad.
    pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
           int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
    pad = (max(-pad[0] + border,
               0), max(-pad[1] + border,
                       0), max(pad[2] - img.size[0] + border,
                               0), max(pad[3] - img.size[1] + border, 0))
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        img = np.pad(
            np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)),
            'reflect')
        h, w, _ = img.shape
        y, x, _ = np.ogrid[:h, :w, :1]
        mask = np.maximum(
            1.0 -
            np.minimum(np.float32(x) / pad[0],
                       np.float32(w - 1 - x) / pad[2]), 1.0 -
            np.minimum(np.float32(y) / pad[1],
                       np.float32(h - 1 - y) / pad[3]))
        blur = qsize * 0.02
        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) -
                img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
        img = PIL.Image.fromarray(
            np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
        quad += pad[:2]

    img = img.transform((transform_size, transform_size), PIL.Image.QUAD,
                        (quad + 0.5).flatten(), PIL.Image.BILINEAR)

    if output_size < transform_size:
        img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)

    # Save aligned image.
    print('saveing: ', out_path)
    img.save(out_path)

    return img, np.max(quad[:, 0]) - np.min(quad[:, 0])


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--in_dir', type=str, default='./inputs/whole_imgs')
    parser.add_argument('--out_dir', type=str, default='./inputs/cropped_faces')
    args = parser.parse_args()

    img_list = sorted(glob.glob(f'{args.in_dir}/*.png'))
    img_list = sorted(img_list)

    for in_path in img_list:
        out_path = os.path.join(args.out_dir, in_path.split("/")[-1])        
        out_path = out_path.replace('.jpg', '.png')
        size_ = align_face(in_path, out_path)