merve HF staff commited on
Commit
3ed2861
·
1 Parent(s): 744081a

pushing files to the repo from the example!

Browse files
Files changed (4) hide show
  1. README.md +234 -0
  2. config.json +208 -0
  3. confusion_matrix.png +0 -0
  4. example.pkl +3 -0
README.md ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ model_file: example.pkl
9
+ widget:
10
+ structuredData:
11
+ 'Unnamed: 32':
12
+ - .nan
13
+ - .nan
14
+ - .nan
15
+ area_mean:
16
+ - 481.9
17
+ - 1130.0
18
+ - 748.9
19
+ area_se:
20
+ - 30.29
21
+ - 96.05
22
+ - 48.31
23
+ area_worst:
24
+ - 677.9
25
+ - 1866.0
26
+ - 1156.0
27
+ compactness_mean:
28
+ - 0.1058
29
+ - 0.1029
30
+ - 0.1223
31
+ compactness_se:
32
+ - 0.01911
33
+ - 0.01652
34
+ - 0.01484
35
+ compactness_worst:
36
+ - 0.2378
37
+ - 0.2336
38
+ - 0.2394
39
+ concave points_mean:
40
+ - 0.03821
41
+ - 0.07951
42
+ - 0.08087
43
+ concave points_se:
44
+ - 0.01037
45
+ - 0.0137
46
+ - 0.01093
47
+ concave points_worst:
48
+ - 0.1015
49
+ - 0.1789
50
+ - 0.1514
51
+ concavity_mean:
52
+ - 0.08005
53
+ - 0.108
54
+ - 0.1466
55
+ concavity_se:
56
+ - 0.02701
57
+ - 0.02269
58
+ - 0.02813
59
+ concavity_worst:
60
+ - 0.2671
61
+ - 0.2687
62
+ - 0.3791
63
+ fractal_dimension_mean:
64
+ - 0.06373
65
+ - 0.05461
66
+ - 0.05796
67
+ fractal_dimension_se:
68
+ - 0.003586
69
+ - 0.001698
70
+ - 0.002461
71
+ fractal_dimension_worst:
72
+ - 0.0875
73
+ - 0.06589
74
+ - 0.08019
75
+ id:
76
+ - 87930
77
+ - 859575
78
+ - 8670
79
+ perimeter_mean:
80
+ - 81.09
81
+ - 123.6
82
+ - 101.7
83
+ perimeter_se:
84
+ - 2.497
85
+ - 5.486
86
+ - 3.094
87
+ perimeter_worst:
88
+ - 96.05
89
+ - 165.9
90
+ - 124.9
91
+ radius_mean:
92
+ - 12.47
93
+ - 18.94
94
+ - 15.46
95
+ radius_se:
96
+ - 0.3961
97
+ - 0.7888
98
+ - 0.4743
99
+ radius_worst:
100
+ - 14.97
101
+ - 24.86
102
+ - 19.26
103
+ smoothness_mean:
104
+ - 0.09965
105
+ - 0.09009
106
+ - 0.1092
107
+ smoothness_se:
108
+ - 0.006953
109
+ - 0.004444
110
+ - 0.00624
111
+ smoothness_worst:
112
+ - 0.1426
113
+ - 0.1193
114
+ - 0.1546
115
+ symmetry_mean:
116
+ - 0.1925
117
+ - 0.1582
118
+ - 0.1931
119
+ symmetry_se:
120
+ - 0.01782
121
+ - 0.01386
122
+ - 0.01397
123
+ symmetry_worst:
124
+ - 0.3014
125
+ - 0.2551
126
+ - 0.2837
127
+ texture_mean:
128
+ - 18.6
129
+ - 21.31
130
+ - 19.48
131
+ texture_se:
132
+ - 1.044
133
+ - 0.7975
134
+ - 0.7859
135
+ texture_worst:
136
+ - 24.64
137
+ - 26.58
138
+ - 26.0
139
+ ---
140
+
141
+ # Model description
142
+
143
+ [More Information Needed]
144
+
145
+ ## Intended uses & limitations
146
+
147
+ This model is not ready to be used in production.
148
+
149
+ ## Training Procedure
150
+
151
+ ### Hyperparameters
152
+
153
+ The model is trained with below hyperparameters.
154
+
155
+ <details>
156
+ <summary> Click to expand </summary>
157
+
158
+ | Hyperparameter | Value |
159
+ |--------------------------|-----------------------------------------------------------------------------------------------|
160
+ | memory | |
161
+ | steps | [('imputer', SimpleImputer()), ('scaler', StandardScaler()), ('model', LogisticRegression())] |
162
+ | verbose | False |
163
+ | imputer | SimpleImputer() |
164
+ | scaler | StandardScaler() |
165
+ | model | LogisticRegression() |
166
+ | imputer__add_indicator | False |
167
+ | imputer__copy | True |
168
+ | imputer__fill_value | |
169
+ | imputer__missing_values | nan |
170
+ | imputer__strategy | mean |
171
+ | imputer__verbose | 0 |
172
+ | scaler__copy | True |
173
+ | scaler__with_mean | True |
174
+ | scaler__with_std | True |
175
+ | model__C | 1.0 |
176
+ | model__class_weight | |
177
+ | model__dual | False |
178
+ | model__fit_intercept | True |
179
+ | model__intercept_scaling | 1 |
180
+ | model__l1_ratio | |
181
+ | model__max_iter | 100 |
182
+ | model__multi_class | auto |
183
+ | model__n_jobs | |
184
+ | model__penalty | l2 |
185
+ | model__random_state | |
186
+ | model__solver | lbfgs |
187
+ | model__tol | 0.0001 |
188
+ | model__verbose | 0 |
189
+ | model__warm_start | False |
190
+
191
+ </details>
192
+
193
+ ### Model Plot
194
+
195
+ The model plot is below.
196
+
197
+ <style>#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b {color: black;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b pre{padding: 0;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable {background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator:hover {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-item {z-index: 1;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:only-child::after {width: 0;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-text-repr-fallback {display: none;}</style><div id="sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),(&#x27;model&#x27;, LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6aee50d2-d0d7-437e-8e9b-bd1121de94e7" type="checkbox" ><label for="6aee50d2-d0d7-437e-8e9b-bd1121de94e7" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),(&#x27;model&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ac5b7f88-9a16-4c90-8fcb-2a4f833cadf1" type="checkbox" ><label for="ac5b7f88-9a16-4c90-8fcb-2a4f833cadf1" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="65ce6721-e323-4189-a9bd-e373e248f0f7" type="checkbox" ><label for="65ce6721-e323-4189-a9bd-e373e248f0f7" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2328c6c4-413e-46ed-b597-1b88227e45a5" type="checkbox" ><label for="2328c6c4-413e-46ed-b597-1b88227e45a5" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
198
+
199
+ ## Evaluation Results
200
+
201
+ You can find the details about evaluation process and the evaluation results.
202
+
203
+ | Metric | Value |
204
+ |----------|----------|
205
+ | accuracy | 0.982456 |
206
+ | f1 score | 0.982456 |
207
+
208
+ # How to Get Started with the Model
209
+
210
+ [More Information Needed]
211
+
212
+ # Model Card Authors
213
+
214
+ This model card is written by following authors:
215
+
216
+ [More Information Needed]
217
+
218
+ # Model Card Contact
219
+
220
+ You can contact the model card authors through following channels:
221
+ [More Information Needed]
222
+
223
+ # Citation
224
+
225
+ Below you can find information related to citation.
226
+
227
+ **BibTeX:**
228
+ ```
229
+ [More Information Needed]
230
+ ```
231
+
232
+ # Confusion Matrix
233
+
234
+ ![Confusion Matrix](path-to-confusion-matrix.png)
config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "id",
5
+ "radius_mean",
6
+ "texture_mean",
7
+ "perimeter_mean",
8
+ "area_mean",
9
+ "smoothness_mean",
10
+ "compactness_mean",
11
+ "concavity_mean",
12
+ "concave points_mean",
13
+ "symmetry_mean",
14
+ "fractal_dimension_mean",
15
+ "radius_se",
16
+ "texture_se",
17
+ "perimeter_se",
18
+ "area_se",
19
+ "smoothness_se",
20
+ "compactness_se",
21
+ "concavity_se",
22
+ "concave points_se",
23
+ "symmetry_se",
24
+ "fractal_dimension_se",
25
+ "radius_worst",
26
+ "texture_worst",
27
+ "perimeter_worst",
28
+ "area_worst",
29
+ "smoothness_worst",
30
+ "compactness_worst",
31
+ "concavity_worst",
32
+ "concave points_worst",
33
+ "symmetry_worst",
34
+ "fractal_dimension_worst",
35
+ "Unnamed: 32"
36
+ ],
37
+ "environment": [
38
+ "scikit-learn=1.0.2"
39
+ ],
40
+ "example_input": {
41
+ "Unnamed: 32": [
42
+ NaN,
43
+ NaN,
44
+ NaN
45
+ ],
46
+ "area_mean": [
47
+ 481.9,
48
+ 1130.0,
49
+ 748.9
50
+ ],
51
+ "area_se": [
52
+ 30.29,
53
+ 96.05,
54
+ 48.31
55
+ ],
56
+ "area_worst": [
57
+ 677.9,
58
+ 1866.0,
59
+ 1156.0
60
+ ],
61
+ "compactness_mean": [
62
+ 0.1058,
63
+ 0.1029,
64
+ 0.1223
65
+ ],
66
+ "compactness_se": [
67
+ 0.01911,
68
+ 0.01652,
69
+ 0.01484
70
+ ],
71
+ "compactness_worst": [
72
+ 0.2378,
73
+ 0.2336,
74
+ 0.2394
75
+ ],
76
+ "concave points_mean": [
77
+ 0.03821,
78
+ 0.07951,
79
+ 0.08087
80
+ ],
81
+ "concave points_se": [
82
+ 0.01037,
83
+ 0.0137,
84
+ 0.01093
85
+ ],
86
+ "concave points_worst": [
87
+ 0.1015,
88
+ 0.1789,
89
+ 0.1514
90
+ ],
91
+ "concavity_mean": [
92
+ 0.08005,
93
+ 0.108,
94
+ 0.1466
95
+ ],
96
+ "concavity_se": [
97
+ 0.02701,
98
+ 0.02269,
99
+ 0.02813
100
+ ],
101
+ "concavity_worst": [
102
+ 0.2671,
103
+ 0.2687,
104
+ 0.3791
105
+ ],
106
+ "fractal_dimension_mean": [
107
+ 0.06373,
108
+ 0.05461,
109
+ 0.05796
110
+ ],
111
+ "fractal_dimension_se": [
112
+ 0.003586,
113
+ 0.001698,
114
+ 0.002461
115
+ ],
116
+ "fractal_dimension_worst": [
117
+ 0.0875,
118
+ 0.06589,
119
+ 0.08019
120
+ ],
121
+ "id": [
122
+ 87930,
123
+ 859575,
124
+ 8670
125
+ ],
126
+ "perimeter_mean": [
127
+ 81.09,
128
+ 123.6,
129
+ 101.7
130
+ ],
131
+ "perimeter_se": [
132
+ 2.497,
133
+ 5.486,
134
+ 3.094
135
+ ],
136
+ "perimeter_worst": [
137
+ 96.05,
138
+ 165.9,
139
+ 124.9
140
+ ],
141
+ "radius_mean": [
142
+ 12.47,
143
+ 18.94,
144
+ 15.46
145
+ ],
146
+ "radius_se": [
147
+ 0.3961,
148
+ 0.7888,
149
+ 0.4743
150
+ ],
151
+ "radius_worst": [
152
+ 14.97,
153
+ 24.86,
154
+ 19.26
155
+ ],
156
+ "smoothness_mean": [
157
+ 0.09965,
158
+ 0.09009,
159
+ 0.1092
160
+ ],
161
+ "smoothness_se": [
162
+ 0.006953,
163
+ 0.004444,
164
+ 0.00624
165
+ ],
166
+ "smoothness_worst": [
167
+ 0.1426,
168
+ 0.1193,
169
+ 0.1546
170
+ ],
171
+ "symmetry_mean": [
172
+ 0.1925,
173
+ 0.1582,
174
+ 0.1931
175
+ ],
176
+ "symmetry_se": [
177
+ 0.01782,
178
+ 0.01386,
179
+ 0.01397
180
+ ],
181
+ "symmetry_worst": [
182
+ 0.3014,
183
+ 0.2551,
184
+ 0.2837
185
+ ],
186
+ "texture_mean": [
187
+ 18.6,
188
+ 21.31,
189
+ 19.48
190
+ ],
191
+ "texture_se": [
192
+ 1.044,
193
+ 0.7975,
194
+ 0.7859
195
+ ],
196
+ "texture_worst": [
197
+ 24.64,
198
+ 26.58,
199
+ 26.0
200
+ ]
201
+ },
202
+ "model": {
203
+ "file": "example.pkl"
204
+ },
205
+ "model_format": "pickle",
206
+ "task": "tabular-classification"
207
+ }
208
+ }
confusion_matrix.png ADDED
example.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb44989674b37907b3bf3fa89d9a9b99341635062d1c9536139020b121a86116
3
+ size 3132