First PPO LunarLander-v2 agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 184.91 +/- 52.52
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7881f0a3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7881f0a440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7881f0a4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7881f0a560>", "_build": "<function ActorCriticPolicy._build at 0x7f7881f0a5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7881f0a680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7881f0a710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7881f0a7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7881f0a830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7881f0a8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7881f0a950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7881f49cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651867306.559033, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD8Qz4h0Ia8q837O6rqMrq45/O9LP0ZuwAAgD8AAIA/ht04Pr2fJDzMNS27s+hIuXEuvT1oGT66AACAPwAAgD9A6LI9hWuCt+NV0Lon8kw3Lhzku2J5lLYAAIA/AACAP+2EUj7KvRM8HmsCO/lVuzhc84Y9FqEhugAAgD8AAIA/ACD1Pa5PsDkbMz28t4wrug/6ljukuBa7AACAPwAAgD96W2Q+Sc8XPf75Qr2aXvc8QW6qPmPQWLwAAIA/AACAP+akbT1czx6675HBu/ZqQzVAyIO7d6uwtAAAgD8AAIA/YFBhPtwqcLzhiZC74HrNOW+tzL0PPIM6AACAPwAAgD8N7Yo9bAbAP1qOxD5q1EM9n9+dPc55cj4AAAAAAAAAAE2Szj2uw4+6sS9DuFV+mTXN/A87IuVaNwAAgD8AAIA/ev0ePnYRALyCfxE7uUnOuLKOZ73a3TO6AACAPwAAgD/m54U9w3FFuh0vhzguGxq2IRU2OpvLmbcAAIA/AACAPzM6qT4q4Tg+SNN0vvb27bxib0C98k4uvgAAAAAAAAAAzUQwPMOFCroKQGM73/bXNnmOeDtU2oW6AACAPwAAgD/zAYy9KRg4uuID4DoTWRo25RmhOR7vDTUAAIA/AACAPzORTz7sJMY8O8tTu68x97l2C1k+lrOUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZw3eV+WTXECUhpRSlIwBbJRN6AOMAXSUR0CEUgoegctHdX2UKGgGaAloD0MI+nq+ZrmCQ8CUhpRSlGgVTREBaBZHQIRUZYT0xud1fZQoaAZoCWgPQwg+BitOtRBYQJSGlFKUaBVN6ANoFkdAhFcZVfeDWnV9lChoBmgJaA9DCCo4vCAiLSFAlIaUUpRoFUvOaBZHQIRoerIYFaB1fZQoaAZoCWgPQwj8w5YeTV5eQJSGlFKUaBVN6ANoFkdAhGog+IMz/XV9lChoBmgJaA9DCGiXb31YI0dAlIaUUpRoFUvjaBZHQIRzXenAIpp1fZQoaAZoCWgPQwgfhlYn5whiQJSGlFKUaBVN6ANoFkdAhHXxZdOZcHV9lChoBmgJaA9DCIC3QILiLFlAlIaUUpRoFU3oA2gWR0CEdj4zJp35dX2UKGgGaAloD0MIZd6q61AhWkCUhpRSlGgVTegDaBZHQIR8QWgvlEJ1fZQoaAZoCWgPQwiOlC2SdlJhQJSGlFKUaBVN6ANoFkdAhKTTLOiWV3V9lChoBmgJaA9DCAT/W8mObSRAlIaUUpRoFU0wAWgWR0CEs+AWBSUDdX2UKGgGaAloD0MI3H75ZMWmYUCUhpRSlGgVTegDaBZHQISz55gPVd51fZQoaAZoCWgPQwhVoBaDhwkCwJSGlFKUaBVNFwFoFkdAhLv9Esrd33V9lChoBmgJaA9DCKMCJ9vAKl9AlIaUUpRoFU3oA2gWR0CEvy40dilSdX2UKGgGaAloD0MIvRsLCoPsTkCUhpRSlGgVTTABaBZHQIS/eG21D0F1fZQoaAZoCWgPQwheZ0P+GStgQJSGlFKUaBVN6ANoFkdAhMJ3juKGcnV9lChoBmgJaA9DCOSfGcSHFGBAlIaUUpRoFU3oA2gWR0CEwxCMxXXAdX2UKGgGaAloD0MIqWis/Z1VTECUhpRSlGgVTegDaBZHQITU+N70Fr51fZQoaAZoCWgPQwiiJCTSNolhQJSGlFKUaBVN6ANoFkdAhNw8b70nPXV9lChoBmgJaA9DCF0xI7w9yPe/lIaUUpRoFUv6aBZHQITeM0WM0gt1fZQoaAZoCWgPQwigi4aMx2NiQJSGlFKUaBVN6ANoFkdAhOLVmBe5WnV9lChoBmgJaA9DCIFdTZ6yiFpAlIaUUpRoFU3oA2gWR0CE9r5Jsfq5dX2UKGgGaAloD0MI9iNFZFghOUCUhpRSlGgVTRQBaBZHQIT6Itrbg0l1fZQoaAZoCWgPQwhc5QmEndBgQJSGlFKUaBVN6ANoFkdAhPvXyI55q3V9lChoBmgJaA9DCFclkX2QR1pAlIaUUpRoFU3oA2gWR0CFDhq8lHBldX2UKGgGaAloD0MI0o+GU+Z2JECUhpRSlGgVS/JoFkdAhRorRjSXt3V9lChoBmgJaA9DCMb5m1CIIWNAlIaUUpRoFU3oA2gWR0CFGlkPtlZpdX2UKGgGaAloD0MIonxBCwmCXkCUhpRSlGgVTegDaBZHQIUlO0LMLWt1fZQoaAZoCWgPQwh4t7JE5w5gQJSGlFKUaBVN6ANoFkdAhSpYTj/+9HV9lChoBmgJaA9DCMGO/wJByGNAlIaUUpRoFU3oA2gWR0CFZE2UB4lhdX2UKGgGaAloD0MIOj5anLExYECUhpRSlGgVTegDaBZHQIVkXFBIFvB1fZQoaAZoCWgPQwjIt3cN+h9hQJSGlFKUaBVN6ANoFkdAhWzq28Zk1HV9lChoBmgJaA9DCGFwzR39O1ZAlIaUUpRoFU3oA2gWR0CFcJ8/D+BIdX2UKGgGaAloD0MI5EwTtp8gNkCUhpRSlGgVTegDaBZHQIV0NqWTouB1fZQoaAZoCWgPQwhZpfRMr9BjQJSGlFKUaBVN6ANoFkdAhXTfsNUfgnV9lChoBmgJaA9DCDZ39L9cizFAlIaUUpRoFU0OAWgWR0CFd5f/m1YydX2UKGgGaAloD0MIX36nyYwIV0CUhpRSlGgVTegDaBZHQIWO9WS2Yv51fZQoaAZoCWgPQwgLnGwDd0QxQJSGlFKUaBVNCwFoFkdAhY+tQCSzPnV9lChoBmgJaA9DCEcf8wGBo11AlIaUUpRoFU3oA2gWR0CFkO4aP0ZndX2UKGgGaAloD0MI06QUdHufWUCUhpRSlGgVTegDaBZHQIWVaRjjJdV1fZQoaAZoCWgPQwij5UAPtU0WwJSGlFKUaBVNFwFoFkdAhZh1IAfdRHV9lChoBmgJaA9DCI/+l2vRk15AlIaUUpRoFU3oA2gWR0CFq97b+Lm7dX2UKGgGaAloD0MIcy7FVWVtWECUhpRSlGgVTegDaBZHQIWtfGp++dt1fZQoaAZoCWgPQwhT0O0lDeZhQJSGlFKUaBVN6ANoFkdAhb90p3HJcXV9lChoBmgJaA9DCMNjP4ul2l9AlIaUUpRoFU3oA2gWR0CFy2GNaQmvdX2UKGgGaAloD0MIUDdQ4B3nYECUhpRSlGgVTegDaBZHQIXLjEDQqqh1fZQoaAZoCWgPQwjDRIMUPAZZQJSGlFKUaBVN6ANoFkdAhdYb9Q40dnV9lChoBmgJaA9DCPJ5xVOPrl9AlIaUUpRoFU3oA2gWR0CGFKViWmgrdX2UKGgGaAloD0MIvR5Mio+KWkCUhpRSlGgVTegDaBZHQIYUsFQl8gJ1fZQoaAZoCWgPQwi3s688SLRfQJSGlFKUaBVN6ANoFkdAhiHKmbb1y3V9lChoBmgJaA9DCN/8hokGlFZAlIaUUpRoFU3oA2gWR0CGJeuX/o7ndX2UKGgGaAloD0MIKqc9Jee9VkCUhpRSlGgVTegDaBZHQIYqBZpztC11fZQoaAZoCWgPQwjVeOkmsZliQJSGlFKUaBVN6ANoFkdAhka2WY4Qz3V9lChoBmgJaA9DCKCH2jaMzVtAlIaUUpRoFU3oA2gWR0CGR5cUuctodX2UKGgGaAloD0MIL1G9NTBIYUCUhpRSlGgVTegDaBZHQIZJB37k4m11fZQoaAZoCWgPQwjZBu5AnVNcQJSGlFKUaBVN6ANoFkdAhk20Mw1zhnV9lChoBmgJaA9DCBgip69nK2FAlIaUUpRoFU3oA2gWR0CGUPnSv1UVdX2UKGgGaAloD0MI04cuqG+JHcCUhpRSlGgVTQ8BaBZHQIZSsDwH7gt1fZQoaAZoCWgPQwiFsBpLWNxeQJSGlFKUaBVN6ANoFkdAhmKC9Iwud3V9lChoBmgJaA9DCPzDlh5N1VtAlIaUUpRoFU3oA2gWR0CGZBHU+cH4dX2UKGgGaAloD0MIhgDg2DNJYECUhpRSlGgVTegDaBZHQIZ1dZDArQR1fZQoaAZoCWgPQwg6eCY0SUpeQJSGlFKUaBVN6ANoFkdAhoDQ6p5u63V9lChoBmgJaA9DCAYq49/nkmFAlIaUUpRoFU3oA2gWR0CGgPeMQ2/BdX2UKGgGaAloD0MIvwtbs5WoVkCUhpRSlGgVTegDaBZHQIaKsOskpqh1fZQoaAZoCWgPQwgTtTS3QhZcQJSGlFKUaBVN6ANoFkdAhsee7UXpGHV9lChoBmgJaA9DCN8xPPYzWWFAlIaUUpRoFU3oA2gWR0CGx6tMfzSUdX2UKGgGaAloD0MIrFPle0ZqNsCUhpRSlGgVS95oFkdAhtBCGetjkXV9lChoBmgJaA9DCCC3Xz5Z9FlAlIaUUpRoFU3oA2gWR0CG1IZF5OafdX2UKGgGaAloD0MIih74GCy8YUCUhpRSlGgVTegDaBZHQIbYXC/Glyl1fZQoaAZoCWgPQwij5qvkYwxZQJSGlFKUaBVN6ANoFkdAhvimFrVOK3V9lChoBmgJaA9DCMVyS6shXV5AlIaUUpRoFU3oA2gWR0CG+ZbPhQ3xdX2UKGgGaAloD0MI4QuTqYLkUkCUhpRSlGgVTegDaBZHQIb7MSGrS3N1fZQoaAZoCWgPQwh3Loz0oiZhQJSGlFKUaBVN6ANoFkdAhwCAbADaG3V9lChoBmgJaA9DCOCAlq7gtGBAlIaUUpRoFU3oA2gWR0CHA+x33YcvdX2UKGgGaAloD0MIbATidf2wX0CUhpRSlGgVTegDaBZHQIcF3y/bj951fZQoaAZoCWgPQwgV5Gcj19BYQJSGlFKUaBVN6ANoFkdAhxdEELYwqXV9lChoBmgJaA9DCDViZp/HpldAlIaUUpRoFU3oA2gWR0CHGLzzVc2SdX2UKGgGaAloD0MI0T5W8NvQEUCUhpRSlGgVS+doFkdAhxkzrNW2gHV9lChoBmgJaA9DCFpHVRPE5mBAlIaUUpRoFU3oA2gWR0CHKFbB42S/dX2UKGgGaAloD0MI1uWUgJgUYECUhpRSlGgVTegDaBZHQIcyL/2kBS11fZQoaAZoCWgPQwjy6bEtA0VbQJSGlFKUaBVN6ANoFkdAhzJTK9wm3XV9lChoBmgJaA9DCGQe+YOBdUfAlIaUUpRoFU2bAWgWR0CHb9pCa7VbdX2UKGgGaAloD0MI/YNIhhxVQECUhpRSlGgVS+xoFkdAh3OhP9DQaHV9lChoBmgJaA9DCLr5RnTPA2BAlIaUUpRoFU3oA2gWR0CHc8CfYjB3dX2UKGgGaAloD0MIY/GbwsrhY0CUhpRSlGgVTegDaBZHQIdzyWZ7Xxx1fZQoaAZoCWgPQwgxW7IqwmheQJSGlFKUaBVN6ANoFkdAh3qPHLida3V9lChoBmgJaA9DCBA//z14IGZAlIaUUpRoFU3oA2gWR0CHfZkK/mDEdX2UKGgGaAloD0MItMcL6XAvYUCUhpRSlGgVTegDaBZHQIeAfRLK3d91fZQoaAZoCWgPQwgWhPI+DvhjQJSGlFKUaBVN6ANoFkdAh5n7FjurqHV9lChoBmgJaA9DCCWvzjEgOwzAlIaUUpRoFU0SAWgWR0CHm3JcPe54dX2UKGgGaAloD0MIAW4WLxapY0CUhpRSlGgVTegDaBZHQIecL6i0v5B1fZQoaAZoCWgPQwi3XWiu0xZHwJSGlFKUaBVNHQFoFkdAh6DaunuRcXV9lChoBmgJaA9DCBcNGY9S82FAlIaUUpRoFU3oA2gWR0CHoPnnMdLhdX2UKGgGaAloD0MIEAaeew/UYkCUhpRSlGgVTegDaBZHQIekJZwGW2R1fZQoaAZoCWgPQwjYKsHi8G5gQJSGlFKUaBVN6ANoFkdAh6XiW/rSmnV9lChoBmgJaA9DCFMkXwmkulFAlIaUUpRoFU3oA2gWR0CHtbZ7HAARdX2UKGgGaAloD0MI007N5YYZYECUhpRSlGgVTegDaBZHQIe3S9/SYw91fZQoaAZoCWgPQwiHxahrbU9iQJSGlFKUaBVN6ANoFkdAh8kIgmqo63V9lChoBmgJaA9DCLEVNC2x919AlIaUUpRoFU3oA2gWR0CH1TgIhQnAdX2UKGgGaAloD0MIldi1vd0jYkCUhpRSlGgVTegDaBZHQIf6M7U5MlF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:969b891a2f342c588c3cafab359200d71ce077aed16908319dd040c115d5412a
|
3 |
+
size 144039
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7881f0a3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7881f0a440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7881f0a4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7881f0a560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7881f0a5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7881f0a680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7881f0a710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7881f0a7a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7881f0a830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7881f0a8c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7881f0a950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7881f49cf0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651867306.559033,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD8Qz4h0Ia8q837O6rqMrq45/O9LP0ZuwAAgD8AAIA/ht04Pr2fJDzMNS27s+hIuXEuvT1oGT66AACAPwAAgD9A6LI9hWuCt+NV0Lon8kw3Lhzku2J5lLYAAIA/AACAP+2EUj7KvRM8HmsCO/lVuzhc84Y9FqEhugAAgD8AAIA/ACD1Pa5PsDkbMz28t4wrug/6ljukuBa7AACAPwAAgD96W2Q+Sc8XPf75Qr2aXvc8QW6qPmPQWLwAAIA/AACAP+akbT1czx6675HBu/ZqQzVAyIO7d6uwtAAAgD8AAIA/YFBhPtwqcLzhiZC74HrNOW+tzL0PPIM6AACAPwAAgD8N7Yo9bAbAP1qOxD5q1EM9n9+dPc55cj4AAAAAAAAAAE2Szj2uw4+6sS9DuFV+mTXN/A87IuVaNwAAgD8AAIA/ev0ePnYRALyCfxE7uUnOuLKOZ73a3TO6AACAPwAAgD/m54U9w3FFuh0vhzguGxq2IRU2OpvLmbcAAIA/AACAPzM6qT4q4Tg+SNN0vvb27bxib0C98k4uvgAAAAAAAAAAzUQwPMOFCroKQGM73/bXNnmOeDtU2oW6AACAPwAAgD/zAYy9KRg4uuID4DoTWRo25RmhOR7vDTUAAIA/AACAPzORTz7sJMY8O8tTu68x97l2C1k+lrOUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZw3eV+WTXECUhpRSlIwBbJRN6AOMAXSUR0CEUgoegctHdX2UKGgGaAloD0MI+nq+ZrmCQ8CUhpRSlGgVTREBaBZHQIRUZYT0xud1fZQoaAZoCWgPQwg+BitOtRBYQJSGlFKUaBVN6ANoFkdAhFcZVfeDWnV9lChoBmgJaA9DCCo4vCAiLSFAlIaUUpRoFUvOaBZHQIRoerIYFaB1fZQoaAZoCWgPQwj8w5YeTV5eQJSGlFKUaBVN6ANoFkdAhGog+IMz/XV9lChoBmgJaA9DCGiXb31YI0dAlIaUUpRoFUvjaBZHQIRzXenAIpp1fZQoaAZoCWgPQwgfhlYn5whiQJSGlFKUaBVN6ANoFkdAhHXxZdOZcHV9lChoBmgJaA9DCIC3QILiLFlAlIaUUpRoFU3oA2gWR0CEdj4zJp35dX2UKGgGaAloD0MIZd6q61AhWkCUhpRSlGgVTegDaBZHQIR8QWgvlEJ1fZQoaAZoCWgPQwiOlC2SdlJhQJSGlFKUaBVN6ANoFkdAhKTTLOiWV3V9lChoBmgJaA9DCAT/W8mObSRAlIaUUpRoFU0wAWgWR0CEs+AWBSUDdX2UKGgGaAloD0MI3H75ZMWmYUCUhpRSlGgVTegDaBZHQISz55gPVd51fZQoaAZoCWgPQwhVoBaDhwkCwJSGlFKUaBVNFwFoFkdAhLv9Esrd33V9lChoBmgJaA9DCKMCJ9vAKl9AlIaUUpRoFU3oA2gWR0CEvy40dilSdX2UKGgGaAloD0MIvRsLCoPsTkCUhpRSlGgVTTABaBZHQIS/eG21D0F1fZQoaAZoCWgPQwheZ0P+GStgQJSGlFKUaBVN6ANoFkdAhMJ3juKGcnV9lChoBmgJaA9DCOSfGcSHFGBAlIaUUpRoFU3oA2gWR0CEwxCMxXXAdX2UKGgGaAloD0MIqWis/Z1VTECUhpRSlGgVTegDaBZHQITU+N70Fr51fZQoaAZoCWgPQwiiJCTSNolhQJSGlFKUaBVN6ANoFkdAhNw8b70nPXV9lChoBmgJaA9DCF0xI7w9yPe/lIaUUpRoFUv6aBZHQITeM0WM0gt1fZQoaAZoCWgPQwigi4aMx2NiQJSGlFKUaBVN6ANoFkdAhOLVmBe5WnV9lChoBmgJaA9DCIFdTZ6yiFpAlIaUUpRoFU3oA2gWR0CE9r5Jsfq5dX2UKGgGaAloD0MI9iNFZFghOUCUhpRSlGgVTRQBaBZHQIT6Itrbg0l1fZQoaAZoCWgPQwhc5QmEndBgQJSGlFKUaBVN6ANoFkdAhPvXyI55q3V9lChoBmgJaA9DCFclkX2QR1pAlIaUUpRoFU3oA2gWR0CFDhq8lHBldX2UKGgGaAloD0MI0o+GU+Z2JECUhpRSlGgVS/JoFkdAhRorRjSXt3V9lChoBmgJaA9DCMb5m1CIIWNAlIaUUpRoFU3oA2gWR0CFGlkPtlZpdX2UKGgGaAloD0MIonxBCwmCXkCUhpRSlGgVTegDaBZHQIUlO0LMLWt1fZQoaAZoCWgPQwh4t7JE5w5gQJSGlFKUaBVN6ANoFkdAhSpYTj/+9HV9lChoBmgJaA9DCMGO/wJByGNAlIaUUpRoFU3oA2gWR0CFZE2UB4lhdX2UKGgGaAloD0MIOj5anLExYECUhpRSlGgVTegDaBZHQIVkXFBIFvB1fZQoaAZoCWgPQwjIt3cN+h9hQJSGlFKUaBVN6ANoFkdAhWzq28Zk1HV9lChoBmgJaA9DCGFwzR39O1ZAlIaUUpRoFU3oA2gWR0CFcJ8/D+BIdX2UKGgGaAloD0MI5EwTtp8gNkCUhpRSlGgVTegDaBZHQIV0NqWTouB1fZQoaAZoCWgPQwhZpfRMr9BjQJSGlFKUaBVN6ANoFkdAhXTfsNUfgnV9lChoBmgJaA9DCDZ39L9cizFAlIaUUpRoFU0OAWgWR0CFd5f/m1YydX2UKGgGaAloD0MIX36nyYwIV0CUhpRSlGgVTegDaBZHQIWO9WS2Yv51fZQoaAZoCWgPQwgLnGwDd0QxQJSGlFKUaBVNCwFoFkdAhY+tQCSzPnV9lChoBmgJaA9DCEcf8wGBo11AlIaUUpRoFU3oA2gWR0CFkO4aP0ZndX2UKGgGaAloD0MI06QUdHufWUCUhpRSlGgVTegDaBZHQIWVaRjjJdV1fZQoaAZoCWgPQwij5UAPtU0WwJSGlFKUaBVNFwFoFkdAhZh1IAfdRHV9lChoBmgJaA9DCI/+l2vRk15AlIaUUpRoFU3oA2gWR0CFq97b+Lm7dX2UKGgGaAloD0MIcy7FVWVtWECUhpRSlGgVTegDaBZHQIWtfGp++dt1fZQoaAZoCWgPQwhT0O0lDeZhQJSGlFKUaBVN6ANoFkdAhb90p3HJcXV9lChoBmgJaA9DCMNjP4ul2l9AlIaUUpRoFU3oA2gWR0CFy2GNaQmvdX2UKGgGaAloD0MIUDdQ4B3nYECUhpRSlGgVTegDaBZHQIXLjEDQqqh1fZQoaAZoCWgPQwjDRIMUPAZZQJSGlFKUaBVN6ANoFkdAhdYb9Q40dnV9lChoBmgJaA9DCPJ5xVOPrl9AlIaUUpRoFU3oA2gWR0CGFKViWmgrdX2UKGgGaAloD0MIvR5Mio+KWkCUhpRSlGgVTegDaBZHQIYUsFQl8gJ1fZQoaAZoCWgPQwi3s688SLRfQJSGlFKUaBVN6ANoFkdAhiHKmbb1y3V9lChoBmgJaA9DCN/8hokGlFZAlIaUUpRoFU3oA2gWR0CGJeuX/o7ndX2UKGgGaAloD0MIKqc9Jee9VkCUhpRSlGgVTegDaBZHQIYqBZpztC11fZQoaAZoCWgPQwjVeOkmsZliQJSGlFKUaBVN6ANoFkdAhka2WY4Qz3V9lChoBmgJaA9DCKCH2jaMzVtAlIaUUpRoFU3oA2gWR0CGR5cUuctodX2UKGgGaAloD0MIL1G9NTBIYUCUhpRSlGgVTegDaBZHQIZJB37k4m11fZQoaAZoCWgPQwjZBu5AnVNcQJSGlFKUaBVN6ANoFkdAhk20Mw1zhnV9lChoBmgJaA9DCBgip69nK2FAlIaUUpRoFU3oA2gWR0CGUPnSv1UVdX2UKGgGaAloD0MI04cuqG+JHcCUhpRSlGgVTQ8BaBZHQIZSsDwH7gt1fZQoaAZoCWgPQwiFsBpLWNxeQJSGlFKUaBVN6ANoFkdAhmKC9Iwud3V9lChoBmgJaA9DCPzDlh5N1VtAlIaUUpRoFU3oA2gWR0CGZBHU+cH4dX2UKGgGaAloD0MIhgDg2DNJYECUhpRSlGgVTegDaBZHQIZ1dZDArQR1fZQoaAZoCWgPQwg6eCY0SUpeQJSGlFKUaBVN6ANoFkdAhoDQ6p5u63V9lChoBmgJaA9DCAYq49/nkmFAlIaUUpRoFU3oA2gWR0CGgPeMQ2/BdX2UKGgGaAloD0MIvwtbs5WoVkCUhpRSlGgVTegDaBZHQIaKsOskpqh1fZQoaAZoCWgPQwgTtTS3QhZcQJSGlFKUaBVN6ANoFkdAhsee7UXpGHV9lChoBmgJaA9DCN8xPPYzWWFAlIaUUpRoFU3oA2gWR0CGx6tMfzSUdX2UKGgGaAloD0MIrFPle0ZqNsCUhpRSlGgVS95oFkdAhtBCGetjkXV9lChoBmgJaA9DCCC3Xz5Z9FlAlIaUUpRoFU3oA2gWR0CG1IZF5OafdX2UKGgGaAloD0MIih74GCy8YUCUhpRSlGgVTegDaBZHQIbYXC/Glyl1fZQoaAZoCWgPQwij5qvkYwxZQJSGlFKUaBVN6ANoFkdAhvimFrVOK3V9lChoBmgJaA9DCMVyS6shXV5AlIaUUpRoFU3oA2gWR0CG+ZbPhQ3xdX2UKGgGaAloD0MI4QuTqYLkUkCUhpRSlGgVTegDaBZHQIb7MSGrS3N1fZQoaAZoCWgPQwh3Loz0oiZhQJSGlFKUaBVN6ANoFkdAhwCAbADaG3V9lChoBmgJaA9DCOCAlq7gtGBAlIaUUpRoFU3oA2gWR0CHA+x33YcvdX2UKGgGaAloD0MIbATidf2wX0CUhpRSlGgVTegDaBZHQIcF3y/bj951fZQoaAZoCWgPQwgV5Gcj19BYQJSGlFKUaBVN6ANoFkdAhxdEELYwqXV9lChoBmgJaA9DCDViZp/HpldAlIaUUpRoFU3oA2gWR0CHGLzzVc2SdX2UKGgGaAloD0MI0T5W8NvQEUCUhpRSlGgVS+doFkdAhxkzrNW2gHV9lChoBmgJaA9DCFpHVRPE5mBAlIaUUpRoFU3oA2gWR0CHKFbB42S/dX2UKGgGaAloD0MI1uWUgJgUYECUhpRSlGgVTegDaBZHQIcyL/2kBS11fZQoaAZoCWgPQwjy6bEtA0VbQJSGlFKUaBVN6ANoFkdAhzJTK9wm3XV9lChoBmgJaA9DCGQe+YOBdUfAlIaUUpRoFU2bAWgWR0CHb9pCa7VbdX2UKGgGaAloD0MI/YNIhhxVQECUhpRSlGgVS+xoFkdAh3OhP9DQaHV9lChoBmgJaA9DCLr5RnTPA2BAlIaUUpRoFU3oA2gWR0CHc8CfYjB3dX2UKGgGaAloD0MIY/GbwsrhY0CUhpRSlGgVTegDaBZHQIdzyWZ7Xxx1fZQoaAZoCWgPQwgxW7IqwmheQJSGlFKUaBVN6ANoFkdAh3qPHLida3V9lChoBmgJaA9DCBA//z14IGZAlIaUUpRoFU3oA2gWR0CHfZkK/mDEdX2UKGgGaAloD0MItMcL6XAvYUCUhpRSlGgVTegDaBZHQIeAfRLK3d91fZQoaAZoCWgPQwgWhPI+DvhjQJSGlFKUaBVN6ANoFkdAh5n7FjurqHV9lChoBmgJaA9DCCWvzjEgOwzAlIaUUpRoFU0SAWgWR0CHm3JcPe54dX2UKGgGaAloD0MIAW4WLxapY0CUhpRSlGgVTegDaBZHQIecL6i0v5B1fZQoaAZoCWgPQwi3XWiu0xZHwJSGlFKUaBVNHQFoFkdAh6DaunuRcXV9lChoBmgJaA9DCBcNGY9S82FAlIaUUpRoFU3oA2gWR0CHoPnnMdLhdX2UKGgGaAloD0MIEAaeew/UYkCUhpRSlGgVTegDaBZHQIekJZwGW2R1fZQoaAZoCWgPQwjYKsHi8G5gQJSGlFKUaBVN6ANoFkdAh6XiW/rSmnV9lChoBmgJaA9DCFMkXwmkulFAlIaUUpRoFU3oA2gWR0CHtbZ7HAARdX2UKGgGaAloD0MI007N5YYZYECUhpRSlGgVTegDaBZHQIe3S9/SYw91fZQoaAZoCWgPQwiHxahrbU9iQJSGlFKUaBVN6ANoFkdAh8kIgmqo63V9lChoBmgJaA9DCLEVNC2x919AlIaUUpRoFU3oA2gWR0CH1TgIhQnAdX2UKGgGaAloD0MIldi1vd0jYkCUhpRSlGgVTegDaBZHQIf6M7U5MlF1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d82128d737908580ac8edcd54fcac8436c571d236d2e06b91b2b4057a2953ef
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25a1112e130d5fad3de41fe38097e627df5c4926fc2619b6a87ba9e488cc7ffb
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e6d8c4286a43d460c231f66d85ef3c92d4fd237f3dc98c8f18afb0c234d73b8
|
3 |
+
size 256856
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 184.90951051050433, "std_reward": 52.52196981620671, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T20:14:36.999399"}
|