|
import os |
|
import gc |
|
import imageio |
|
import numpy as np |
|
import torch |
|
import torchvision |
|
import cv2 |
|
from einops import rearrange |
|
from PIL import Image |
|
|
|
def get_width_and_height_from_image_and_base_resolution(image, base_resolution): |
|
target_pixels = int(base_resolution) * int(base_resolution) |
|
original_width, original_height = Image.open(image).size |
|
ratio = (target_pixels / (original_width * original_height)) ** 0.5 |
|
width_slider = round(original_width * ratio) |
|
height_slider = round(original_height * ratio) |
|
return height_slider, width_slider |
|
|
|
def color_transfer(sc, dc): |
|
""" |
|
Transfer color distribution from of sc, referred to dc. |
|
|
|
Args: |
|
sc (numpy.ndarray): input image to be transfered. |
|
dc (numpy.ndarray): reference image |
|
|
|
Returns: |
|
numpy.ndarray: Transferred color distribution on the sc. |
|
""" |
|
|
|
def get_mean_and_std(img): |
|
x_mean, x_std = cv2.meanStdDev(img) |
|
x_mean = np.hstack(np.around(x_mean, 2)) |
|
x_std = np.hstack(np.around(x_std, 2)) |
|
return x_mean, x_std |
|
|
|
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB) |
|
s_mean, s_std = get_mean_and_std(sc) |
|
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB) |
|
t_mean, t_std = get_mean_and_std(dc) |
|
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean |
|
np.putmask(img_n, img_n > 255, 255) |
|
np.putmask(img_n, img_n < 0, 0) |
|
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB) |
|
return dst |
|
|
|
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False): |
|
videos = rearrange(videos, "b c t h w -> t b c h w") |
|
outputs = [] |
|
for x in videos: |
|
x = torchvision.utils.make_grid(x, nrow=n_rows) |
|
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) |
|
if rescale: |
|
x = (x + 1.0) / 2.0 |
|
x = (x * 255).numpy().astype(np.uint8) |
|
outputs.append(Image.fromarray(x)) |
|
|
|
if color_transfer_post_process: |
|
for i in range(1, len(outputs)): |
|
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0]))) |
|
|
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
if imageio_backend: |
|
if path.endswith("mp4"): |
|
imageio.mimsave(path, outputs, fps=fps) |
|
else: |
|
imageio.mimsave(path, outputs, duration=(1000 * 1/fps)) |
|
else: |
|
if path.endswith("mp4"): |
|
path = path.replace('.mp4', '.gif') |
|
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0) |
|
|
|
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size): |
|
if validation_image_start is not None and validation_image_end is not None: |
|
if type(validation_image_start) is str and os.path.isfile(validation_image_start): |
|
image_start = clip_image = Image.open(validation_image_start).convert("RGB") |
|
image_start = image_start.resize([sample_size[1], sample_size[0]]) |
|
clip_image = clip_image.resize([sample_size[1], sample_size[0]]) |
|
else: |
|
image_start = clip_image = validation_image_start |
|
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] |
|
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] |
|
|
|
if type(validation_image_end) is str and os.path.isfile(validation_image_end): |
|
image_end = Image.open(validation_image_end).convert("RGB") |
|
image_end = image_end.resize([sample_size[1], sample_size[0]]) |
|
else: |
|
image_end = validation_image_end |
|
image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end] |
|
|
|
if type(image_start) is list: |
|
clip_image = clip_image[0] |
|
start_video = torch.cat( |
|
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], |
|
dim=2 |
|
) |
|
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) |
|
input_video[:, :, :len(image_start)] = start_video |
|
|
|
input_video_mask = torch.zeros_like(input_video[:, :1]) |
|
input_video_mask[:, :, len(image_start):] = 255 |
|
else: |
|
input_video = torch.tile( |
|
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), |
|
[1, 1, video_length, 1, 1] |
|
) |
|
input_video_mask = torch.zeros_like(input_video[:, :1]) |
|
input_video_mask[:, :, 1:] = 255 |
|
|
|
if type(image_end) is list: |
|
image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end] |
|
end_video = torch.cat( |
|
[torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end], |
|
dim=2 |
|
) |
|
input_video[:, :, -len(end_video):] = end_video |
|
|
|
input_video_mask[:, :, -len(image_end):] = 0 |
|
else: |
|
image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) |
|
input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) |
|
input_video_mask[:, :, -1:] = 0 |
|
|
|
input_video = input_video / 255 |
|
|
|
elif validation_image_start is not None: |
|
if type(validation_image_start) is str and os.path.isfile(validation_image_start): |
|
image_start = clip_image = Image.open(validation_image_start).convert("RGB") |
|
image_start = image_start.resize([sample_size[1], sample_size[0]]) |
|
clip_image = clip_image.resize([sample_size[1], sample_size[0]]) |
|
else: |
|
image_start = clip_image = validation_image_start |
|
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] |
|
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] |
|
image_end = None |
|
|
|
if type(image_start) is list: |
|
clip_image = clip_image[0] |
|
start_video = torch.cat( |
|
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], |
|
dim=2 |
|
) |
|
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) |
|
input_video[:, :, :len(image_start)] = start_video |
|
input_video = input_video / 255 |
|
|
|
input_video_mask = torch.zeros_like(input_video[:, :1]) |
|
input_video_mask[:, :, len(image_start):] = 255 |
|
else: |
|
input_video = torch.tile( |
|
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), |
|
[1, 1, video_length, 1, 1] |
|
) / 255 |
|
input_video_mask = torch.zeros_like(input_video[:, :1]) |
|
input_video_mask[:, :, 1:, ] = 255 |
|
else: |
|
image_start = None |
|
image_end = None |
|
input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]]) |
|
input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255 |
|
clip_image = None |
|
|
|
del image_start |
|
del image_end |
|
gc.collect() |
|
|
|
return input_video, input_video_mask, clip_image |
|
|
|
def get_video_to_video_latent(input_video_path, video_length, sample_size, fps=None, validation_video_mask=None): |
|
if isinstance(input_video_path, str): |
|
cap = cv2.VideoCapture(input_video_path) |
|
input_video = [] |
|
|
|
original_fps = cap.get(cv2.CAP_PROP_FPS) |
|
frame_skip = 1 if fps is None else int(original_fps // fps) |
|
|
|
frame_count = 0 |
|
|
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
if frame_count % frame_skip == 0: |
|
frame = cv2.resize(frame, (sample_size[1], sample_size[0])) |
|
input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) |
|
|
|
frame_count += 1 |
|
|
|
cap.release() |
|
else: |
|
input_video = input_video_path |
|
|
|
input_video = torch.from_numpy(np.array(input_video))[:video_length] |
|
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255 |
|
|
|
if validation_video_mask is not None: |
|
validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0])) |
|
input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255) |
|
|
|
input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0) |
|
input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1]) |
|
input_video_mask = input_video_mask.to(input_video.device, input_video.dtype) |
|
else: |
|
input_video_mask = torch.zeros_like(input_video[:, :1]) |
|
input_video_mask[:, :, :] = 255 |
|
|
|
return input_video, input_video_mask, None |